
Determining the optical properties of turbid media
by using the adding-doubling method
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A method is described for finding the optical properties (scattering, absorption, and scattering anisotropy)
of a slab of turbid material by using total reflection, unscattered transmission, and total transmission
measurements. This method is applicable to homogeneous turbid slabs with any optical thickness,
albedo, or phase function. The slab may have a different index of refraction from its surroundings and
may or may not be bounded by glass. The optical properties are obtained by iterating an adding-
doubling solution of the radiative transport equation until the calculated values of the reflection and
transmission match the measured ones. Exhaustive numerical tests show that the intrinsic error in the
method is < 3% when four quadrature points are used.

1. Introduction

This paper introduces a practical way to determine
the optical properties of scattering and absorbing
materials. These properties are obtained by repeat-
edly solving the radiative transport equation until the
solution matches the measured reflection and trans-
mission values. The advantages over existing meth-
ods are increased accuracy and flexibility in modeling
turbid samples with intermediate albedos, mis-
matched boundary conditions, and anisotropic scatter-
ing. The primary disadvantage is that this method
is entirely numerical. For brevity this method is
called inverse adding-doubling (AD): inverse im-
plies a reversal of the usual process of calculating
reflection and transmission from optical properties,
and adding-doubling indicates the method used to
solve the radiative transport equation. The IAD
algorithm and theory are described in this paper; an
experimental implementation is presented in the
companion paper.'

The optical properties of biological tissue are impor-
tant for photodynamic therapy and diagnostic tech-
niques. 2 Typically optical properties are obtained by
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using solutions of the radiative transport equation
that express the optical properties in terms of readily
measurable quantities. 3 These solutions are either
exact or approximate and correspond to the direct or
indirect methods described by Wilson et al.4 Direct
methods place stringent constraints on the sample to
match the assumptions made for the exact solution.
For example, the direct method used by Flock et al.5
required thin samples in which multiple scattering
could be ignored. Indirect methods relax the sample
constraints but require approximations that are often
invalid for tissue samples (e.g., nearly isotropic scat-
tering or no internal reflection at the boundaries).
The theory used in indirect methods usually falls into
one of three categories: Beer's law, Kubelka-Munk,
or the diffusion approximation.

Beer's law neglects scattering and is inappropriate
for thick scattering materials. The Kubelka-Munk
method and variants6' 2 are still used 3" 4 but are
limited in their accuracy."" 15 Methods based on the
diffusion approximation or a similar approximation
(e.g., uniform radiances over the forward and back-
ward hemispheres) tend to be more accurate than the
Kubelka-Munk method.16"17 Techniques using the
diffusion approximation include pulsed photothermal
radiometry,' 8 time-resolved spectroscopy,'9 radial re-
flectance spectroscopy,20 weak localization,2' and an
iterative technique that uses reflection and transmis-
sion measurements.2 2 These methods remain popu-
lar because they are easy to use, place relatively
minor constraints on the type of sample, and are
amenable to analytic manipulation. However, the
diffusion approximation assumes that the internal
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radiance is nearly isotropic, and consequently it is
inaccurate when scattering is comparable with absorp-
tion.2 3

The adding-doubling method is a general, numeri-
cal solution of the radiative transport equation.2 4

The adding-doubling method25 was chosen because it
is sufficiently fast that iterated solutions are possible
on current microcomputers and sufficiently flexible
that anisotropic scattering and internal reflection at
the boundaries may be included. Other accurate
solutions of the radiative transport equation such as
Chandrasekhar's X and Y functions,26 discrete ordi-
nates,2 7 Monte Carlo models,2>30 invariant embed-
ding,3 ' or successive orders24 are too slow or insuffi-
ciently flexible to incorporate the necessary boundary
conditions needed for turbid materials with mis-
matched boundaries.

The IAD method consists of the following steps:
(1) Guess a set of optical properties. (2) Calculate
the reflection and transmission by using the adding-
doubling method. (3) Compare the calculated values
with the measured reflection and transmissions.
(4) Repeat until a match is made. The set of optical
properties that generates reflection and transmission
values matching the measured values is taken as the
optical properties of the sample. The results ob-
tained with the IAD method are accurate for all
optical properties and can be made arbitrarily precise
at the cost of increased computation time. Further-
more, by avoiding an analytical solution, it is possible
to incorporate the necessary corrections for measure-
ments made directly with integrating spheres32 (see
Section 3.F). Such corrections are usually quite
awkward to implement because the magnitude of the
correction depends on the optical properties of the
sample measured.

