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We present a method of using an unmodified differential interference contrast microscope to acquire quantitative
information on scatter and absorption of thin tissue samples. A simple calibration process is discussed that uses a
standard optical wedge. Subsequently, we present a phase-stepping procedure for acquiring phase gradient in-
formation exclusive of absorption effects. The procedure results in two-dimensional maps of the local angular
(polar and azimuthal) ray deviation. We demonstrate the calibration process, discuss details of the phase-stepping
algorithm, and present representative results for a porcine skin sample. © 2011 Optical Society of America
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1. INTRODUCTION
It is evident that the first-order properties of light (color, scat-
ter direction, polarization) can be used to infer properties of
biological tissues with which it has interacted. Further, tissue
structures and the instrumentation for acquiring local proper-
ties of the scattered light are often such that the spatial coher-
ence length (a second-order property) of the illumination is
on the order of the scale size of the inhomogeneity [1]. The
coherence of the field affects its interaction with the medium,
and in turn the coherence evolves in response to its interac-
tion with the medium [2,3]. Thus, we are motivated to under-
stand how coherence propagates within complex media.

There are two things required for an effective treatment of
coherence propagation in biological tissues: first, a means
of propagating the field through a complex, multiply scatter-
ing medium; second, a model that captures the structural
properties of the medium. We have demonstrated that Monte
Carlo techniques are capable of modeling diffraction and
propagation of the field and its coherence function through
free space [4,5]. What has been missing is a structured, sec-
ond-order model of the propagation medium, i.e., biological
tissue, that is compatible with the Monte Carlo formalism.

In a conventional treatment of propagation through a ran-
dom medium, the medium is characterized in terms of a
spatial power spectrum of the refractive index fluctuations
[6]. This approach was followed by researchers studying
propagation within highly scattering media, such as biological
tissues. Schmitt and Kumar [7] used phase contrast micro-
scopy of thin tissue sections and binarized these images prior
to calculation of a spatial power spectrum. In acknowledging
the conventional approach, they went so far as to refer to
the “turbulent nature of tissues” and chose a characterization
in terms of a von Kármán spectrum [8]. Others have since
followed this lead [9,10].

In this paper, we choose a slightly different description. In-
stead of characterizing the medium in terms of its refractive

index, we use the local ray deviation. Of course, this local ray
deviation is proportional to the gradient of the phase, which in
turn is the product of the wavenumber and optical path (phys-
ical path-index product). We chose this approach because of
our interest in Monte Carlo modeling of propagation through
strongly scattering media, and the fact that such studies char-
acterize the medium properties in terms of a local ray devia-
tion rather than a refractive index field. Moreover, there are a
number of instruments for characterizing medium properties
using phase gradient techniques. One such instrument is a dif-
ferential interference contrast (DIC) microscope. In common
use, DIC microscopes are used for a qualitative assessment of
optically thin samples. A number of researchers, however,
have developed schemes for deriving quantitative information
from such imagery. For example, Preza et al. used DIC images
at several azimuthal orientations to reconstruct phase [11].
Shribak and Inoué [12] recovered relative phase with a phase-
stepping approach, making use of the cosine relationship
between the phase gradient and shear axis directions, and
quasi-phase stepping using a precision rotation stage. In prin-
ciple, this approach could determine absolute phase. In their
study, however, the amount of shear was unknown, so only
relative phase was recovered. Dana [13] performed a bias
calibration and chose a bias setting about which the relation-
ship between phase and intensity was approximately linear.
Of course, this approach is limited to small phase excursions.
In distinction to these studies is our interest in the direct
measurable of the DIC microscope, i.e., the phase gradient.

The issue with DIC microscopy is that, to derive quantita-
tive information, one must know the amount of image shear.
Generally, however, microscope manufacturers do not make
that information available. As a result, one must measure this
parameter. Here again, other researchers have developed
schemes for determining this. Mehta and Sheppard [14]
directly measured shear by using an auxiliary Bertrand lens
to inspect the wavefront interference in the back focal plane
of the objective. Müller et al. [15] used a combination of
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fluorescence correlation spectroscopy and dynamic light
scattering to determine shear to nanometer accuracy. Our
accuracy demands are substantially less than this degree of
precision.

There are other means of measuring the local scatter angle,
notably that of Boustany et al. [16,17]. This is an interesting
approach in which a series of images is acquired at differing
numerical apertures. Differencing these images yields infor-
mation on the polar scatter angle. An advantage of this tech-
nique is that it is insensitive to birefringence of the specimen.
In fact, the birefringence could be assessed easily through
complementary polarimetric measurements. Additionally,
the azimuthal dependence of scatter can be assessed with
more complex pupils synthesized using a spatial light modu-
lator [18,19]. The drawback of this approach is complexity.
Further, for discrimination of scatter that is highly forward-
peaked, this technique requires small numerical apertures.

