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propagation of partially coherent light

Scott A. Prahl,1,* David G. Fischer,2 and Donald D. Duncan3

1Oregon Medical Laser Center, Providence St. Vincent Medical Center, 9205 SW Barnes Road, Portland,
Oregon 97225, USA

2NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135, USA
3Division of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland,

Oregon 97239, USA
*Corresponding author: prahl@bme.ogi.edu

Received February 27, 2009; revised May 6, 2009; accepted May 8, 2009;
posted May 11, 2009 (Doc. ID 108137); published June 10, 2009

We present a Monte Carlo-derived Green’s function for the propagation of partially spatially coherent fields.
This Green’s function, which is derived by sampling Huygens–Fresnel wavelets, can be used to propagate fields
through an optical system and to compute first- and second-order field statistics directly. The concept is illus-
trated for a cylindrical f/1 imaging system. A Gaussian copula is used to synthesize realizations of a Gaussian
Schell-model field in the pupil plane. Physical optics and Monte Carlo predictions are made for the first- and
second-order statistics of the field in the vicinity of the focal plane for a variety of source coherence conditions.
Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases.
This formalism can be generally employed to treat the interaction of partially coherent fields with diffracting
structures. © 2009 Optical Society of America

OCIS codes: 030.5620, 030.1670, 030.6600, 110.4980, 170.3660.
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. INTRODUCTION
he propagation of light in complex, strongly scattering
andom media is an important problem in diagnostic im-
ging and remote sensing [1–5]. Specific applications in-
lude laser communication through the atmosphere [1,2],
maging in biological media and (underwater) littoral en-
ironments [3–5], and imaging in extreme environments
uch as turbulent combustion.

Often, the scattering experienced on propagation is a
uisance. Such is the case in optical telecommunications
ithin the atmosphere [1,2]. In other cases, the effects of

cattering are useful because they convey information
bout the medium itself; the laser Doppler technique for
easuring velocity is a good example [6]. Many practical

ituations involve a combination of these two; an object
hat one seeks to observe is embedded in a scattering me-
ium that frustrates the observation. Confocal microscopy
s a good example of such a case [7]. Here, the source
elds are focused to a plane within the medium that one
ishes to image. In proceeding from the pupil to the focal

pot, however, the fields are subject to scatter that de-
rades the quality of focus. Moreover, the light backscat-
ered from the focal spot is subject to additional scatter in
ts path back to the pupil.

Because of the complexity of the interaction in strongly
cattering media (such as biological tissue), physical op-
ics (PO) methods of analysis are infeasible. In such cases,
esearchers have relied almost exclusively upon Monte
arlo (MC) methods based on radiative transfer theory

8–10]. Such methods employ an effective-medium con-
ept that views the medium as having certain scatter and
bsorption characteristics that are otherwise uniformly
1084-7529/09/071533-11/$15.00 © 2
istributed. In other words, the medium is viewed as be-
ng homogeneous. Objects embedded within the medium
about which information may be desired) are viewed as
aving different scatter and absorption properties, but
re otherwise assumed homogeneous as well. While this
as been successful in mimicking empirical results, the
ethod conveys no information about the actual light–
atter interaction.
Traditional MC methods allow only single-point charac-

erizations of the observed field (intensity, polarization),
nd assume that there is no correlated structure at the
cale of the wavelength within the propagation medium.
n general, a more complete statistical characterization of
he field (second-order moments and higher) is needed.
his is accomplished within the framework of optical co-
erence theory [11]. Accounting for coherence effects is
ritical, as it is the spatial coherence of the field that af-
ects the quality of focus and ultimately imaging perfor-
ance (in confocal microscopy, for instance). In addition,

t has been shown that spatial coherence changes, even on
ropagation through free space.
Ideally, then, a complete and efficient treatment of the

ropagation of light in random media would involve the
pplication of MC methods (or ray tracing in general)
ithin the framework of optical coherence theory. There
ave been several recent efforts along these lines, from
oth analytical and numerical perspectives. Zysk et al.
12] employed an eikonal formalism for propagating the
ross-spectral density of a special class of partially coher-
nt sources within the geometrical optics regime. Petruc-
elli and Alonso [13] conducted a general analytical study
f the propagation of the cross-spectral density using ray
009 Optical Society of America
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racing. Douglas et al. [14] developed a ray-based simula-
ion for an optical interferometer that accounted for the
volution of spatial coherence from an extended source,
ut used systematic angular ray sampling and neglected
iffraction. A paraxial ray-based simulation was also de-
eloped by Riechert et al. [15], but they too used a system-
tic sampling algorithm, neglected diffraction, and did
ot specifically treat the case of arbitrary coherence.
In a recent paper [16], we presented a Monte Carlo

