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Radiative transport in the delta-P, approximation:
accuracy of fluence rate and optical penetration depth
predictions in turbid semi-infinite media
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Abstract. Using the 6-P; approximation to the Boltzmann transport
equation we develop analytic solutions for the fluence rate produced
by planar (1-D) and Gaussian beam (2-D) irradiation of a homoge-
neous, turbid, semi-infinite medium. To assess the performance of
these solutions we compare the predictions for the fluence rate and
two metrics of the optical penetration depth with Monte Carlo simu-
lations. We provide results under both refractive-index matched and
mismatched conditions for optical properties where the ratio of re-
duced scattering to absorption lies in the range 0<(u./u,)<10%*. For
planar irradiation, the &-P; approximation provides fluence rate pro-
files accurate to =16% for depths up to six transport mean free paths
(1*) over the full range of optical properties. Metrics for optical pen-
etration depth are predicted with an accuracy of +4%. For Gaussian
irradiation using beam radii ry=3/*, the accuracy of the fluence rate
predictions is no worse than in the planar irradiation case. For smaller
beam radii, the predictions degrade significantly. Specifically for me-
dia with (u./p,)=1 irradiated with a beam radius of ro=I*, the error
in the fluence rate approaches 100%. Nevertheless, the accuracy of
the optical penetration depth predictions remains excellent for Gauss-
ian beam irradiation, and degrades to only £20% for ro=/*. These
results show that for a given set of optical properties (u./u,), the
optical penetration depth decreases with a reduction in the beam di-
ameter. Graphs are provided to indicate the optical and geometrical
conditions under which one must replace the 8-P; results for planar
irradiation with those for Gaussian beam irradiation to maintain ac-

curate dosimetry predictions. © 2004 Society of Photo-Optical Instrumentation En-
gineers. [DOI: 10.1117/1.1695412]
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1 Introduction certainty, they require significant computational resoufces.

Many biophotonics applications require knowledge of the While, numerical finite difference or finitg element solutions
light distribution produced by illumination of a turbid tissue O the Boltzmann transport equatfSimay involve less com- -
with a collimated laser beafExamples include photody- putaitlorial expenditure, theyl require spatlal and angu_lar dis-
namic therapy, photon migration spectroscopy, and optoa- cretizations of the computational domain that lead to inaccu-
coustic imaging. If one considers light propagating as a neu- racies that are often difficult to quantify. Finally functional
tral particle, the Boltzmann transport equation provides an €xpansion methods, such as the standard diffusion approxima-
exact description of radiative transpdrtiowever, the Boltz-  tion (SDA), that express the angular distribution of the light
mann transport equation is an integrodifferential equation that field and the single-scattering-phase function as a truncated
often cannot be solved analytically. As an alternative, investi- Series of spherical harmonics are typically accurate only under
gators have resorted to a variety of analytic and computational @ limiting set of condition$:%***

methods, including Monte Carlo simulations, the adding-  Although the SDA provides only an approximate solution
doubling method, and functional expansion methvd€ach to the Boltzmann transport equation, its computational sim-
of these methods possesses unique limitations. For exampleplicity has proven valuable for applications in optical diagnos-
while Monte Carlo simulations provide solutions to the Bolt- tics and therapeutics. Unfortunately, the limitations of the
zmann transport equation that are exact within statistical un- SDA are significant and confine its applicability to highly
scattering media and to locations distal from both collimated
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refractive index''#-1® Such conditions are not satisfied in fluence rate. Since it is cumbersome to display the variation of

many biomedical laser applications and, over the past 15 yr, fluence rate with depth for more than a few sets of optical

hybrid Monte Carlo—diffusion methots'® as well as the  properties, we also examined predictions for the optical pen-

5-P4, P53, and 6-P5 approximations have been proposed as etration depth. Comparison of the optical penetration depths

improved radiative transport modéi&1°-2°0Our focus here is  predicted by thes-P; approximation with those derived from

the 5-P; (or §-Eddington model first introduced in 1976 by =~ Monte Carlo simulations enables a continuous assessment of

Joseph et d° and first applied to problems in the biomedical the 6-P; model accuracy over a broad range of optical prop-

arena independently by Prafil?’ by Star®**and Star et af° erties. These results are presented within a dimensionless
Many investigators in biomedical optics have studied the framework to enable rapid estimation of the light distribution

accuracy of functional expansion methods. Groenhuis et al.in @ medium of known optical properties. Moreover, to pro-

provided one of the first comparative studies between Monte Vide quantitative error assessment, we include plots of the