An alternative approach that reconstructs absolute phase is
that of through-focus imaging, or so-called transport of inten-
sity DIC [20]. Here, the authors acquire a series of images at
focus and on either side of focus and use the relationship
between axial and transverse intensity gradients [21] to recon-
struct the phase. This phase reconstruction was implemented
with Fourier inversion of the Laplacian with regularization.
The approach was demonstrated on an unstained tissue
sample and validated using phase-stepping DIC; however, the
sensitivity of the approach to absorption was not discussed.

Our specific objectives are to establish a simple means of
calibrating a DIC microscope and to demonstrate the charac-
terization of thin tissue samples in terms of the local ray de-
viation. From this characterization, one can subsequently
develop first- and second-order models of the scatter within
tissues. In this study, we use an unmodified commercial DIC
microscope. We demonstrate a calibration procedure using a
standard optical wedge, discuss details of a phase-stepping
measurement technique, and show example measurement
results on thin tissue sections.

2. DIC MICROSCOPY
In this section and the next, we provide some background on
DIC microscopy and a particular phase-stepping method, the
Carré four-step method, for retrieving quantitative informa-
tion on local angular ray deviations across optically thin
samples.

Shown in Fig. 1 is a conceptual diagram of a DIC micro-
scope [22]. Such a microscope is typically operated in Köhler
illumination mode, i.e., with the light source conjugate to the
back focal plane of the condenser. Operation of the micro-
scope can be understood by considering a single ray emanat-
ing from the (unpolarized, incoherent) source. Upon striking
the first Nomarski prism, the ray is split into two orthogonally
polarized components. The angular separation of the Nomars-
ki and the condenser are matched such that the ray compo-
nents striking the specimen are parallel. These rays are
separated by a distance s, referred to as the image “shear.”
The polarizer is oriented such that the amplitudes of these
components are equal. After passing through the objective,
the orthogonally polarized ray components are physically
superimposed by the upper Nomarski and then pass through
the analyzer, which is oriented with its pass axis at 45° with
respect to the two components. The image shear is typically

on the order of the microscope resolution, so the DIC micro-
scope may be considered a common path interferometer [23].

The image produced by a DIC microscope may be ex-
pressed in the form [24]

Iðx; yÞ ¼ Aðx; yÞf1þ cos½ϕðxþ s; yÞ − ϕðx; yÞ þΨ�g; ð1Þ

where I is the measured intensity, ϕ is the object phase, andΨ
is a phase offset that can be adjusted by changing the bias
setting of the second Nomarski prism, and by inclusion of
the term A, we have assumed a possible amplitude effect.
In Eq. (1), it has also been assumed that the direction of shear
(in the amount s) is in the x direction. If the amount of shear is
small compared to the microscope resolution, one can write

Iðx; yÞ ¼ Aðx; yÞf1þ cos½Φðx; yÞ þΨ�g; ð2aÞ

where Φðx; yÞ is the product of the shear and the phase
gradient;

Φðx; yÞ ¼ s
∂ϕðx; yÞ

∂x
: ð2bÞ

The local ray deflection in the x direction can be recovered
through the relationship [25]

sin θx ¼
�Φðx; yÞ

ks

�
; ð3Þ

where k ¼ 2π=λ is the free space wavenumber. For this calcu-
lation, one needs to know both Φðx; yÞ and the amount of

Fig. 1. (Color online) Illustration of the components of a Nomarski
DIC microscope.
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shear. The amount of shear, however, is generally not pro-
vided by the microscope manufacturer. Consequently, it must
be determined through calibration, as outlined in Section 4.

As shown above, Eq. (3) yields the local ray deflection in
the x direction (the direction of shear). However, to fully char-
acterize the scatter from a sample, one must also determine
the ray deflection, θy, in the orthogonal direction. This is done
by rotating the sample 90° counter clockwise and repeating
the measurement procedure, which we present in Section 3.
Subsequent rotation of the resulting θy image clockwise by 90°
and registration with the first yields, for each pixel of the
image, two corresponding scatter angles, θx and θy. The actual
polar and azimuthal scatter angles are derived according to
the following formulas:

tan η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 θx þ tan2 θy

q
; tan ξ ¼ tan θy= tan θx: ð4Þ

3. CARRÉ FOUR-STEP METHOD
The Carré four-step method [26] is one particular technique
for determining the phase of an interference signal, such as
the product of the phase gradient and the shear encoded in
a DIC microscope image [see Eq. (2)]. The model for this pro-
cedure is

Ijðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos
�
Φðx; yÞ þ

�
2j − 3
2

�
βðx; yÞ

�
;