MC) method for propagating partially coherent field re-
lizations which integrates the physical optics (PO) de-
cription of light with ray-based propagation techniques.
he combination of the two methodologies preserves the
ave nature of light, which is essential for describing co-
erence phenomena, while exploiting the computational
implicity and robustness of MC techniques [10–12,17],
llowing one to model complex phenomena that cannot be
reated by either approach individually.

In this paper, we present an extension that involves
C computation of the Green’s function for the overall

ystem. The Green’s function can be used to propagate in-
ividual realizations and compute arbitrary moments of
he propagated field, as in [16]. Unlike the previous tech-
ique, however, it can also be used to propagate the cross-
pectral density (a second-order moment) directly, at a
ubstantial computational savings. We illustrate our
reen’s function technique using an f/1 imaging system.

t should be noted, however, that our technique can be ap-
lied to any complex medium for which the light–matter
nteraction can be modeled as either the absorption or re-
irection (i.e., scattering) of a light ray. The case of propa-
ation through a multiple-scattering medium will be
reated in a future paper.

. GREEN’S FUNCTION FORMULATION
he optical configuration that we address herein is that of
two-dimensional f/1 imaging system, although the for-
alism is generally applicable. We assume that the field
ithin the pupil of the system is partially coherent. We
iscuss the analytic theory describing such a configura-
ion and present a Green’s function implementation of the
alculations that are subsequently carried out by numeri-
al integration for the PO case and by MC ray trace.

Consider a focused cylindrical wave of frequency � that
s exiting an aperture of width 2a in a plane screen (see
ig. 1). The axial coordinate is z, y is parallel to the long
xis of the cylindrical wave, and x is across the slit. The
rigin O of the coordinate system coincides with the geo-
etrical focus. The amplitude of the field in the aperture

s U�0��r� ,��, r� being the position vector of typical point
�r��. The field at a point P�r� in the focal region is, ac-

ording to the Huygens–Fresnel principle, expressed in
wo dimensions as [18]

U�r,�� =
i�

�
�

−a

a

U�0��r�,��exp�− ik�f2 + x�2�
z

s
H1

�1��ks�dx�,

�1�

here � is the wavelength, k=2� /� is the wavenumber, f
s the focal distance, s= �r−r�� denotes the distance QP,
nd we have suppressed the periodic time-dependent fac-
or exp�−i�t�. Alternatively, the field can be expressed in
he form

U�r,�� =�
−�

�

U�0��r�,��G�r,r��dx�, �2�

here

G�r,r�� = �
i�

�
exp�− ik�f2 + x�2�

z

s
H1

�1��ks�, �x�� � a

0, else
� .

�3�

�r ,r�� is the Green’s function of the system.
A partially coherent wave field is characterized by its

tatistical moments. One such (second-order) moment is
he cross-spectral density function, which describes first-
rder correlations in the field ([11], Sect. 2.4.4) and is de-
ned at the points P�r1� and P�r2� by

W�r1,r2,�� = �U*�r1,��U�r2,��	. �4�

ere the angle brackets denote the average, taken over a
tatistical ensemble of monochromatic, i.e., time coherent
ealizations U�r ,��exp�−i�t� ([11], Sect. 4.7), and the as-
erisk denotes the complex conjugate. One can also define
he spectral density and spectral degree of coherence, re-
pectively, as

S�r� = W�r,r�,

��r1,r2� = W�r1,r2�/
S�r1�S�r2��1/2, �5�

ubstituting Eq. (2) into Eq. (4), we find that the cross-
pectral density of the observation plane field has the
orm

W�r1,r2,�� =�
−�

� �
−�

�

W�0��r1�,r2�,��

�G*�r1,r1��G�r2,r2��dx1�dx2� , �6�

here W�0��r�1 ,r�2 ,�� is the cross-spectral density of the
eld in the aperture. For the source fields used herein, we
ssumed a Gaussian Schell-model with uniform ampli-
ude ([11], Sec. 5.3), i.e.,

•
•

2a

rx'

z

f

sQ(r')

O

x

•

P(r)

Fig. 1. Illustration of geometrical configuration.
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W�0��r�,r�� = W�0��x�,x�� = exp�−
�x� − x��2

2�g
2 
 , �7�

here x� and x� are points on the wavefront in the aper-
ure and �g is a positive constant that is a measure of the
ffective spectral coherence length of the field in the ap-
rture.