Carlo and SDA predictions for the spatially resolved diffuse difference between thé-P, and Monte Carlo estimates. The

reflectance produced by illumination of a turbid medium with Variation of these errors with tissue optical properties and ir-

a finite diameter laser beath.Later, Flock et al. provided radiation conditions provide much insight into the nature and

another comparison between Monte Carlo simulations and the©rigin of the deficiencies inherent in thi P, approximation

SDA that focused primarily on optical dosimetry; specifically as Well as other functional expansion methods.

the accuracy of fluence rate profiles and optical penetration

depth predictions for planar irradiation of a turbid meditfim.

More recently, Venugopalan et al. presented analytic solutions2  &-P; Model Formulation and Monte Carlo

for radiative transport within thé-P, approximation for in- Computation

finite media illuminated with a finite spherical souréeThe 21 5-P, Approximation of the Single-Scattering

accuracy of these solutions was demonstrated by comparisony, .. Function

with experimental measurements made in phantoms over a ] o o )

broad range of optical properties. Spott and Svaasand re-The basis of thes-P _approxmatlon to radiative transport is

viewed a number of formulations of the diffusion approxima- (he 6-P1 phase function as formulated by Joseph éfal.

tion (Py, 6-P1, 6-P3) for a semi-infinite medium illumi- 1

nated with a collimated light source, and compared fluence N AL A

rate and diffuse reflectance predictions with Monte Carlo Ps-p, (@& )_477-{2f5[1 (0-&7)]

simulations for optical properties representative iofvivo ~ A

conditions*® Dickey et a’®?' as well as Hull and Fost& +(A-H1+3g*(@-a)]L @)

have studied the improvements in accuracy offered byPthe  where® and®’ are unit vectors that represent the direction

approximation for predicting both fluence rate profiles and of light propagation before and after scattering, respectively.

spatially resolved diffuse reflectance. These studies have con-n Eq. (1) f is the fraction of light scattered directly forward,

firmed that thed-P, approach can provide significant im-  which thes-P; model treats as unscattered light. The remain-

provements in radiative transport predictions relative to SDA der of the light(1—f) is diffusely scattered according to a

with minimal additional complexity. standardP; (or Eddington phase function with single scat-
While these investigations have provided some indication tering asymmetryg*. To determine appropriate values fbr
of the improved accuracy provided by tl#eP,; approxima- andg*, one must choose a phase function to approximate. In

tion relative to the SDA, none have offered a quantitative this paper, we choose to provide results for the Henyey-

assessment of its performance against a radiative transporGreenstein phase function, as it is known to provide a reason-

benchmark such as Monte Carlo simulations over a wide able approximation for the optical scattering in biological

range of optical properties. Thus, it is difficult to estableh tissue$™

priori the loss of accuracy that one suffers when using the

6-P, approximation to determine fluence rate distributions or o 1 1- gf

optical penetration depths. Our objective is to provide a com- Pro(@-0')= 4m [1-2g,(@-&')+02 32 @

prehensive quantitative assessment of the accuracy of optical ! !

dosimetry predictions provided by thé& P, approximation ~ Recalling that for a spatially isotropic medium, th& mo-

when a turbid semi-infinite medium is exposed to collimated ment,g,, of the phase functiop(&- &") is defined by

radiation. Here, we report on the variation of theP; model

accuracy with tissue optical properties and diameter of the _9 !

incident laser beam. Gn=em
Specifically, we determined the fluence rate profiles pre- ) " . )

dicted by the5-P, approximation for semi-infinite media  WhereP is then™ Legendre polynomial, we determirieand

when subjected to plandt-D) or Gaussian bearf2-D) irra- g* by requiring the first two moments of thé-P; phase

diation. For comparison, we performed Monte Carlo simula- function,g;=f+(1-f)g* andg,=f, to match the corre-

tions to provide “benchmark” solutions of the Boltzmann SPonding moments of the Henyey-Greenstein phase function,

transport equation for multiple sets of optical properties. Which are given by, =gj. This yields the following expres-

While we include plots of diffuse reflectancgy versus  sions forf andg*:

(el mg) for planar irradiation, our focus is on the internal 5

light distribution as represented by the spatial variation of the f=g7 and g*=g:/(g;+1). (4)

Ph(w-o')p(e-o)d(w-o"), (3
-1
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For simplicity, from this point forward we refer tg, simply
asg and all 5-P; model results in this paper are shown for
g=0.9 unless noted otherwise.