2. Adding-Doubling Method

A. Definitions

The optical properties of a turbid medium are charac-
terized by the absorption coefficient pha, the scattering
coefficient pu,, and the single-scattering phase func-
tion p(O). The reciprocal of the absorption (scatter-
ing) coefficient is the average distance a photon will
travel before being absorbed (scattered) by the me-
dium. Two dimensionless quantities that character-
ize light propagation in a turbid medium are the
albedo a and the optical thickness T. These are
defined as

as
I 1¾P. + I.'

T = d([L8 + Ia ),

where d is the physical thickness of the slab.
The single-scattering phase function p(O) describes

the amount of light scattered at an angle 0 from the
incoming direction. The phase function is often
expressed in terms of the cosine of this scattering
angle v = cos 0. The phase function is normalized so

that its integral over all directions is unity:

JI1
p(v)dw = 2w J p(v)dv = 1,4Tr -~~~~~1

where do is a differential solid angle. The functional
form of the phase function in tissue is usually not
known. However, research by Jacques et al. 33 and
Yoon et al.34 have shown that a Henyey-Greenstein
function approximates single-particle light scattering
in human dermis and aorta at 633 nm. Consequent-
ly this phase function is used in all calculations in this
paper:

1 1-g 2

P( = 4r (1 + g2 - 2gv)&2

The Henyey-Greenstein phase function depends on
only the anisotropy coefficient g, defined as

~~~~~~~~1
g = f p(v)vdwo = 2 f p(v)vdv.

Consequently g is the average cosine of the scattering
angle. When g = 0, scattering is equally probable in
all directions. Typical values for tissues in the red
region of the spectrum are g 0 0.8,2 which is moder-
ately forwardly directed.

Reflection and transmission are relative to the
normal irradiance on the sample surface and vary
between zero and one. The total reflection RT is all
light specularly reflected and backscattered by the
sample. The total transmission TT is all the light
that passes through the sample and includes any light
traveling through the sample without being scattered.
This unscattered light is denoted T, because for
collimated irradiance on a sample the light passing
directly through the sample is often called the colli-
mated transmission. For a nonabsorbing sample
RT+ TT= 1.

B. Theory

The doubling method was introduced by van de Hulst
for solving the radiative transport equation in a slab
geometry.35 The advantages of the adding-doubling
method are that only integrations over angle are
required, physical interpretation of results can be
made at each step, the method is equivalent for
isotropic and anisotropic scattering, and results are
obtained for all angles of incidence used in the
integration.3 6 The disadvantages are that (a) it is
slow and awkward for calculating internal fluences,
(b) it is suited to a layered geometry with uniform
irradiation, and (c) it is necessary that each layer have
homogeneous optical properties. For determining
optical properties using only reflection and transmis-
sion, internal fluences are not needed, so disadvan-
tage (a) is not a problem. Disadvantages (b) and (c)
place restrictions on the sample geometry-the sam-
ples must be uniformly illuminated, homogeneous
slabs. The adding-doubling method is well suited to
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iterative problems because it provides accurate total
reflection and transmission calculations with rela-
tively few quadrature points. The method is fast for
small numbers of quadrature points, and conse-
quently iteration is practical.

In all calculations that follow the following assump-
tions are made: the distribution of light is indepen-
dent of time, samples have homogeneous optical
properties, the sample geometry is an infinite plane-
parallel slab of finite thickness, the tissue has a
uniform index of refraction, internal reflection at
boundaries is governed by Fresnel's law, and the light
is unpolarized. A nonabsorbing layer with a differ-
ent index of refraction may be present at the bound-
aries (glass slide).

The doubling method assumes that the reflection
R(v, v') and transmission T(v, v') for light incident at
an angle v and exiting at an angle v' is known for one
layer. The reflection and transmission of a slab that
is twice as thick is found by juxtaposing two identical
slabs and adding the reflection and transmission
contributions from each slab.25 The reflection and
transmission for an arbitrary slab are calculated first
by finding the reflection and transmission for a thin
starting slab with the same optical properties (e.g., by
using single scattering) and then by doubling until
the desired thickness is reached. The adding method
extends the doubling method to dissimilar slabs.
Thus slabs with different optical properties can be
placed adjacent to one another to simulate layered
media or internal reflection caused by index-of-
refraction differences.

C. Internal Reflection and Boundary Conditions

Internal reflection. at the boundaries (caused by mis-