Recently [16], we presented a method for propagating
ndividual field realizations using Eq. (1). That method
nvolved generating input (or aperture) field realizations
orresponding to a prescribed cross-spectral density using

Gaussian copula algorithm [19,20], propagating each
eld realization by MC sampling of Eq. (1) and averaging
ver the field ensemble at the output plane [in accordance
ith Eq. (4)] to compute the cross-spectral density. The

omputational demands imposed by this method would
ake it appear that generalization to higher-dimensional

roblems (three-dimensional waves, polarization, mul-
iple scattering) may be computationally infeasible.

However, it is clear from Eq. (2) that a more expedi-
ious procedure would be to precompute the system
reen’s function by MC sampling of Eq. (3). This Green’s

unction then could be used to propagate each field real-
zation. Furthermore, if one is interested only in second-
rder statistics (i.e., the cross-spectral density), the pre-
omputed Green’s function can be used in Eq. (6) directly.
ince the waves are cylindrical, the pupil plane fields may
e represented in terms of an N��1 vector, the focal
lane fields by an N�1 vector, and the Green’s function
y an N�N� matrix. Propagation of the individual field
ealizations then amounts to a series of matrix multipli-
ations:

U = GU�0�. �8�

. NUMERICAL IMPLEMENTATION
n this section we describe the MC procedure for comput-
ng the system Green’s function, the copula method for
enerating field realizations conforming to the Gaussian-
chell model, direct calculation of the first- and second-
rder statistics of the field from the Green’s function, and
he corrections needed in the PO calculation to account
or the finite size of detector elements.

. Monte Carlo Ray Tracing
he Green matrix, G, is generated by tracing rays from

he pupil to the detector; the Gij element is the coherent
um of all fields starting at the jth source element and
eaching the ith detector element. Equal numbers of rays
re launched from each source element. The initial field
ssociated with each ray has unit amplitude and zero
hase. The starting location of each ray is randomly cho-
en across each source element (simply launching from
he center would create a diffraction grating).

The initial direction of the ray is chosen to randomly
ample the emerging Huygens–Fresnel wavelet. If 	 is a
niform random deviate over the interval [0, 1], then the

nitial angle might be 
=2�	. Such a launch angle would
bviously be inefficient because most rays would not
each the detector. Instead, if the minimum and maxi-
um angles 
min and 
max between the current location
nd the next aperture are calculated, then the launch
ngle might be


 = 
min + 	�
max − 
min�. �9�

his ensures that every ray passes through all apertures,
ut also contains a subtle sampling bias because the num-
er of rays/radian varies with the subtended angle 
max

min. This is corrected by multiplying the field amplitude
ssociated with each ray by the subtended angle. No other
orrections are needed. For example, the typical 1/�r fall-
ff in a cylindrical field is implicitly included because the
umber of rays reaching a particular location will dimin-

sh with distance. Obliquity factors are also not needed.
The field associated with a ray that has traveled a dis-

ance d must have the phase of its field increased by kd. If
he field passes through a lens having a focal length of f,
hen the phase is decreased by k�x2+ f2, where x is the in-
ersection point of the ray with the lens.

Slightly different observation plane sampling is used
epending on whether axial or transverse field informa-
ion is being collected. The transverse case uses the point
f intersection in the focal plane to determine the proper
etector element to increment by the ray’s field. The axial
ase uses N detector elements distributed at uniform in-
ervals near the focal point. Each axial element is then
reated as if it were a transverse detector with a single
lement.

The modulus and phase of the PO and MC Green’s
unctions are displayed, respectively, in Figs. 2 and 3.
ach display corresponds to a matrix with N�=51 source
oints (columns) and N=201 focal plane points (rows). In
his example, the extent of the focal plane dimension is
imited to ±2.5�. For the MC Green’s function, a total of
08 rays are traced. For the PO Green’s function, a nu-
erical evaluation of Eq. (3) is used. For purposes of com-

arison in Figs. 2 and 3, a measurement function (see
ubsection 3.D) is applied to the PO Green’s function.