2.2 §-P; Approximation of the Radiance

wheregq(r) is the diffuse fluence rate and) is the radiant
flux.

The improved accuracy offered by tiheP; approximation
stems from the addition of the Dirag function to both the
single scattering phase function and the radiance approxima-
tion. The & function provides an additional degree of freedom

In a manner similar to the phase function, the radiance is alsoWell suited to accommodate collimated sources and highly

separated into collimated and diffuse components:

L(r,o)=L¢(r,@)+Ly(r,o), (5)

wherer is the position vector and is a unit vector repre-
senting the direction of light propagation.

For irradiation with a collimated laser beam normally in-
cident on the surface of a semi-infinite medium, the colli-
mated radiance takes the form

L(r,o)= ZiE(r,Z)é(l—&)-?),

w

(6)

where z is the direction of the collimated light within the
medium, andE(r,z) is the complete spatial distribution of
collimated light provided by the source. While the lateral spa-
tial variation of E(r,Z2) is given by the irradiance distribution
of the incident laser bearky(x,y), its decay with depth
(z-dir) is governed by absorption and scattering within the
medium. Specifically, loss of collimated light arises from both
absorption and diffuse scattering. Noting that in theP,
phase function onlyf1—f) of the incident light is diffusely
scattered, the decay of the collimated light with depth will
behave as a modified Beer-Lambert law:

E(r,2)=Eq(x,y)(1— Rs)exp{_[ﬂa+ﬂs(1_f )]Z}

=Eo(x,y)(1-Ryexfd — (uat ug)zl, (7

whereRg is the specular reflectance for unpolarized ligi,

is the absorption coefficienj is the scattering coefficient,
andul=u(1—1) is a reduced scattering coefficient. For a
collimated beam traveling along tleaxis that possesses ei-
ther a uniform or Gaussian irradiance profile we can work in
cylindrical (r,z) rather than Cartesiafx,y,z) coordinates. In
this case, the collimated fluence rate is given by

<,Dc(r)=f4 Le(r,@)=E(r,2)=Eo(r)(1-Ry)exp( — u{ 2),
®)

whereE(r) is the radial irradiance distribution of the inci-
dent laser beam andy = u,+ uk .

The diffuse radiance in Ed5) is approximated, as in the
SDA, by the sum of the first two terms in a Legendre poly-
nomial series expansion:

Ld(r,&))=

1
e LWLd(r,w)dﬂ

3 J L ~ ! ~ ~ dQ/
+E . d(r,o) (o - o)

9

1 3. .
Eﬁod(r)_" Ej(r)-w
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forward-scattering media. Thus the addition of th&unction
relieves substantially the degree of asymmetry that must be
provided by the first-order term in the Legendre expanSion.

2.3 Governing Equations and Boundary Conditions

Substituting Egs(1), (6), and(9) into the Boltzmann transport
equation and performing balances in both the fluence rate and
the radiant flux provides the governing equations in &hE
approximation for a semi-infinite medidt

V204(r) — u2apa(r) = —3uk uE(r,2)

+3g* niVE(r,2)-2, (10

1
[Vea(r)—3g*usE(r.2)z], (1)

3y
where ui=pus(1—g) is the isotropic scattering coefficient,
pe=(matps) is the transport coefficient, andueg
=(Buauy) Y2 is the effective attenuation coefficient.