ð5Þ

where j ¼ 0; 1; 2; 3 and the phase step βðx; yÞ is generally
unknown, but can be recovered by computing

tan
�βðx; yÞ

2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½I1ðx; yÞ − I2ðx; yÞ� − ½I0ðx; yÞ − I3ðx; yÞ�
½I1ðx; yÞ − I2ðx; yÞ� þ ½I0ðx; yÞ − I3ðx; yÞ�

s
:

ð6Þ

Subsequently, the phaseΦðx; yÞ can be recovered from the
expression

tanΦðx;yÞ

¼ tan
�β̂ðx;yÞ

2

� ½I0ðx;yÞ− I3ðx;yÞ� þ ½I1ðx;yÞ− I2ðx;yÞ�
½I1ðx;yÞ þ I2ðx;yÞ� − ½I0ðx;yÞ þ I3ðx;yÞ�

: ð7Þ

Equation (5) is more general than the idealized expression
of Eq. (1) in that it provides for an interference term that may
not have unity visibility. We refer to the factor bðx; yÞ as the
modulation and the quotient bðx; yÞ=aðx; yÞ as the visibility.

The hallmark of Carré methods is that the phase step β need
not be known a priori, and it may vary over the image field. As
suggested by Eq. (6), there may be occasions when the
quotient under the radical becomes negative. In this case,
the phase-step angle is unknown. A convenient recourse, how-
ever, is to make use of a least-squares fit to the valid phase-
step data points, i.e., ones for which the square root of Eq. (6)
can be computed. Such an approach incorporates the a priori

knowledge that βðx; yÞ varies slowly and continuously over
the image field. After all, it is a property of the imaging
apparatus and not the subject matter. This strategy is
acknowledged explicitly in Eq. (7), where β̂ðx; yÞ denotes

the least-squares fit of the valid data points from Eq. (6) to
a two-dimensional quadratic function.

Equations (6) and (7) provide estimates of the object phase
and instrument phase step. However, an object also typically
has amplitude variations, and this information is encoded in
the mean image, aðx; yÞ, and the modulation, bðx; yÞ. An esti-
mate of these two quantities is therefore desired (especially if
one is modeling tissue). With the exception of various five, six,
and seven-step Carré algorithms [27], there do not appear to
be closed-form expressions for aðx; yÞ and bðx; yÞ. Moreover,
existing formulas for these intensities have the same structure
as Eq. (6), namely, square roots of combinations of measured
images. In principle, these formulas are valid, but they break
down in the presence of noise, which can render the term
under the square root negative. A simple recourse is to seek
the images that are most consistent with the previously estab-
lished phase and phase-step estimates. We are thus led to the
following set of simultaneous equations:

2
666664

I0

I1

I2

I3

3
777775 ¼

2
666664

1 C0

1 C1

1 C2

1 C3

3
777775
� a
b

�
;

Cj ¼ cos

�
Φðx; yÞ þ

�
2j − 3
2

�
β̂ðx; yÞ

�
; ð8Þ

where β̂ðx; yÞ andΦðx; yÞ have been computed respectively in
Eqs. (6) and (7). Multiplying each side by the transpose of the
“system” matrix, we get

� P
IjP

CjIj

�
¼

�
4

P
CjP

Cj
P

C2
j

��
a
b

�
: ð9Þ

Note that (with the exception of the scalar 4) each term in
Eq. (9) is a matrix of the same dimension, M × N , of the ori-
ginal images. Least-squares solutions of this set of equations
are provided by Cramer’s rule:

âðx; yÞ ¼
P

Ij
P

C2
j −

P
CjIj

P
Cj

4
P

C2
j −

�P
Cj

�
2 ;

b̂ðx; yÞ ¼ 4
P

CjIj −
P

Cj
P

Ij

4
P

C2
j −

�P
Cj

�
2 : ð10Þ

All of the above algebraic operations are performed point
by point.

4. MICROSCOPE CALIBRATION
We have shown how ray deviation information is encoded into
the phase of a DIC microscope image and how that phase can
be recovered uniquely using the Carré four-step algorithm. To
determine the local ray deviations themselves (in each of two
orthogonal directions) across a sample, one must first esti-
mate the amount of shear produced by the microscope,
through calibration using an object of known phase gradient.
A particularly simple phase object for this purpose is an
optical wedge, depicted in Fig. 2.
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As shown in Fig. 2, the phase difference between the two
rays separated by a distance s ¼ x2 − x1 (the image shear) is

ϕðx2; yÞ − ϕðx1; yÞ ¼ ϕðxþ s; yÞ − ϕðx; yÞ

¼ kðh2 − h1Þ
�
n −

1
cos θx

�
; ð11Þ

where n is the refractive index of the wedge and hj are the
thicknesses at the positions xj . Now recall that, in air, the
deflection angle θx and the wedge angle ε are related through
the expression

n sin ε ¼ sinðεþ θxÞ: ð12Þ

Equations (11) and (12) can be combined to eliminate the
deflection angle yielding an expression for the phase differ-
ence in terms of the physical properties of the wedge. For
a wedge with small angular deviation, however, Eq. (11)
can be written as