. Generation of Partially Coherent Field
ealizations
sing the Gaussian copula algorithm [16,20] we generate
series of zero mean circularly complex Gaussian field re-
lizations having prescribed amplitude and correlation
roperties. We briefly review this algorithm.
Consider two uniformly distributed, statistically inde-

endent random variables (RVs), X1 and X2. From this
air, the Box–Muller transformation [21] produces a new
air of RVs,

Y1 = �− 2 ln X1 cos�2�X2�,

Y2 = �− 2 ln X1 sin�2�X2�, �10�

hat are jointly Normal with zero correlation coefficient,
�� ,� ,r�=N�0,1,0�. Next, making use of the scaling and

otation operations,
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�Z1

Z2

 =

1

�2
�1 − 1

1 1
��1 + r 0

0 �1 − r
�Y1

Y2

 , �11�

e find that the RV’s, Z1 and Z2, are correlated, bivariate
ormal, N�0,1,r�. The Box–Muller transformation and

he scaling and rotation constitute the copula that links
he marginal distributions on X1 and X2 into the bivariate
istribution on Z1 and Z2.
Spatially band limited random field realizations [20,22]

re synthesized using the following procedure: Create an
�L element matrix of zeros and fill the central circular

egion of diameter K elements with complex numbers of
nit amplitudes and phases that are effectively uniformly
istributed over �0,2��. Upon Fourier transforming the
�L array, one obtains a synthetic field pattern having a
ayleigh probability distribution. The ratio of L to K sets

he length of the spatial autocorrelation of the field real-
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ctual correlation between these two realizations from
he complex Gaussian moment theorem [23] is given by

� = exp�−
1

2
���

2 � , �12�

here ���
2 =var��1−�2� is the variance of the phase differ-

nce. Using a sequence of N� correlation values between
=1 and r=−1 [see Eq. (11)] produces a K�K�N� cube of
eld realizations that slowly decorrelate between the first
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�K element and the last K�K element. Elements of
his field cube can be interpreted [16] as K2 one-
imensional ensemble members, each of length N�.
Following this procedure, ensembles of line source re-

lizations having prescribed spatial correlation properties
re synthesized. These ensembles contain �256�2 realiza-
ions (each with 51 elements) with correlation lengths of
g /a=2.0, 1.0, 0.6, 0.4, 0.2, and 0.1.

. Propagation of the Statistics
s suggested in Section 2, the Green’s function approach
ould be used to propagate the individual field realiza-
ions via a series of simple matrix multiplications. A fur-
her simplification is possible through consideration of
he cross-spectral density matrix of the observation fields.

To begin, we consider the vector matrix expression of
q. (8), U=GU�0�, where U and U�0� are now assumed to
e N�Nf matrices and Nf is the number of realizations of
he field ensemble. The matrix analog of the relationship
hown in Eq. (6) is given by

W = �1/Nf�UU† = �1/Nf��GU�0���GU�0��†

= G
�1/Nf�U�0�U�0�†�G† = GW�0�G†, �13�

here the dagger denotes the conjugate transpose. Note
hat the matrices W�0� and W are specific expressions of
he general cross-spectral densities W�0��ri ,rj� and

�ri ,rj�. It is seen that the cross-spectral density of the
bservation plane field is given by simple left and right
reen’s matrix multiplications of the source cross-

pectral density matrix.
In Fig. 4, we illustrate the source and focal plane cross-

pectral density matrices for the case �g /a=0.6. These
atrices incorporate the complete first- and second-order

tatistics of the field. Specifically, the spectral densities
re the diagonals of the respective matrices, and the spec-
ral degree of coherence in symmetric form
�−x ,0 ,0 ;x ,0 ,0� are the cross-diagonals (from northwest

o southeast) divided by the spectral densities. Note that
hese matrices are displayed in Cartesian rather than
tandard matrix format. The asymmetric form of the
pectral degree of coherence, ��0,0,0;x ,0 ,0�, is simply

0.2

0.2
0.4

0.4

0.6

0.6

0.8

0.8

normalized distance, x/a

no
rm

al
iz
ed

d
is
ta
nc

e,
x/
a

−0.5 0.0 0.5

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−1.0

Fig. 4. Normalized moduli of cross-spectral density
he central row or column of the cross-spectral density
atrix divided by the square root of the product of the

pectral density trace and the spectral density at the cen-
er of the matrix �S�x ,0 ,0�S�0�. The corresponding axial
ross-spectral density matrix in the vicinity of the focal
lane is shown in Fig. 5.