matched indices of refraction) was included in the
calculation by adding an additional layer for each
mismatched boundary. The reflection and transmis-
sion of this layer equaled the Fresnel reflection and
transmission for unpolarized light incident on a plane
boundary between two transparent media with the
same indices of refraction. If r(vi) is the unpolarized
Fresnel reflection for light incident from a medium
with the index of refraction n1 on a medium with an
index of refraction n2 at an angle from the normal
with the cosine equal to vi, the reflection and transmis-
sion operators for the boundary slab are

Rbndry(vi, v>) = r(v) ij
-2; i'

1 - r(vi) n, 2
Tbndry(Vi, 1V) 2v, n~fo) 8i

where bij is the Kronecker delta-function. The square
of the ratio of the indices of refraction is due to the n2

law of radiance,37 which accounts for the difference in
radiances across an index-of-refraction mismatch.
The factor of 2vi is included for uniformity with van
de Hulst's definition of the reflection function.2 4

Note finally that the transmission and reflection of
the boundary layer were zero and one, respectively,
for light that is incident at angles exceeding the

critical angle for total internal reflection. Both oper-
ators are diagonal because light is specularly reflected
and the angle of incidence equals the angle of reflec-
tion.

By sandwiching a tissue sample between glass or
quartz plates, we can minimize the usual irregulari-
ties in the tissue surface, and the Fresnel reflection is
a good approximation. To account for a nonabsorb-
ing boundary with a different index of refraction, we
must include all the multiple internal reflections.2

For example, if vi is the cosine of the angle of
incidence from the turbid slab (index ns) onto a glass
slide (index ng), the cosine of the angle inside the glass
slide (vg) is determined by using Snell's law:

ng(1 - vg2 )"2 = nJ(1 -vil) ' Vi < v,

where v, is the cosine of the critical angle for total
internal reflection. When ri = r(vi) is defined as the
unpolarized Fresnel reflection coefficient for light
passing from the slab into glass and rg = r(vg) is for
light passing from glass to air, the net reflection
coefficient that should be used in Eqs. (1) is

Irl(vi) + rg(vg) - 2r1(vi)rg(vg)

r(v) = 1 - r1(vi)rg(vg)

1

if vi < v,

if vi > v,

This value for r(v) accounts for the extra reflections
within the glass slide. Finally, since light is re-
fracted at the boundary, we must be sure that the
incident and reflected fluxes are identified with the
proper angles.

The reflection and transmission functions for the
thin starting layers were obtained by the diamond
initialization method.38 The optical thickness for
the starting layers was based on the smallest quadrat-
ure angle as suggested by Wiscombe.39 The Henyey-
Greenstein phase function was used for all calcula-
tions. We avoided phase-function renormalization
by always using the 8 - M method, which facilitates
accurate calculations with highly anisotropic phase
functions. 4 0

The adding-doubling method is based on the nu-
merical integration of functions with quadrature:

fl

N

f (v, v')dv' = Y Hkf(xk)-
k=1

The quadrature points Xk and weights Hk are chosen
so that the integral is approximated exactly for a
polynomial of order 2N - 1 (or possibly 2N - 2,
depending on the quadrature method). Using N
quadrature points (Gaussian quadrature) is equiva-
lent to the spherical harmonic method of order
PN-1, 4 1 i.e., four quadrature points correspond to the
P3 method. The choice of quadrature methods is
described in Section 3.

The total internal reflection caused problems by
changing the effective range of integration. Usually
adding-doubling integrals range from 0 to 1, since
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the angle varies from ir/2 to 0 and therefore the cosine
varies from 0 to 1. We used numerical quadrature in
calculating the integrations, and the quadrature an-
gles were optimized for this range. If the cosine of
the critical angle is denoted by v,, then for a boundary
layer with total internal reflection the effective range
of integration is reduced down to v, to 1 (because the
rest of the integration range is now 0). To maintain
integration accuracy, we separated the integral into
two parts, and each is evaluated by quadrature over
the specified subrange:

A(v, v')B(v', v")dv'

= J A(v, v')B(v', v")dv' + A(v, v')B(v', v")dv'.

Here A(v, v') and B(v, v') represent reflection or
transmission functions, and, if either is identically
zero for v < v, then the integration range is reduced.
The calculations in this paper used Gaussian quadrat-
ure42 for the range from 0 to v, and thereby calcula-
tions at both end points were avoided. (In particular
the angle v = 0 is avoided, which may cause division
by zero.) Radau quadrature was used for the range
from v to 1, because one quadrature angle may be
specified.43 Normal irradiance corresponds to v = 1,
and if this angle is specified, interpolation between
quadrature points is not needed to obtain reflection
and transmission for normal unscattered irradiance.
