You can resize any of the graphs by clicking and dragging a rectangle. If you hover the mouse over the graph, you will see a pop-up showing the coordinates. One of the icons in the upper right corner will let you export the graph in other formats.
This optical absorption measurement of Zinc tetraphenylporphyrin, [ZnTPP] were made by R. W. Wagner in 1994 using a Cary 3. The absorption values were collected using a spectral bandwidth of 1.0 nm, a signal averaging time of 0.133 sec, a data interval of 0.25 nm, and a scan rate of 112.5 nm/min.
These measurements were scaled to make the molar extinction coefficient match the value of 574,000cm-1/M at 422.8nm (Barnett, 1975).
Original Data | Extinction Data
The fluorescence emission spectrum of Zinc tetraphenylporphyrin, [ZnTPP] dissolved in toluene. The excitation wavelength was 550nm. The quantum yield of this molecule is 0.033 (Strachan, 1997). This spectrum was collected by in 1994 using a Spex FluoroMax. The excitation and emission monochromators were set at 1 mm, giving a spectral bandwidth of 4.25 nm. The data interval was 0.5 nm and the integration time was 2.0 sec.
Samples were prepared in 1cm pathlength quartz cells with absorbance less than 0.1 at the excitation and all emission wavelengths to uniformly illuminate across the sample, and to avoid the inner-filter effect. The dark counts were subtracted and the spectra were corrected for wavelength-dependent instrument sensitivity.
Barnett, G. H., M. F. Hudson and K. M. Smith (1975) Concerning meso-tetraphenylporphyrin purification. J. Chem. Soc. Perkin Trans. I 1401-1403.
Dixon, J. M., M. Taniguchi and J. S. Lindsey (2005), "PhotochemCAD 2. A Refined Program with Accompanying Spectral Databases for Photochemical Calculations, Photochem. Photobiol., 81, 212-213.
Du, H., R.-C. A. Fuh, J. Li, L. A. Corkan and J. S. Lindsey (1998) PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochem. Photobiol. 68, 141-142.
Gogan, N. J. and Z. U. Siddiqui (1970) Tricarbonylchromium complexes of abgd-tetraphenylporphinzinc. J. Chem. Soc. 284-285.
Harriman, A., G. Porter and N. Searle (1979) Reversible photo-oxidation of zinc tetraphenylporphine by benzo-1,4-quinone. J. Chem. Soc., Faraday Trans. 2 75, 1515-1521.
Harriman, A. (1980) Luminescence of porphyrins and metalloporphyrins. Part 1. - Zinc(II), nickel(II) and manganese(II) porphyrins. J. Chem. Soc., Faraday Trans. I 76, 1978-1985.
Strachan, J. -P., S. Gentemann, J. Seth, W. A. Kalsbeck, J. S. Lindsey, D. Holten and D. F. Bocian (1997) Effects of orbital ordering on electronic communication in multiporphyrin arrays. J. Am. Chem. Soc. 119, 11191-11201.