ϕðxþ s; yÞ − ϕðx; yÞ ¼ kðh2 − h1Þðn − 1Þ: ð13Þ

Now consider Fig. 3, which illustrates the orientation of the
wedge angle with respect to that of the shear. With this angle
defined as γ − γs, the thicknesses of the wedge at the two
points h1 and h2 can be expressed as

h2 ¼ h1 þ s cosðγ − γsÞ tan ε: ð14Þ

It follows that the complete expression for the phase differ-
ence is

ϕðxþ s; yÞ − ϕðx; yÞ ¼ ksðn − 1Þ tan ε cosðγ − γsÞ: ð15Þ

This result suggests that DIC measurements of a known
wedge at a series of known azimuthal orientations can be used
to estimate the shear distance s. In the following discussion,
we present details of such a procedure.

We took a series of DIC images of a BK7 glass wedge with a
purported 10° ray deviation angle. The microscope to be cali-
brated was a Zeiss Axio Imager (transmission) microscope
with an Epiplan NeoFluar HD DIC 10× NA 0.30 objective
(Zeiss 44335). Condenser, objective, and diaphragms were
adjusted to provide Köhler illumination. The light was linearly
polarized and the condenser prism was a DIC I (Zeiss 426701).
A 10× 0.30 NA objective prism (Zeiss 444432) was used to ad-
just the bias. The translational position of the objective prism,
and therefore the bias, was changed by turning a set screw
in the housing of the prism. Thus, the phase relationship
between the rays polarized parallel and perpendicular to
the direction of shear was altered. Images were captured with
a Nikon Digital Sight color camera that uses a Bayer filter.
Exposure on the camera was manually set to 1=1000 s. Each
color channel was analyzed separately. All images were
960 × 1280 pixels with an object plane pixel size of 0:678 μm.

To evaluate the alignment of the condenser and objective
prisms, a Bertrand lens was used to image the condenser and
objective prism in the back focal plane of the objective. Each
prism was imaged separately. With this imaging configuration,
a dark line appeared perpendicular to the direction of shear. A
least-squares fit of this line was performed and the slope of the
fit was compared (1) as the set screw controlling the position
of the objective prism was moved from its minimum to max-
imum location, (2) as the prism was manually shifted perpen-
dicularly to the direction of shear, and (3) between the
condenser and objective prisms. The angle of the line for five
different rotations of the set screw changed less than 0:4° de-
grees along its full extent of translation. This represents the
maximum possible deviation between images. The objective
prism was moved perpendicular to the direction of translation
as much as possible within its housing and a maximum devia-
tion of 0:3° was found, thus demonstrating that the prism
moves very little except in the direction of translation. The
difference between the condenser and objective prism shear
axes was 1:4� 0:2°.

Measurement of the deflection of the wedge at 632:8 nm
yielded a ray deviation angle of 9:79°; first surface reflection
measurements yielded a wedge angle of ε ¼ 17:8°. This angu-
lar deflection of the wedge is well within the 0.3 NA (17:5°) of

Table 1. Results of Global Fits to Data

Parameter R Channel G Channel B Channel

A 94 87 87
Φ0 70° 56° 46°
m 118° 132° 142°
γs 87° 87° 87°
β 42° 47° 50°
s=λ 2.0 2.2 2.4

Fig. 2. Phases of rays deflected by an optical wedge.

Fig. 3. Illustration of the effect of wedge orientation with respect to
shear direction.
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the objective, so no vignetting was expected. With these
wedge physical characteristics and considering the dispersion
for BK7 [28] for the wavelengths of interest, cos θx ≈ 1. As a
result, the approximation of Eq. (13) is justified.

We chose a series of 13 wedge orientation angles at
(0°; 15°; 30°; � � � ; 180°), and for each orientation, captured
images (at a fixed gain setting) for eight bias settings (corre-
sponding to given number of turns of the bias knob). We
employed two different procedures for estimating the shear
distance s. The first was a global fitting procedure and the
second was an estimation procedure based on the Carré
algorithm.

A. Global Fit
The imaging model used for the global fit was

I ¼ Af1þ cos½Φ0 þm cosðγ − γsÞ þ Nðβ=2Þ�g; ð16Þ

where N ¼ 0; 1; � � � ; 7 is the number of turns of the bias screw,
and β=2 is the step size (phase step per turn of bias screw of
the upper Nomarski prism). This model represents a slight
modification of Eq. (2), which introduces a fixed phase,
Φ0. Each image was separated into three gray-level images
for the red, green, and blue color channels. The mean value
of each image was calculated. Thus, for the red channel, 12 ×
8 ¼ 96 values were used to determine the five values listed in
Table 1. The portion of the data at γ ¼ 60° was lost due to a file
naming error. Results of the global fit are shown in Fig. 4.