. Measurement Function
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er to directly compare the two, the PO results must be
elated to measurable quantities. This is accomplished by
perating on the native PO results with a so-called mea-
urement function. This measurement function explicitly
ccounts for the local propagation direction of the field
ith respect to the detector surface normal so that the

elevant physical quantities (e.g., the irradiance) are
roperly calculated. Application of the measurement func-
ion involves calculating a flux vector from which the de-
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ected intensity and cross-spectral density are deter-
ined. This parallels electromagnetic theory, where the
oynting vector (a flux vector calculated from the electric
nd magnetic fields) is used to determine energy absorp-
ion. In the deterministic case, the flux density vector cor-
esponding to the field U is given by

F�r� = 1/2ik
U�r� � U*�r� − U*�r� � U�r��, �14�

here � is the gradient operator. The measurable, in this
ase the irradiance, is then calculated by taking the sca-
ar dot product of the flux density with the normal to the
etector surface. For random fields, the development pro-
eeds along the same lines. One can define a cross-
pectral flux density vector by [13]

Fc�r1,r2� = 1/2ik�U*�r1��2U�r2� − U�r2��1U*�r1�	

= 1/2ik��2 − �1�W�r1,r2�. �15�
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Equation (15) reduces to a (spectral) flux density vector
Eq. (14)] when r=r1=r2. The measurement function MPO
or the PO cross-spectral density is then given by

MPO
WPO�r1,r2�� = 
Fc�r1,r2��PO · n̂D, �16�

here n̂D is the normal to the detector surface. For non-
araxial fields, it is the quantity defined by Eq. (16) that
ust be compared with the MC results. For paraxial
elds, application of the measurement function is not nec-
ssary, as the propagation directions are effectively paral-
el to the optical axis. When n̂D= ẑ, application of the mea-
urement function results in a difference expression
nvolving two terms, the partial derivative of the cross-
pectral density with respect to z2 and the partial deriva-
ive of the cross-spectral density with respect to z1. To
ompute these derivatives numerically, the cross-spectral

σg /a = 0.4

normalized distance, x /λ
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σg /a = 1.0
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(f)
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ensity must be calculated at two nearby planes (a small
istance �z apart) located symmetrically with respect to
he focus. This necessarily involves the use of two differ-
nt Green’s functions for propagation of the field realiza-
ions to the two planes, respectively.

. RESULTS
ere we present the results of propagating the source

ross-spectral density to the focal plane via physical op-
ics (PO) means and by MC ray trace. For the PO calcu-
ations, the individual field realizations are propagated
ccording to Eqs. (3) and (8) and the cross-spectral den-
ity matrix calculated subsequently. No differences are
bserved for the alternative approach using Eq. (13). For
he MC calculations, Eq. (13) is used with the ray-trace-
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1.0

ig. 7. (Color online) Spectral degree of coherence ��0,0,0;0,0,z
f �g /a: (a) �g /a=2.0, (b) �g /a=1.0, (c) �g /a=0.6, (d) �g /a=0.4,
5,536 field realizations.
erived Green’s function. The focusing configuration was
/1, as before. Results are summarized in terms of the
pectral density and spectral degree of coherence for vary-
ng degrees of coherence within the pupil.

. Focal Plane Behavior
ithin the focal plane, we use

s = �f2 + �x − x��2, �17�

nd the observed fields are characterized in terms of the
ormalized spectral density S�x ,0 ,0� /S�0,0,0� and spec-
ral degree of coherence ��0,0,0;x ,0 ,0�. Results for
ropagating the source cross-spectral density via the PO
nd MC Green’s function methodology are shown in Fig.
. We note that for the PO computations, the standard bi-
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a=0.2, (f) �g /a=0.1. MC and PO results are for propagation of
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omial approximation of the expression in Eq. (17) was
ot used because it is inaccurate for the f/1 configuration.
hese results are to be compared with Fig. 7 of Fischer
nd Visser [24], who numerically computed the PO re-
ults for the corresponding three-dimensional problem.
hile the dimensionality of the problem treated herein is

ifferent from that of Fischer and Visser, the behaviors
re qualitatively the same. Good correspondence is shown
etween the PO and MC propagation.