Two boundary conditions are required to solve EG€)
and(11). At the free surface of the medium, we require con-
servation of the diffuse flux component normal to the inter-
face, which yields

j(n=-

[¢a(r) —AhV ey(r)-2]| ;o= —3Ahg" ugE(r,2)[ =0,
(12)
whereA=(1+R,)/(1-R;) andh=2/3u, . HereR; andR,
are the first and second moments of the Fresnel reflection
coefficient for unpolarized light and are given by

1 1
R1=2f re(v)vdv and R2=3f re(v) vidy,
0 0

(13
where v=®-2, with Z defined as the inward pointing unit
vector normal to the surface. The details of this derivation are
provided in Appendix A. Note that Eq12) represents an
exact formulation for conservation of energy at the boundary
and avoids the approximations inherent in the use of extrapo-
lated boundary condition¥:*! The second boundary condi-
tion requires the diffuse light field to vanish in regions far
away from the source. Thus,

@d(r)];—=—0. (14)

2.4 Solutions for Planar and Gaussian Beam
Irradiation

The total fluence rate is given by the sum of the collimated
and diffuse fluence rates:

e(r)=@c(r)+eq4(r). (15
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ian beam radius, i.e., the radial location where the irradiance
falls is 1/ of the maximum irradiance. Note tha,

nz = 2P/7-rr§, whereE, denotes the peak irradiance aRds the
incident power of the Gaussian laser beam. For generality, we
define a normalized collimated fluence raig as

Iy
[y

YYYYYYVYY

— (Pc(r,Z) %
@c:m:exﬂ—m 2). (17)

©(z)

2.4.2 Diffuse fluence rate for planar irradiation

For planar illumination the diffuse fluence rate is determined
by solving Eq.(10) subject to the boundary conditions Egs.
(12) and(14) and yields

¢d(2) =Eo(1—Ry)[aexp(— uf 2) + B exp(— pen?) ],
(18

where

Planar Irradiation _3u3(pf +0" ma) 19

a= 2 %2 )
Meff ™ Mt
(a) and e

—a(1+Ahuf)—3Ahg* ul
A= (1+ Ahsrey)

(20

The solution procedure is detailed in Appendix B. In a manner
analogous to the collimated fluence rate, we define a normal-
ized diffuse fluence ratey as

_ (2)
¢4(2)= % = a exp(— u{ 2) + B exXpl — Kefi2)-

(21)

2.4.3 Diffuse fluence rate for Gaussian beam
irradiation

For Gaussian beam irradiation, the diffuse fluence rate is
given by

Gaussian lrradiation %(r,z):EO<1_RS>fO°°{7exp<_M¢z>

(b) + exif — (K2 2 Y22]) Jo(kn)kdk, (22

Fig. 1 Depiction of (a) planar and (b) Gaussian beam irradiation con- where
ditions.

 Buk(uf +g* pa)ro exp(—rok?8)
4K+ pgg— i) ’

(23
2.4.1 Collimated fluence rate
For either planar or Gaussian beam irradiation conditions, as 2 2 9 _1
shown in Fig. 1, the collimated fluence rate within the tissue _ 39" psroexp(—rok’/8) —4y[(Ah) "+ uf]
is expressed in the form AL (Ah) "1+ (K2+ usp Y2 ’
(24)
— o %
¢e(r,2)=Eo(r)(1=Ry)exp(~ p2). (16) and J, is the zeroth-order Bessel function of the first kind.

For planar irradiationEq(r) =Ey while for Gaussian beam  The solution procedure is detailed in Appendix C. The nor-
irradiation, Eq(r) =Eq exp(—2r 2/r (2)), wherer is the Gauss- malized fluence rate for Gaussian beam irradiation is given by
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ad(r,z>=fox{vexp<—urz>

+&ex] — (K24 u2) Y%2]} To(kr)kdk. (25)

Numerical method§MATLAB, MathWorks, Natick, Massa-
chusetts were employed to compute the definite integral in
Egs.(22) and(25).

2.5 Diffuse Reflectance for Planar Irradiation

The prediction of the diffuse reflectance provided by &€,
approximation is

R._ —j(2)-2
“Eo(1-Ry|,_,
1 degy(2)
=———— |39  uXEgexp —u’z)—
31u'trEO(1_Rs) g MsEg q Mt ) dz o
_9d(2)
= oA (26)
z=0

2.6 Limiting Cases

A unique feature of the solutions provided by theP; ap-
proximation is thatpq— 0 in the limit of vanishing scattering,
i.e., whenu <u,. Thus in a medium where absorption is
dominant uf —u, and the total fluence rate is governed
solely by the collimated contribution, i.e.,

lim  o(r,z)=¢c(r,2) =Eo(r)(1—Rs)exp — na2).