From Eq. (15), we see that the constant m is

m ¼ ksðn − 1Þ tan ε; ð17Þ

and, from the results of the global fit (Table 1), we arrive at the
shear calibration factor for the red channel:

s
λ ¼

m
2πðn − 1Þ tan ε ¼ 2:0; ð18Þ

where we used an assumed effective refractive index (consid-
ering the spectral weighting of the red color channel of the
Bayer filter) of n ¼ 1:5155. Effective indices for the other
color channels are n ¼ 1:5182 (green) and n ¼ 1:5211 (blue).

Note that this estimate of image shear is consistent with those
shown in [29]. The result γs ¼ 87° tells us that the shear axis
was along the NW–SE direction and that there was a small
error in the wedge orientation with respect to the shear axis
of our microscope (∼3°). Variations with color channel in the
estimate of this parameter are due simply to differing camera
signal-to-noise ratios for the red, green, and blue colors. This
angle is unimportant, however, if one has prior knowledge of
the shear axis orientation.

B. Carré Estimation
Alternatively, these parameters can be determined using the
Carré method. For each orientation of the wedge, we chose
image sets corresponding to turns (0, 2, 4, 6) and (1, 3, 5,
7) of the bias screw. These sets were chosen because of
requirements of the Carré algorithm; although Eqs. (6) and
(7) are exact, noise considerations lead to a requirement
on the total range of phases covered by stepping. The step size
βðx; yÞ was calculated for each pixel position using a set of
four images. The simple mean of the image βðx; yÞ is shown
in Fig. 5 for the red color channel.

Each experiment corresponds to a set of four images (cor-
responding to turns 0, 2, 4, 6 or 1, 3, 5, 7 of the bias screw) for a
particular orientation of the wedge. Two experiments were
discarded because of an excessive number of pixels for which
βðx; yÞ could not be computed [see discussion of Eq. (6)]. The
result shown here, β ¼ 44°, is to be compared with that shown
in Table 1 (β ¼ 42°). Results of the Carré algorithm for the
phase, Φ, are shown in Fig. 6. Here, too, the phases were
averages computed over the entire image. Also shown in this
figure is the fit model

Φ ¼ Φi þm cosðγ − γsÞ: ð19Þ

Parameters of this fit are

m ¼ 120°; Φi ¼ 129°: ð20Þ

The value of the slope parameter is to be compared with that
derived from the global fit. To interpret the phase intercept in
terms of the global fit we note that Eq. (5) can be written

Fig. 4. (Color online) Global fit of data to Eq. (16) for red color chan-
nel. Numbers, N , refer to the number of turns of the bias screw on the
upper Nomarski prism; the angle γ − γs is the angular difference be-
tween the wedge orientation and shear direction.

Fig. 5. (Color online) Step-size estimates from the Carré algorithm
with mean, hβi, plus or minus one standard deviation.
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Ijðx;yÞ¼ aðx;yÞþbðx;yÞcos
�
Φðx;yÞ−

�
3
2

�
βðx;yÞþ jβðx;yÞ

�
:

ð21Þ

Thus,

Φi ¼ 129° ¼ Φ0 þ 3β=2 ⇒ Φ0 ¼ 63°; ð22Þ

compared with the result from the global fit,Φ0 ¼ 70°. Values
of the relevant model parameters derived from the Carré anal-
yses for all three color channels are summarized in Table 2.
These values are to be compared with those in Table 1.

Note that Born and Wolf [30] cite the resolution of a micro-
scope with circular pupil and coherent illumination as

resolution
λ ∼

0:77
NA

¼ 2:57: ð23Þ

Our finding that s=λ ∼ 2:0–2:4 (depending on color channel)
is consistent with this criterion and with the design strategy
that one choose the largest shear possible in order to maxi-
mize sensitivity to phase gradients, but not large enough to
manifest an image blur.

5. TISSUE MEASUREMENTS
The tissue sample employed for our study was obtained under
an Institutional Animal Care and Use Committee-approved
protocol. It was a biopsy of normal porcine skin that was fixed
in formalin, embedded in paraffin, sectioned, and stained for
Bromodeoxyuridine (BrdU), which replaces thymidine with
uridine in the DNA of dividing cells.

Shown in Fig. 7 is a montage of images illustrating the pro-
cessing of the tissue data. Figure 7(a) is the red color channel
of the DIC image of porcine skin tissue prepared with BrDU
stain. This is a view of the dermal tissue (epidermis is located
beyond the top of the image). Globules at the bottom of the
figure are subcutaneous fat.