. Axial Behavior
o evaluate the behavior along the axis near the focus, we
se

s = ��f − z�2 + x�2, �18�

nd the observed fields are characterized in terms of the
ormalized spectral density S�0,0,z� /S�0,0,0� and spec-
ral degree of coherence ��0,0,0;0,0,z�. Results are sum-
arized in Fig. 7. These results are to be compared with
ig. 5 of Fischer and Visser [24]. Once again, there is very
ood agreement between the PO and MC predictions.

. Application of Measurement Function
he PO results displayed in Figs. 6 and 7 include a cor-
ection due to the measurement function. The magnitude
f this correction can be seen if we compare the native PO
esults with the corrected PO results. In Figs. 8(a) and

ig. 8. (Color online) Comparison of the native and corrected
O results for the transverse (a) and axial (b) spectral degrees of
oherence for the case � /a=0.4.
g
(b), we have repeated the results of Figs. 6(d) and 7(d)
or the transverse and axial spectral degrees of coherence,
espectively, for the case �g /a=0.4. In addition, in both
gures we have also plotted the native PO results (before
he application of the measurement function). It is seen
hat application of the measurement results in a notice-
ble correction to the spectral degree of coherence. Fur-
hermore, this correction will increase as the numerical
perture (NA) of the system is increased (here it is 0.45)
r the transverse coherence length of the incident illumi-
ation is decreased. It should be noted that, while not il-

ustrated here, application of the measurement function
lso has an effect on the spectral density. It results in a
osine weighting of the spectral density, but this weight-
ng is not apparent over the limited plot range of Figs. 6
nd 7. The correction to the spectral degree of coherence
s probably greater because the spectral degree of coher-
nce involves the ratio of two corrected quantities.

. Convergence Issues
y the Green’s function formalism we have adopted
erein, the issue of convergence of the field statistics has
een simplified somewhat [16]. Previously, the conver-
ence of the statistics of the observation plane fields de-
ended on the number of rays per source field realization
nd the number of realizations. With the current formal-
sm, the number of rays traced is of consequence only for
stimation of the Green’s function; the number of source
ealizations is a separate issue altogether.

Convergence of the estimate of the Green’s matrix is ex-
lored through evaluation of its local standard deviation.
or a specified total number of rays traced, the Green’s
atrix is estimated nine separate times, in each instance
ith a different initial random number seed. For each en-

ry in the Green’s matrix we then compute the standard
eviation across all nine estimates. These standard devia-
ions are computed with the formula

�ij
2 =

1

8�
k=1

9


�Gij
�k�� − �Ḡij��2, �19�

here i is the index on the detector pixel, 1
 i
N; j is the
ndex on the source pixel, 1
 j
N�; and Ḡij is the mean
reen’s function computed over the nine estimates. Fig-
re 9 shows the resulting distributions of these standard
eviations for various numbers of traced rays. This figure
llustrates that as the number of traced rays increases,
he distribution becomes narrower and the mode shifts
ownward. For each distribution an average is computed;
esults are shown in Fig. 10. Also shown in this figure is
he 1/�Nr asymptote, where Nr is the number of rays
raced. These results suggest that the fidelity of the
reen’s matrix can be established through inspection of

he global mean of the local standard deviations.
We further explore the effect of the number of rays

raced and the number of field realizations propagated.
his evaluation is in the context of the effect on the spec-

ral density. Results are compared with those computed
sing PO. As a representative example we choose the par-
ial coherence case of �g /a=0.6. Figure 11 is a display of
he PO–MC residuals for the focal plane spectral density
omputed as follows:
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�PO–MC
2 =

1

N − 1�
i=1

N �SPO�xi,0,0�

SPO�0,0,0�
−

SMC�xi,0,0�

SMC�0,0,0� 
2

,

�20�

here the summation is over the N detector elements.
hese residuals are plotted against a fit model,

�̂PO–MC
2 = �30.1

�Nr
�2

+ �0.895

�Nf
�2

, �21�

here Nr and Nf, are respectively, the number of rays
raced and the number of field realizations propagated.
his model explains the residuals well and demonstrates

he independence of the number of rays and the number
f field realizations (due to the additivity of the vari-
nces). Not surprisingly, errors in the Green’s function
ave a greater influence on the final result than the num-
er of fields propagated.