Interpolation can be a significant source of error.
The number of quadrature points are divided evenly
between 0 to v and v to 1. Since the quadrature
methods work well with even numbers of quadrature
points, this dictates that the quadrature points should
be chosen in multiples of four. Radau quadrature
was used when there was no critical angle.

3. Iteration Process

The iteration process consists of finding optical prop-
erties that generate the measured reflection and
transmission values. This section begins by show-
ing that a unique solution to the inverse problem
exists, and then the simplifications that are necessary
when one or more of the experimental measurements
is missing are described. Finally three components
of the iteration process are given: (1) the function
that defines the distance the calculated values are
from the measure values, (2) the initial set of optical
properties guessed, and (3) the algorithm used to
minimize this function.

A. Uniqueness

The iteration method implicitly assumes that a unique
combination of the albedo, the optical depth, and the
anisotropy is determined by a set of reflection and
transmission measurements. Clearly, if a sample is
so thick that an accurate unscattered transmission
measurement cannot be made, there are more un-
knowns than observations. Even when all the mea-

surements are available, it is not obvious that a
unique set of optical properties (a, r, g) exists for any
set of measurements (RT, TT, TC). For example, in-
creasing the albedo of a sample will increase its total
reflection and decrease its total transmission-but so
will increasing the optical thickness of the sample.
Uniqueness is demonstrated for two cases: fixed
unscattered transmission and fixed scattering anisot-
ropy. The former is representative when (RT, TT,
Tc) are all known; the latter applies when the unscat-
tered transmission measurement is unavailable and a
fixed value for the scattering anisotropy must be
assumed.

The dependence of the total transmission and total
reflection on the anisotropy and albedo is shown in
Fig. 1. The bold (a, g) grid was computed with the
unscattered transmission fixed at 10% (Tc = 0.1),
and the boundaries of the sample were matched with
its environment. The intersection of the measured
total reflection and total transmission grid lines
determines a unique albedo and anisotropy.

In Fig. 2 the dependence of the total transmission
and the total reflection on the reduced albedo and
reduced optical thickness is shown. Scattering in
the medium is assumed to be isotropic (g = 0), and
the index of refraction is 1.4.44 Again, any nonzero
reflection and transmission measurement yields a
unique value for the reduced scattering and absorp-
tion coefficient. Figure 2 is quite useful for obtain-
ing quick estimates of the optical properties of a
sample. For example, if RT = 0.4 and TT = 0.2, then
a 0.96 and = 7. If the thickness of the sample is
0.4 mm and the scattering anisotropy is assumed to
be 0.8, using the similarity relations (see below) will
fixtheopticalpropertiesat(Pap g8,g) (0.7mm-', 17
mm-', 0.8).

C. Simplification

The three measurements usually available are the
total reflection, the total transmission, and the unscat-

a0

.E
7o

H

0 0.2 0.4 0.6

Total Reflection

0.8

Fig. 1. Total reflection and total transmission of an index-
matched slab (n = 1) as a function of the albedo a and anisotropyg
for a fixed unscattered transmission value of 10%. Each point on
the bold (a, g) grid corresponds to a unique (RT, TT) pair.
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needed. Several metrics were tried, but one based
on a sum of relative errors worked best:

..0

H

0
EH

0.6

0.4

0.2

0.0

I R - Rme I
M(a T g) - Rme + 10-6

T'= 12

0 0.2 0.4 0.6 0.8

Total Reflection

Fig. 2. Total reflection and total transmission of a slab as a
function of the reduced albedo a' and reduced optical thickness
T'. Isotropic scattering is assumed as well as an index of refrac-
tion mismatch (n = 1.4). Each point on the (a', T') grid corre-
sponds to a unique (RT, TT) pair.

tered transmission. It is assumed that the unscat-
tered reflection from each surface is equal to the
Fresnel reflection for the unpolarized light that is
normally incident on the sample. From the unscat-
tered transmission Tc, we may immediately calculate
the optical thickness T by solving

§1
_ (1 - r8l)(1 - r 2)exp(-'r)

U 1 - rlr 82 exp(-2r)

where r81 and ri 2 are the primary reflections for light
that is normally incident on the front and back
surfaces of the slab. If glass slides are present, the
specular reflection coefficients rj1 and r 2 should in-
clude multiple internal reflections in the slide (see
Subsection 2.C). Once the optical thickness is known,
only the albedo and anisotropy remain to be deter-
mined. They are varied until the calculated reflec-
tion and transmission match the measured values.

When the only measurements available are the
total reflection and transmission, as might happen for
a thick sample in which an accurate unscattered
transmission measurement cannot be made, only two