For this tissue sample, a series of four microscope images
were taken with bias knob settings of (0, 2, 4, 6). The pixel-by-
pixel values of the phase step βðx; yÞ were computed via
Eq. (6) and a quadratic surface fit (see Fig. 8) to the valid
phase-step data estimates (valid fraction 0.995); Fig. 9 shows
the probability density functions (PDFs) of the phase-step
estimates and corresponding least-squares quadratic fit.

Figure 7(b) is the grayscale encoded display of the scatter
angle θx computed according to the formula

θx ¼ sin−1
�Φ −Φi

2πðs=λÞ
�
; ð24Þ

whereΦi ¼ 129° and s=λ ¼ 2:0 (both of these parameter values
are from the Carré analysis of the wedge calibration data).

Table 2. Parameter Values from Carré Analyses

Parameter R Channel G Channel B Channel

Φi 129° 123° 119°
Φ0 ¼ Φi − 3β=2 63° 51° 42°
m 120° 135° 145°
β 44° 48° 52°
s=λ 2.0 2.3 2.4

Fig. 6. (Color online) Carré-derived phases and fit to model. Fit mod-
el isΦ ¼ Φi þm cosðγ − γsÞ, where the slope and intercept values are
respectively m ¼ 120° and Φi ¼ 129°.

Fig. 7. (Color online) Montage of images illustrating processing of
DIC data. (a) Original DIC image of porcine skin sample prepared with
BrDU stain (red color channel); (b) grayscale encoded map of scatter
angle, θxðx; yÞ, along the axis of shear (range of angles displayed is
ð−2°; 2°Þ); (c) mean image, aðx; yÞ [see Eq. (5)]; (d) modulation image,
bðx; yÞ [see Eq. (5)]; (e) grayscale-encoded map of polar scatter angle,
ηðx; yÞ (range of angles displayed is ð0; 2°Þ); (f) grayscale-encoded
map of azimuthal scatter angle, ξðx; yÞ (range of angles displayed is
ð−180°; 180°Þ).
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The mean and modulation images calculated according to
Eq. (10) are displayed respectively in Figs. 7(c) and 7(d). Note
that the mean image displays little, and the modulation image
none, of the shadowing observed in the original DIC image. If
one defines the modulation visibility as v ¼ b=a, we expect to
find, for a perfect system, that v≡ 1. For this skin sample, we
find the results shown in Fig. 10.

The tissue sample was rotated counterclockwise 90° and a
second phase-stepping analysis performed. The resulting θy
map was rotated 90° clockwise (in software) and registered
with the previously derived θx map. This registration process
began with a manual selection of six readily identifiable point-
pairs in the two images and made use of a nonreflective simi-
larity transformation, derived using a least-squares fit. Such
transformations allow for scaling, translation, and any resi-
dual rotation not accounted for in the 90° rotations. In deriv-
ing the registration transformation between these two data
sets, the modulation images were used because they display
less of the shadowing effect observed in the DIC imagery [see
insets in Figs. 7(c) and 7(d)]. The final polar and azimuthal
scatter angle maps were derived from the two registered

ray deviation images according to Eq. (4). To date, we have
not thoroughly evaluated the accuracy of this registration pro-
cess or the impact of misregistration on the resulting scatter
estimates. Figures 7(e) and 7(f) show respectively the polar,
ηðx; yÞ, and azimuthal, ξðx; yÞ, ray deflection maps for the
tissue sample. Each of these displays is a grayscale encoding
of the angles in degrees. Figure 11 shows the first-order
statistics. In the case of the polar scatter angle, we also display
the best fit (based on peak value) Henyey–Greenstein (HG)
phase function:

PHGðηÞ ¼
1
2

1 − g2

ð1 − 2g cos ηþ g2Þ3=2 : ð25Þ

The value of the asymmetry parameter, g, is a bit higher than
expected for skin, as we discuss next.

The normalized light field (after passing through a sample
with thickness d and scattering coefficient μs) is usually
expressed in terms of unscattered and scattered parts:

Sðcos ηÞ ¼ e−μsd
1
2π δð1 − cos ηÞ þ ð1 − e−μsdÞPðcos ηÞ; ð26Þ

where the first term on the right-hand side represents the
light that has passed through the sample without interacting
(scattering) and the second term represents the scattered
light. The scattering phase function is denoted Pðcos ηÞ and
describes light that has been scattered at an angle of η from
the incoming direction. The scattered light is assumed to be
azimuthally symmetric about the incoming direction. The
zero and first moments of the scattering phase function are
defined asZ

4π
Pðcos ηÞdΩ≡ 1 and

Z
4π
Pðcos ηÞ cos ηdΩ≡ g; ð27Þ

where g is the scattering anisotropy and dΩ is the differential
solid angle of integration.