. DISCUSSION AND CONCLUSIONS
e have presented some recent results of our efforts to-
ard the development of a Monte Carlo formalism for
ropagating fully stochastic sources through free space
nd in the presence of diffracting structures. Use of the
reen’s function formalism has some obvious benefits,
side from the commonly recognized features of such MC
alculations (simplicity, ease of treating complex bound-
ry conditions, etc.). In a previous paper [16], we ad-
ressed the issue of convergence of the estimates for
ropagation of an ensemble of field realizations. We
howed that based on the first-order statistics of the de-
ector plane field, one could distinguish between conver-
ence of the field estimates from the numerical propaga-
ion effects. With the Green’s function formalism, one
xplicitly separates the issue of convergence of the MC al-
orithm from the statistical behavior of the detector plane
elds. Another benefit of the MC Green’s function concept
and the MC ray trace concept in general) is that there is
o spatial quantization aside from that of the source and
etector planes. As a result, no explicit consideration need
e given to adequate sampling of the steeply sloped wave-
ronts as seen in high NA configurations.

We have chosen a problem for which the MC and PO
alculations are relatively straightforward. For such a
ase, the MC calculations can be verified with direct nu-
erical integration of the PO integrals. The end result is

alidation of the MC method of propagating partially co-
erent fields. The real utility of the MC Green’s function
oncept, however, lies in more interesting situations (high
A imaging systems, three-dimensional problems,

trongly scattering media, etc.). These problems are ones
or which PO calculations become difficult or impossible.
evertheless, it is these problems that lend themselves to

reatment using the MC Green’s function approach. Hav-
ng established the validity of this new approach, the sub-
tantiating PO calculations become unnecessary. The for-
alism that we have developed obviates some of the

hortcomings of PO approaches, is straightforward to
mplement numerically, and lends itself to parallel com-
utation. For complex scattering media, the effective-
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edium of conventional MC approaches must be sup-
lanted by a structured model such as the phase screen
aradigm [1] used for propagation through atmospheric
urbulence. Our current MC approach is entirely capable
f describing diffraction from such structures, and the
opula algorithm is well suited for generating realizations
f structured stochastic media. This ongoing research will
e the subject of future publications.
The interaction of light with matter is fundamental to

he understanding of our physical surroundings; electro-
agnetic energy is an observable that carries with it the

ngerprint of its interaction with matter. As a result, the
eatures of this light are the means by which we under-
tand the universe around us. Yet the propagation of light
ithin highly scattering media is not well understood. A

horough understanding of this phenomenon is therefore
equisite for any endeavor that attempts to characterize a
hysical medium, whether biological tissue, earth’s atmo-
phere, or interstellar space. The efforts described in this
aper, which represent an attempt to directly link the
heory of light as a coherent wave phenomenon with ra-
iometric methods as embodied in MC studies of light
ropagation, are aimed at developing a formalism for
tudying such a wide ranging class of problems that can-
ot be treated with either one approach or the other by

tself.

PPENDIX A
onsider the phasor summation

U =
1

�N
�
k=1

N

exp�i�k�. �A1�

t is easily demonstrated [22] that if the �k is independent
nd each is uniformly distributed on the interval �−� ,��,
hen U is a circular complex Gaussian random variable of
ero mean and unit variance. This is the requirement, for
xample, for a laser speckle pattern to be considered
fully developed.” Thus it would seem that the require-
ent on the phase distribution (of the �k) is fairly strin-

ent. In fact, it is not. It is sufficient that the phase dis-
ribution effectively span the fundamental interval. For
xample, consider the phase distribution illustrated in

φ

−3π −2π −π

1

0 2π 3π

2π

π

ig. 12. Illustration of phase wrapping from adjacent Riemann
heets into the fundamental interval.
ig. 12. The phases outside the fundamental interval are
rapped into the interval �−� ,��, thus producing a phase

hat is effectively uniformly distributed. Another example
ight be the case in which the phases have a zero-mean
aussian distribution. It is straightforward to show that

or the standard deviation exceeding approximately �, the
hase is effectively uniformly distributed and thus the
hasor sum [Eq. (A1)] has circular complex Gaussian sta-
istics.
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