optical parameters can be determined. Typically a
value for the scattering anisotropy is assumed, and
the albedo and optical thickness are calculated based
on this assumed value. The accuracy of say fluence
calculations when these values are used (based on
similarity) is unknown.

If only one measurement is available, the sample is
usually too thick for a transmission measurement to
be made. In this case the optical thickness of the
sample is assumed to be infinite, and again a fixed
value for the scattering anisotropy is chosen. The
reduced albedo can now be calculated. This is a
simple one-parameter minimization problem, and
convergence is robust and rapid.

C. Metric

When the reflection and transmission for a particular
set of optical properties are calculated, a definition of
how far these values are from those measured is

I Tc - Tme I

Tmeas + 10-6

Here Rmeas and Tme, are the measured reflection and
transmission for scattered light. The factor of 10-6
is included to prevent division by zero when the
reflection or transmission is zero. Note that the
measurement errors for reflection and transmission
are assumed to be equal for this metric. If this is not
true, suitable modifications are necessary.

D. Inverse Method

The iteration method uses an N-dimensional minimi-
zation algorithm based on the downhill simplex
method of Nelder and Mead.45 One implementation
of this method (AMOEBA) varies the parameters from
-mc to o.42 Since the anisotropy, albedo, and optical
depth have fixed ranges, they are transformed into a
computation space. For example, the transforma-
tion function for the albedo is

2a - 1
acomp = a(1 - a)

Thus, as acomp varies from -cc to cc, the albedo a varies
from 0 to 1. The transformation for the anisotropyg
(which varies from -1 to 1) is

ggcomp =1 + 

The transformation for the optical thickness v (which
varies from 0 to o) is

bcomp = ln(T).

We can easily invert these relations to obtain rela-
tions for the optical properties in terms of the compu-
tation values. We made all calculations by using the
real values: the transformed values were used only
by the simplex method for choosing the next iteration
point. Typical convergence was in 20-30 iterations.

E. Initial Values

The starting set of optical properties affects both the
rapidity of convergence and the convergence to the
correct values. Clearly, with a better first guess,
fewer subsequent iterations are needed. Poor
guesses have the added disadvantage that the minimi-
zation algorithm may converge to a relative rather
than the global minimum. Since the global mini-
mum corresponds to the unique solution described
above, local minima must be guarded against. Fortu-
nately they are easily detected by examining the
magnitude of the minimum. If the magnitude ex-
ceeds a small tolerance (typically 10-3), the minimum
is a local one and the iteration process must be
restarted with a better initial guess. If necessary,
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r _Yi[R,(1 - Y2Rd) + Y3Rcd](l - y4Rd) + YlY34Td(Tcd + PY5Tc)
(1 - Y4 Rd)(l

one or two restarts suffice to reach the global mini-
mum.

Generating an initial set of approximately correct
optical properties for any reflection and transmission
combination is difficult. We can use the similarity
relations46 to facilitate picking starting values by
relating (a, T, g) to the reduced optical properties
(a', T', g' = 0):

a _ a(1-g)
1 - ag

The inverse relations are

a'
a -g+a'g

'= (1 - ag)T.

a'-r'gT = ' + g- g
Now only two parameters need to be found (a', T') for
a combination (RT, TT). For example, originally the
Kubelka-Munk relations were used to obtain these
values for initial guesses.47 Unfortunately these val-
ues were often worse than using just a fixed guess
(a', T', g) = (0.5, 1, 0.2) to begin all iterations. A
good starting set of starting values is based on a crude
fit of the reflection and transmission values of Fig. 2.
The formula for the reduced albedo is

1

1

(1 - 4Rd-TT 2

1 - TTJ
4 (1 -Rd- TT2
9 - TT

if Rd < 0.1
f TT

i > 0. 1.

The formula for the reduced optical thickness is

-In TT ln(0.05)

Tl = In RT
21+5(Rd+TT)

ifRd < 0.1

if Rd > 0.1.

Once we obtain r by using Eq. (3), and a' and r' have
been calculated as above, Eqs. (1) and (2) can be used
to generate a single set of starting values (a, , g).
This is the only time the similarity relations are used
in the LAD method.

F. Integrating-Sphere Correction

Total transmission and reflection are usually mea-
sured with integrating spheres. Interaction be-
tween the sample and spheres makes the detected
signal no longer proportional to the sample reflection
or transmission.3 2 For example, when a double-
integrating-sphere arrangement is used, the power
on the wall of the reflectance sphere Pr normalized to
the incident power P is32

- 6Rd) - Y4Y6Td

where the yi values depend on only the geometry and
reflectivity of the integrating spheres, and various R
and T values correspond to different types of reflec-
tion and transmission by the sample. A similar