Here, we define the full-field scattering anisotropy

g0 ¼
Z
4π
Sðcos ηÞ cos ηdΩ; ð28Þ

Fig. 8. (Color online) Quadratic least-squares fit to valid estimates of
phase step, βðx; yÞ; units are degrees.

Fig. 9. (Color online) PDFs of valid phase-step angles and the cor-
responding fit shown in Fig. 8.

Fig. 10. (Color online) PDF of the modulation visibility for porcine
skin sample.
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g0 ¼ e−μsd
Z
4π

1
2π δð1 − cos ηÞ cos ηdΩ

þ ð1 − e−μsdÞ
Z
4π
Pðcos ηÞ cos ηdΩ; ð29Þ

g0 ¼ e−μsd þ ð1 − e−μsdÞg: ð30Þ

Our microscope slide sample was ∼5 μm thick and typical
values for skin are μs ≈ 10 =mm and g ¼ 0:9, therefore yielding
an estimate for the full-field scattering anisotropy of

g0 ¼ 0:95þ 0:05ð0:9Þ ¼ 0:995: ð31Þ

Finally, we note that the HG phase function in Fig. 11 (top)
has been multiplied by sin η; this Jacobian factor is introduced
naturally through the transformation of Eq. (4). The azimuthal
statistic displays a near-uniform distribution with a slight

preponderance of structure along the ∼0°–180° direction
(NW to SE), which corresponds to the microscope shear axis.

The complete DIC processing algorithm yields spatially re-
solved maps of scatter angle and phase. To demonstrate that
these maps possess distinct information, in Fig. 12, we show a
scatterplot of the polar scatter angle, ηðx; yÞ, versus the grays-
cale values of the modulation image values, bðx; yÞ. Also
shown is the least-squares fit (the correlation was computed
point by point). As this result demonstrates, the scatter angle
is weakly correlated with the modulation image. Thus, in
effect, we have separated the phase gradient and amplitude
characteristics of the skin sample.

Finally, the second-order characteristic, in terms of the
power spectral density (PSD), for the polar scatter angle is
shown in Figs. 13 and 14. Figure 13 is a false color, logarithmic
encoding of the two-dimensional PSD. Zero spatial frequency
is at the center of this display and spatial frequency increases
radially from this point. As seen in this figure, the PSD departs
somewhat from rotational symmetry. This is simply a reflec-
tion of the fact that this tissue sample has structure
with a preferred orientation. Thus, such a display is useful

Fig. 11. (Color online) PDFs of polar (top) and azimuthal (bottom)
scatter angles for tissue sample. Also shown for the polar scatter angle
is the best approximate HG phase function. Note that the HG phase
function has been multiplied by sin η, thus giving the product the for-
mal definition of a PDF. For the azimuthal angle, hcos ξi ¼ 0:148, as
opposed to hcos ξi ¼ 0, for a completely uniform distribution.

Fig. 12. (Color online) Relationship between polar scatter angle,
ηðx; yÞ, and grayscale values of the modulation image, bðx; yÞ. Line
is least-squares fit; correlation is computed point by point.

Fig. 13. (Color online) False color, log10, encoding of polar scatter
angle PSD. DC is in center; axis limits are �1=2p, where p is the pixel
size (0:678 μm).
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for discerning organizational structure. Although the PSD is
not isotropic, an azimuthal integration, shown in Fig. 14,
provides some insight into the scale sizes of the scattering
structures. Note that the PSD shown in Fig. 14 displays a
number of distinct power law behaviors. These correspond
to ranges of spatial structure sizes over which the tissue dis-
plays a self-similar scaling. Of course a complete analysis of
these behaviors must take into account the DIC phase transfer
function for the DIC microscope [31]. We note that the results
shown in Figs. 13 and 14 are somewhat analogous to the von
Kármán spectrum for refractive index, but are for the polar
scatter angle rather than the refractive index. It is the scatter
angle, rather than the phase, that is of more direct interest for
Monte Carlo studies.

6. DISCUSSION AND CONCLUSIONS
We have demonstrated a technique whereby an unmodified
DIC microscope can be used to provide quantitative estimates
of the local ray deflection and wavefront of a field that has
propagated through a thin tissue sample. The measurement
concept relies on a calibration that we have described in de-
tail. The essential feature of this calibration process is the use
of a standard optical wedge placed on the microscope stage.
The wedge is rotated through a series of known angles, thus
generating a range of known phase gradients. Subsequent to
the estimation of the shear using this procedure, we detailed a
method of performing a Carré phase-stepping measurement to
quantitatively assess thin tissue samples. This phase stepping
was accomplished by means of a systematic positioning of
the bias screw on the upper Nomarski prism. The end result
of this procedure is a map of the azimuthal and polar scatter
angles of the tissue sample. An outcome of this characteri-
zation is the ability to derive second-order statistics of the
scatter caused by the tissue. Representative first- and
second-order statistics were given for a thin section of porcine
skin. First-order statistics were consistent with the HG model
and the PSD of the polar scatter angle displayed a number of
distinct power law dependencies.