(27)

Thus, unlike prevalent implementations of the SDA wherein
the collimated light source is replaced by a point source
placed at a deptlz=(1/u{) within the medium, thes-P,
approximation correctly recovers Beer’s law in the limit of no
scattering.

For media in which scattering is dominaye;>u, or
ui > wer), the total fluence rate resulting from planar irradia-
tion reduces to

(g l1g)—0

lim  ¢(2)=Eg(1—Ry)[(3+2A)eXp — tefiZ)
(g I g)—o
—2 exf— 7 2)]. (28)
If we further consider this fluence rate in the far figldrge
z), Eq. (28) reduces to
lim  ¢(2)=Eo(1—Rs)(3+2A)exp — mef2)
(g pg) =
for large z. (29

Equation (29) is equivalent to the fluence rate prediction
given by the SDAS Thus, in the limit of high scattering, and

Normalized
Fluence
Rate

Incident
Light

-4)of the
absorbed power

Incident
Light
]__

—_—ee—J]

(b)

Fig. 2 Graphical depiction of optical penetration depths (a) A and (b)
Aim .

2.7 Optical Penetration Depth

Apart from the fluence rate profiles and diffuse reflectance
results offered by thé- P, approximation, we are also inter-
ested in its predictions for the characteristic optical penetra-
tion depth (OPD) in the tissue. In Fig. 2, we display two
variations of the OPD that we consider in this study. The first
penetration depth metrid is simply the depth at which the
fluence rate falls td/e of the incident fluence rate after ac-
counting for losses due to specular reflection. The second pen-
etration depth metrid; is the depth at which all but/e of

the power of the laser radiation has been absorbed after ac-
counting for losses due to both specular and diffuse reflection.
For generality, we normalize both these metrics relative to a
characteristic length scale. We choddéu.¢) for this length

away from boundaries and collimated sources, the solution scale as it is the traditional definition for the optical penetra-

provided by thes- P, approximation properly reduces to that
given by the SDA.

636 Journal of Biomedical Optics * May/June 2004 * Vol. 9 No. 3

tion deptti? and is the length scale over which the homog-
enous solution to Eq10) decays. Accordingly we define
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KEMeﬁA and KintEMeffAint- (30 | ]Olg u;/ua

1100

We performed Monte Carlo simulations for planar and Gauss-
ian beam irradiation of semi-infinite media under both refrac- @
tive index matched and mismatched conditions. For this pur- 2107
pose we employed code derived from the Monte Carlo Multi- i
Layer (MCML) package written by Wang et 3. that N
computes the 3-D fluence rate distribution and spatially re- 210""5
solved diffuse reflectance corresponding to irradiation with a &
laser beam possessing either uniform or Gaussian profiles. A%
Henyey-Greenstein phase function was utilized with a single
scattering asymmetry coefficient gi= 0.9 unless stated oth-
erwise. This value ofj was chosen as it is representative of
many biological tissue® To approximate planar irradiation
conditions we used a beam with a uniform irradiance profile 3
with radius ro=200*, where |* =(1/uy) is the transport s
mean free path. For Gaussian beam illumination, we g&b 0 1 2 3 4 5 6
the desired./e? radius of the laser beam. To provide sufficient
spatial resolution a minimum of 100 grid points were con-
tained within one beam radius. Betwe®® and2 X 10° pho-
tons were launched for each simulation and resulted in fluence  q1,
rate estimates with relative standard deviation of less than
0.1%.

S
o4

2.8 Monte Carlo Simulations 5 100
< 107
v
s

10

ize

1008
3 Results and Discussion i

3.1 Planar lllumination

Figures 3a) and 3b) provide normalized fluence rate profiles
predicted by the5-P, approximation and Monte Carlo simu-
lations under planar illumination conditions fo0.3
<(pilpna)=<100 and relative refractive indices=(n,/ny)
=1.0and 1.4, respectively. Note that the profiles are plotted
against a reduced depth that is normalized relative to the
transport mean free patlf. These figures also provide the
error of the-P, predictions relative to the Monte Carlo es-
timates. "
Overall, the performance of th& P, approximation is im- 1018
pressive. The fluence rate is predicted with an erroe 2% REIN
over the full range of optical properties. In the far field, the 0 1 2 3 4.2 6
model performance is exceptional for lardgs/u,), de- Reduced depth z/]
grades slightly when scattering is comparable to absorption (b}