formula holds for the normalized power on the trans-
mission sphere wall. Once the integrating spheres
have been characterized (i.e., the yi values are known),
we can calculate the normalized powers on the walls
of the integrating sphere by using reflection and
transmission values obtained with the adding-
doubling method. The IAD algorithm calculates the
normalized powers in the spheres and matches them
to the detected powers (rather than matching reflec-
tion and transmission directly).

4. Accuracy of the Method
This section addresses the question: If RT, TT, and
TC are known exactly, what is the maximum possible
error in the derived optical properties caused by the
inverse adding-doubling method? The error analy-
sis must be made numerically, because analytical
expressions for light propagation in anisotropic media
with mismatched boundaries are not available. The
numerical tests are designed to find the accuracy of
the inverse algorithm as functions of both the optical
properties and the reflection and transmission of the
sample. Implicit are checks on (a) the convergence
of the inverse algorithm to the global minimum, (b)
the termination criterion for stopping the iteration
procedure, (c) the choice of starting parameters, and
(d) the effect of using small numbers of quadrature
points. This last test is particularly important, since
the method would be useless (too slow) if small errors
could be achieved only by using many quadrature
points.

Generating a set of accurate testing values pre-
sented a problem, since accurate tabulated values for
mismatched boundaries with anisotropic scattering
could not be found in the literature. Consequently,
after demonstrating that our adding-doubling imple-
mentation reproduced the published values for
matched boundaries24 46 exactly, we used Monte Carlo
to verify a few mismatched cases. This confirmed
the boundary condition algorithm. Finally, we com-
pared 36- and 48-quadrature-point adding-doubling
calculations. The 36-point calculation was always
correct to at least 0.1%. The 48-point calculation
was used for the test data and was constrained to
include only samples with reduced optical thicknesses
of > 0.25 and optical thicknesses of < 32. The ratio-
nale was that when T' < 0.25 either the sample does
not multiply scatter and therefore a simpler algo-
rithm should be used, or the sample does multiply
scatter, but because of the highly anisotropic nature
of each scattering event, the separation of Tc from
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scattered light would be extremely difficult. The
second criterion ( < 32) ensured that the sufficient
collimated transmitted light passed through the sam-
ple so that it could be measured Tc > exp(-32) 
10-14]. The IAD method works for any optical thick-
ness, but it becomes progressively less accurate out-
side this range.

All samples assume slabs with an index of refrac-
tion of 1.4 relative to the environment. Results for
the index-matched samples indicate that the error in
the LAD method is approximately half of those pre-
sented here for the mismatched case. This is caused
by total internal reflection of light at quadrature
angles that are greater than the critical angle (one-
half of the total number, see Subsection 2.C). The
slabs are not sandwiched by glass: calculations with
a sample between glass slides do not alter the mis-
matched (n = 1.4) results significantly and are omit-
ted for brevity.

In all calculations the scattering phase function
used was the Henyey-Greenstein phase function.
Despite the limited experimental evidence that this
phase function is appropriate for tissues, errors aris-
ing from an inappropriate phase function should be
small, since different phase functions with equivalent
g values and different higher-order moments gener-
ate nearly equal reflection and transmission values.46

The absolute error is defined as the difference
between the true or accurate values and those calcu-
lated with the inverse adding-doubling method:

Aa' = latrue' - acalc I (5)

The relative percentage error is the absolute error
divided by the true value and multiplied by 100. The
absolute errors in the scattering and absorption
coefficients are proportional to the physical thickness
of the sample and consequently are not particularly
useful. The relative errors for [La and pu can also be
obtained despite the fact that only dimensionless
optical parameters are used by noting that the physi-
cal thickness cancels:

AN.tu

11at
= 100[1 -

= 100(1 -

(1 - acalc)Tcalc1

(1 -atrue)Ttrue 

aceTca \

atrueTtrue

B. Variation with Optical Properties

The sensitivity of the inverse adding-doubling method
to the optical properties of a sample was evaluated by
using a data set consisting of reflection and transmis-
sion values for 11 reduced albedos spaced so that
(1 - atrueT)/2 = (0, 0.1, . . ., 1), 10 anisotropies spaced
similarly (0, 0.19, 0.36, 0.51, 0.64, 0.75, 0.84, 0.91,
0.96, 0.99), and 14 reduced optical depths (listed in
Table 1). Thus for each pair (a', T') there were 10
different values of g that all corresponded to more or