A critical feature of the measurement concept described
herein is the calibration of the DIC microscope. We presented
a simple experimental technique using an optical wedge and
two methods for analyzing the data obtained with this method.

Which of these two estimation procedures is the better to use is
a matter for discussion, since both approaches use the data in
quite different ways. On the one hand, the global fit makes use
of all of the available data, because it is not constrained, as is
the Carré, by the quotient of image intensities under the radical
in Eq. (6) having to be nonnegative (although for this calibra-
tion, less than a few percent of the data were excluded on this
basis). On the other hand, the Carré method (subject to the
aforementioned constraint) provides a series of individual so-
lutions for β and ϕ, upon which the estimate of s is based. This
distinction is somewhat mitigated by the fact that we use a fit,
β̂, for our estimate of the phase step. Nevertheless, it is the
Carré phase stepping that we wished to use as the analysis
method. As a matter of consistency, therefore, we chose to em-
ploy the calibration results derived from the Carré method. We
believe that similarity of the calibration constants derived using
the two approaches lends credence to use of the Carré method.

One possible concern with this calibration method was that
the thickness of the optical wedge required the microscope
stage to be lowered by about 6mm. This effectively moved
the image plane further from the condenser prism than when
a microscope slide was present, which may have affected the
measured shear. For comparison, we used the fringe method
recently described by Mehta and Sheppard [14], wherein the
back focal plane of the objective is imaged with a Bertrand
lens. When this technique was used to measure the shear
of the DIC I objective prism alone, the shear was about
20% lower than that estimated using the wedge technique. This
discrepancy might be due to the stage position (thereby in-
creasing the shear in the image plane) or it may be a conse-
quence of measuring only a single prism. Ultimately, we
decided to use shear values obtained using the optical wedge
because this configuration was closer to that used in the
experiments (i.e., both prisms were present and data were
collected in the image plane and not the pupil plane). In
any case, the difference in shear values will only result in con-
stant multiplicative correction for the phase or angle maps.

Kemao et al. [32] assessed the factors contributing to errors
in phase estimation for the Carré four-step algorithm. They
found that, for minimizing the effects of systematic and ran-
dom intensity errors, a step size of 110° was optimal. Their
estimate of the optimal total phase-stepping range was thus
approximately 330°. There are five- and seven-step Carré
algorithms [27] that display optimal results for smaller phase
steps, particularly these authors’ A7 algorithm, which is opti-
mal for a phase step of 54°. Note that, for the A7 algorithm, the
total phase-stepping range is approximately 324°. From these
examples, we see that the important factor in minimizing
phase errors (due to intensity noise) is the total range for
phase stepping; optimal is about 330°. The total phase-
stepping range for our microscope, however, is approximately
154–179°, depending on color channel. Another source of
phase estimation error in Carré algorithms is due to errors
in the phase stepping itself. Kemao et al. [32] addressed the
effects of systematic (but not random) phase-step errors
and found an optimal step size of 65:8°. Our microscope
has a step size of 44–51° depending on color channel. Novák
et al. [27] also addressed this error source but did not cite an
optimal step size for minimizing this effect. We estimate that
the angular error in the positioning of the bias screw on the
Nomarski prism is no more than �5°; the corresponding error

Fig. 14. (Color online) Azimuthally integrated polar scatter angle PSD.
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in the phase step is thus �0:6°. At this point, it is unclear
which noise source is dominant in our measurement proce-
dure and, therefore, what the value of the optimal step size
is. As a result, further study is required to fully assess the
accuracy of the preliminary results presented herein. The
technique used by Gutmann and Weber [33] may be useful
in identifying the optimal step size as well as its estimation.
Finally, error methods inherent in other methods of accom-
plishing the phase stepping, notably de Sénarmont [34],
remain to be explored.

We note that, for DIC systems relying on birefringent optics
to realize the image shear, our measurement concept is
restricted to tissues displaying no birefringence. There is
no such limitation for Köhler-DIC systems [31], for example.

While it is certainly possible to integrate two orthogonal
measurements of the phase gradient to obtain the phase itself
(to within an additive constant) [23], it is the phase gradient that
is of greater practical interest. Such a characterization is
compatible with Monte Carlo simulations of propagation, which
make use of models of local ray deviation. Furthermore, a con-
stant phase is associated with a homogeneous region, whereas
the phase gradient is associated with structural variations. In
addition to the application to numerical studies of propagation,
the ability to characterize various tissues according to the PSD
of the ray deflection may prove valuable in characterizing the
scatter and absorption properties of tissues [1].
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