(me=ma), and improves again when absorption dominates Fie 3 N liyed f ) duced depth (z//*)
: ' - : P—_ ig. ormalized fluence rate ¢ versus reduced depth (z//*) as pre-
scattering ps/ 112 =0.9). This behavior is expected. For large dicted by the &-P, approximation (solid curves) and Monte Carlo

(1sl wa) the prevalence of mUItiplef scqttering enqbles the dif- sjmylations (symbols) for planar illumination under refractive index (a)
fuse component of thé-P; approximation to provide an ac- matched (n=1.0) and (b) mismatched (n=1.4) conditions. Profiles

curate description of the light field. However, when scattering are shown for (u./x,)=100 (O), 10 (*), 3 (¢), 1 (X), and 0.3 (®) with

is still significant bUt(Mé/Ma) is reduced, the decay of the g=0.9. Lower plots show the percentage error of the §-P; predictions

light field occurs on a spatial scale intermediate to that pre- rela'itive to the Monte Carlo simulations using the same symbols as the
dicted by diffusion, i.e.exp(— uer2), and that predicted by the ~ ™ Plot

total interaction coefficient, i.eexp(— u 2). This results in an

error between thé-P,; model and the Monte Carlo estimates

that increases with increasing depth. This is seen most notably In the near field, the accuracy of tl#& P, approximation

for the case of ws/ ) =1 for which the error is largest in  degrades with increasingus/w,). The origin of this lies in

the far field. Finally, for highly absorbing media, the overall the fact that increases in scattering result in increased amounts
accuracy of the5-P; approximation improves again because of light backscattered toward the surface. This leads to an
the contribution of collimated irradiance to the total light field increase in the angular asymmetry in the diffuse component of
increases markedly and is well described by the modified the light field near the surface which is not accurately mod-
Beer-Lambert law of Eq(7). eled by a radiance approximation that simply employs a con-

107}

102}

Normalized Fluence Rate

—
<
w

o o

% Error
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Fig. 4 Normalized fluence rate ¢ versus reduced depth (z//*) as pre-
dicted by the 8-P; approximation (solid curves) and Monte Carlo
simulations (symbols) for planar illumination under refractive index (a)
matched (n=1.0) and (b) mismatched (n=1.4) conditions. Profiles
are shown for g=0 (O), 0.3 (*), 0.7 (X), and 0.9 (@) with (u;/u,)
=100. Lower plots show the percentage error of the 8-P; predictions
relative to the Monte Carlo simulations using the same symbols as the
main plot.
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Fig. 5 Normalized fluence rate ¢ versus reduced depth (z//*) as pre-
dicted by the &-P; approximation (solid curves) and Monte Carlo
simulations (symbols) for planar illumination under refractive index (a)
matched (n=1.0) and (b) mismatched (n=1.4) conditions. Profiles
are shown for g=0 (O), 0.3 (*), 0.7 (X), and 0.9 (@) with (u;/u,)
=1. Lower plots show the percentage error of the §-P; predictions
relative to the Monte Carlo simulations using the same symbols as the
main plot.

stant and the first-order Legendre polynomial. TheP, However, when scattering is less prominent, the accuracy of
model performs worse far= 1.4 because the refractive index the fluence rate profiles is not as strongly dependent on the
mismatch introduces internal reflection that further enhancesrefractive index mismatch because there is less light backscat-
the angular asymmetry of the light field near the surface. tered toward the surface.
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Fig. 6 Diffuse reflectance R, versus (u./u,) as predicted by the 5-P,
approximation (solid curves) and MC simulations (@) for planar illu-
mination under refractive index (a) matched (n=1.0) and (b) mis-
matched (n=1.4) conditions. Lower plots show the percentage error
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Fig. 7 Normalized optical penetration depths A=A (O) and A,
= eifAine (@) versus (ui/p,) as predicted by the 8-P; approximation
(solid curves) and MC simulations (symbols) for planar illumination

of the &-P; predictions relative to the MC simulations. under refractive index (a) matched (n=1.0) and (b) mismatched (n

=1.4) conditions. Lower plots show the percentage error of the 6-P,
predictions relative to the MC simulations.