less equal values of RT, TT. There was a total of 1540

Table 1. Maximum Errors in the Calculated Reduced Optical Thickness
' for any Albedo or Anisotropy as a Function of the True Reduced

Optical Thicknessa

Maximum Maximum
Absolute Errors Relative Errors

T' Diffusion 4 8 Diffusion 4 8

/4 0.04 0.02 0.01 16 9 4
3/8 0.03 0.02 0.01 9 6 3
1/2 0.03 0.02 0.01 5 5 2
3/4 0.03 0.03 0.01 3 3 1

1 0.04 0.03 0.01 4 3 1
3'2 0.07 0.03 0.01 5 2 1

2 0.2 0.04 0.02 11 2 .8
3 0.2 0.04 0.02 7 1 .6
4 0.3 0.05 0.02 8 1 .6
6 0.6 0.1 0.04 10 1 .6
8 0.9 0.2 0.05 11 2 .6

12 1.5 0.3 0.09 12 2 .7
16 2 0.4 0.1 13 2 .7

aThe calculated vales were obtained by using a 8-Eddington
approximation (diffusion) or the LAD method with four or eight
quadrature points.

different combinations of atrue, Ttrue, gtrue. For each
combination accurate reflection and transmission
(RT, TT, TC) values were calculated. The optical prop-
erties were found by using the LAD method with four
and eight quadrature points. Diffusion equation
results were obtained by using the same iteration
algorithm but by replacing the adding-doubling calcu-
lation with a 8-Eddington diffusion approxima-
tion. 22,48

The spacing in the reduced albedo was based on the
observation that reflection and transmission are quite
sensitive to changes in the reduced albedo when it is
near unity. The anisotropy was chosen to vary in a
similar manner for the same reason. Completely
forward scattering (g = 1) was omitted because it
corresponds to the nonscattering case. The nonscat-
tering (a = 0) and nonabsorbing (a = 1) cases were
both included. The range of the reduced optical
thickness was chosen because of the natural advan-
tage of making calculations for optical thicknesses
that vary by a factor of 2 when the adding-doubling
technique is used.

The variation in IAD accuracy with reduced optical
thickness is tabulated in Table 1 and displayed in Fig.
3. The maximum relative error for a fixed T' is the
greatest error in a calculated value of i' for any albedo
and scattering anisotropy. The relative error de-
creases as the number of quadrature points increases.
When 1 < r' < 16 the maximum relative error when
four quadrature points are used is < 2%. Surprising-
ly the diffusion approximation works best for T' 1
but when only the relative error is considered.
Table 1 shows that the maximum absolute error AT'
monotonically increases with T' for the diffusion
approximation as well as the four- and eight-quadrat-
ure-point IAD calculations.

The variation in the relative error in the scattering
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Fig. 3. Maximum error in the calculated reduced optical thickness
T' for any anisotropy and any albedo by using the diffusion
approximation and the IAD method with four and eight quadrature
points.

coefficient was evaluated for changes in the reduced
optical thickness, the reduced albedo, and the scatter-
ing anisotropy when only four quadrature points
were used. In Fig. 4 the maximum relative error in
the calculated scattering coefficient is plotted as a
function of the three dimensionless quantities a', ',
and g. As expected the accuracy in determining l
increases as the scattering increases (i.e., as a' -> 1).
The increased scattering implies more uniform inter-
nal radiance distributions, which in turn are more
accurately approximated than highly anisotropic inter-
nal radiance by four-quadrature-point distributions.
Errors in the scattering coefficient do not depend
strongly on either the reduced optical thickness or the
scattering anisotropy. The maximum relative error
never exceeds 6% for positive albedos.
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B. Variation with Reflection and Transmission

The accuracy of the inverse adding-doubling method
varies with the reflection and transmission of the
sample. To quantify the maximum error for specific
reflection and transmission values another paired set
of atrue, Ttrue, 9true and RT, TT, TC were generated. In
this set the total reflection and total transmission
were spaced evenly (in 0.05 increments). By permit-
ting the unscattered transmission to take on different
values, 10 different sets of atrue, 'true, true were
obtained for each pair (RT, TT). The maximum rela-
tive error in the absorption coefficient, the scattering
coefficient, and the scattering anisotropy was calcu-
lated by using the IAD method with four quadrature
points.

Figure 5 shows a contour plot of the maximum
relative error in the calculated absorption coefficient
as a function of total reflection and total transmission.
The maximum relative error in the absorption coeffi-
cient (assuming a > 0 or RT + TT < 1) was 10%.
The RT + TT = 0 case is omitted because I.a = 0 for
conservative scattering and the relative error is infi-
nite in this case. For the majority ofRT, TT combina-
tions the maximum error is 2-3%. The error is
greatest when the total transmission is highest, which
corresponds to samples that absorb only a small
fraction of the light.

Figure 6 shows a contour plot of the maximum
relative error in the scattering coefficient as a func-
tion of the total reflection and total transmission.
In contrast to the error in the absorption coefficient
the error for the scattering coefficient is greatest
when little light is reflected by the sample. The
error drops sharply with increasing reflection values.
The maximum error is always < 2% for any nonzero
value of [L,. The p, = 0 case is omitted for the same
reason that conservative scattering is avoided in Fig.
5. The larger relative errors seen in Fig. 4 all
correspond to the very small reflection values indi-
cated by the black area in Fig. 6.

Figure 7 shows a contour plot of the maximum

100.

r.0

co
F-
r_
"I

1,0

0.1 1 10

Fig. 4. Maximum relative error in the calculated scattering
coefficient as a function of the reduced albedo a', the reduced
optical thickness T', and the scattering anisotropy g by using the
IAD method with four quadrature points and mismatched bound-
ariesn = 1.4.

0 20 40 60 80 100

Reflection

Fig. 5. Relative error in the calculated absorption coefficient as a
function of reflection and transmission. The AD method was
used with four quadrature points, and the slab had mismatched
boundaries.
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Fig. 6. Relative error in the calculated scattering coefficient as a
function of reflection and transmission. The IAD method was
used with four quadrature points, and the slab had mismatched
boundaries.

absolute error in the scattering anisotropy as a
function of total reflection and total transmission.
The error is always < 0.03 for all the cases in which
the scattering coefficient is nonzero. When the scat-
tering coefficient is zero, no scattering takes place and
any measurement will not give information on the
shape of the scattering event. These cases corre-
spond to total reflection values that are equal to the
unscattered reflected light.

Typically the errors resulting from the LAD method
will be much smaller than those resulting from
experimental uncertainties. For example, assume
that the measurements RT = 0.264, TT = 0.261, and
Tc = 5.91 x 10-5 are known with a 1% uncertainty.
The relative errors resulting from the IAD method
are 0.04% for ps, 1% for p.a, and 0.1% for g.
However, perturbing the reflection and transmission
values by 1% and re-solving for the optical properties
result in errors of 0.4% for p.,, 17% for [1a, and 0.4%
for g or approximately an order of magnitude larger
than the errors inherent in the IAD method itself.
Such error estimates are necessary because of the

100
0.01-0.02

80 _ Maximum Relative
80 r \ Error in g

*° 60
<0.01

40

.01-0.02_
20

0
0 20 40 60 80 100

Reflection

Fig. 7. Relative error in the calculated scattering anisotropy as a
function of reflection and transmission. The IAD method was
used with four quadrature points, and the slab had mismatched
boundaries.

nonlinear relationship between reflection and trans-
mission and the intrinsic optical properties. A pri-
mary goal of this study was to develop an accurate
method of computing optical properties, so that such
estimates can be made without introducing errors
caused by the calculation itself.

In practice the two most common sources of experi-
mental errors are (1) loss of light from the edges of the
sample (which thereby invalidates the one-dimen-
sional assumptions and underestimating both RT and
TT) and (2) collecting scattered light in the unscat-
tered transmission measurement (which thereby over-
estimates Tc). The first problem manifests itself in
spuriously high absorption values, and the latter case
leads to optical properties that depend on the thick-
ness of the sample. These problems are discussed at
length in the experimental implementation of this
technique.'

5. Conclusions

The inverse adding-doubling method translates total
reflection, total transmission, and unscattered trans-
mission measurements into scattering, absorption,
and scattering anisotropy values. The method is
applicable when the one-dimensional radiative trans-
port equation adequately describes the propagation of
light through the sample. Using only four quadrat-
ure points, the IAD method generates optical proper-
ties (a, pLs, g) that are accurate to 2-3% for most
reflection and transmission values. Higher accuracy
is achieved by using more quadrature points, but it
requires increased computation time. The validity
of the IAD method for samples in which (a, = ) is
especially important since other methods (e.g., those
based on the diffusion approximation) are known to
fail in this regime. Furthermore both anisotropic
phase functions and Fresnel reflection at boundaries
are accurately approximated, and therefore the IAD
method is well suited to measurements involving
biological tissues sandwiched between glass slides.
A computer implementation of the inverse adding-
doubling method is available from the authors.

This work was supported by the Office of Naval
Research Contract N00014-86-K-0117 and the Na-
tional Institutes of Health grant 5ROlAR25395-11.
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