We also examined the influence of the single scattering
asymmetry coefficieng on the 5-P; model predictions for
fixed values of(us/pa). Figures 4a) and 4b) show the
variation of the normalized fluence rate profiles fo=g seen most prominently in the near field due to its impact on
<0.9and(ui/ma)=100for n=1 and 1.4, respectively. Fig-  the boundary condition used in thé-P, approximation.
ures %a) and 3b) show these same results in media with However, the effect is small and results in changes of the error

(mdl o) =1. In the highly scattering case, the effect @fis
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betweens-P, and Monte CarlogMC) estimates that do not
exceed 4% relative to results found fogr=0.9. Note that for
(m4l ma) =100, the value ofg does not affect the predictions
in the far field as the SDA limit is applicable. As a result the
decay of the fluence rate profiles is governedey — w2

and is independent df for a fixed (u./n,). By contrast, for
(4l o) =1, the variation ing affects the errors most promi-
nently in the far field. This occurs because there is minimal
backscattering due to the higher absorption in the medium

leading to a fluence rate profile whose decay is dependent on

g even for a fixed(us/ ng). However, we again see that the
effect of g is minimal as the variations in the error are less
than 7% even in the far field. Given that these error variations
are small and the fact that most soft biological tissues are
strongly forward scattering we show all remaining results for
a value ofg=0.9 (Ref. 29.

Figures 6a) and Gb) present the variation of the diffuse
reflectanceRy with (ug/w,) for n=1.0and 1.4, respectively.
As in Fig. 3, there is good agreement for large,/u,) in-
dependent of the refractive index mismatch. Under index-
matched conditions, there is no internal reflection at the sur-
face andRy is predicted with a relative error of 8%. For a
refractive index mismatch corresponding to a tissue-air inter-
face, the model predictions degrade (agl/u,) is reduced.
Specifically, relative errors exceed 15% fps/um,)<3.
However, as(us/ ) —0 the model is bound to recover its
accuracy since the diffuse component vanishesRype 0 as
(el wa)— 0. Moreover, for(u./ pn,) <0.3the amount of dif-
fuse reflectance is negligible for all practical purposes. Thus
while the relative error iRy may be large, the absolute error
is vanishingly small.

To better characterize the variation in accuracy ofdhie
approximation with( s/ u,) we examine the OPDs that char-
acterize the fluence rate profiles. Figurés) and 1b) present
estimates for the normalized OPD metrids= u4A and
Aini=pmefAine @S predicted by thes-P; approximation and
MC predictions forl0™2<(u./u,)<10* under refractive in-
dex matchedn=1.0) and mismatchedn=1.4) conditions,

respectively.
Note that under conditions of dominant absorption, i.e.,

(el na)—0, uer—V3us. Thus bothA and A, approach

(L) (per)=V3 as(usl na)—0. This result is confirmed in
Figs. 7@ and 7b). In the limit of high scattering, i.e.,
(el ma)— o0, inspection of Eq(29) reveals that the value of

A is dependent on the refractive index mismatch through the
boundary parametek. Setting Eq.(29) equal toE,(1-Ry/e
and solving we find thaA=1+In(3-+2A). Thus, for(u./u,)

—oo, the 6-P, approximation predicts that —2.61 and 3.19
for n=1.0and 1.4, respectively. By contrast, a similar analy-

sis reveals that\;,, is not sensitive to the refractive index

mismatch andA;—1 as (ui/p,)—. These asymptotic
limits predicted by the5-P; model are confirmed by the re-
sults shown in Figs. (8 and 7b). Overall thes-P; predic-
tions for the optical penetration depth are impressive and
match the MC estimates to withih 4% over the entire range

of (ue/ma). The highest relative errors occur @iel/w,)

profiles shown in Fig. 3. Better accuracy is observedXor

(£2%) than for A;y; (£4%). This is due to the stronger
impact that underestimation of the fluence rate near the sur-

face has on the determination Efm.

3.2 Gaussian Beam Illlumination

Figures 8a) and 8b) provide normalized fluence rate profiles
along the beam centerling =0) as predicted by theS-P;
approximation and MC simulations dtws/u,) =100 for
beam radiiro,=2100*, 30%*, 10*, 3I*, and 11* with n
=1.0and 1.4, respectively. The errors of theP; predictions
relative to the MC estimates are shown below the main plots.
The fluence rate along the beam centerlinerfee 100 * dif-

fers by less thant 0.5% from that produced by planar irra-
diation. For bothn=1.0 and 1.4, thed-P, approximation
provides good accuracy relative to the MC predictions for
beam radiir o> 3I* (*£17%in the near field+5% in the far
field). However, the model accuracy degrades for smaller
beam radii and reaches 25% for ro=1*. This is expected
given that the diffusion model breaks down when length
scales comparable 1§ are considered.

Figures 9a) and 9b) provide results for the more chal-
lenging case of ui/m,)=1. Due to the reduced scattering
dispersion that occurs in media of higher absorption, one must
consider much smaller beam diameters before the fluence rate
profiles along the center differ noticeably from the planar ir-
radiation case. Specifically, fdus/1,) =1, the fluence rate
along the beam centerline fog=30* differs by less than
+0.5% from that produced by planar irradiation. Fog
>31*, errors in the fluence rate predictions provided by the
6-P, model relative to the MC estimates ate3% in the
near field and+22% in the far field. However, for,=1*,
the fluence rate is overestimated by nearly 100% in the far
field. While a 100% error may appear striking, one should
notice that this occurs once the fluence rate has already
dropped by more than two orders of magnitude relative to the
surface value. Thus, while the percentage error is large, the
error with respect to the overall energy balance is small. This
large relative error for small beam radii is not surprising given
the great difficulty that low-order functional expansion meth-
ods have in modeling the light field wher{=u, . In the far
field, the accuracy of thé-P; model is nearly independent of
the refractive index for the same reasons as those discussed in
Sec. 3.1.

Figures 10a) and 1@b) provide the normalized OPA
along the beam centerline for Gaussian irradiation as pre-
dicted by the s-P; model and MC simulations fofl0™?
<(pilpuy)<10" and beam radir,=1-100* with n=1.0

and 1.4, respectively. Corresponding results Aqy; are pre-
sented similarly in Figs. X&) and 11b). The OPDs deter-
mined in the 1-D case are included for comparison as are the
corresponding relative errors. The expected limiting behavior
for (ne/ ma)—0 is identical to that in the planar irradiation

case and thus bothA and A;,; converge tov3. For large
(mdl na) the decay of the fluence rate with depth for finite
beam illumination occurs on a spatial scale smaller than
exp(— weZ) because as the incident laser beam propagates in

=1 as expected from the characteristics of the fluence rate the medium, optical scattering results in significant lateral dis-
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Fig. 8 Normalized fluence rate along the beam centerline ¢(r=0)
versus reduced depth (z//*) as predicted by the &-P; approximation
(solid curves) and MC simulations (symbols) for Gaussian beam illu-
mination under refractive index (a) matched (n=1) and (b) mis-
matched (n=1.4) conditions. Profiles are shown for (u./®,) =100
with ro=100/* (O), 30/* (x), 10/* (), 3/* (X), 1/* (@), and g
=0.9. Lower plots show the percentage error of the 8-P; predictions
relative to the MC simulations.

persion from the high fluence region along the beam center-

line to the periphery. Thuad, A;,—0 as(us/ma)—. The
6-P predictions forA and A, track the MC estimates well,

with errors of less than: 4% in A and*=20% in Kim for the
smallest beam radius studi¢d,=1*). Once again, the larg-
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Fig. 9 Normalized fluence rate along the beam centerline ¢(r=0)
versus reduced depth (z//*) as predicted by the §-P; approximation
(solid curves) and MC simulations (symbols) for Gaussian beam illu-
mination under refractive index (a) matched (n=1.0) and (b) mis-
matched (n=1.4) conditions. Profiles are shown for (u;/u,)=1 with
ro=300* (O), 10/* (¢), 3/* (X), 1I* (@), and g=0.9. Lower plots
show the percentage error of the 6-P; predictions relative to the MC
simulations.

est errors occur fopi=pu, andA is predicted more accu-
rately thanA ;. Both of these features are consistent with the

fluence rate profiles shown in Figs. 8 and 9 where the largest

errors are observed close to the surféze 21*) and for u
=HMa-
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Fig. 10 Normalized optical penetration depth A versus (u!/u,) as
predicted by the 8-P; approximation (solid curves) and MC simula-
tions (symbols) along the beam centerline for Gaussian beam illumi-
nation for g=0.9 with r,=100/* (O), 30/* (x), 10/* (<), 3/* (X), and
1/* (@) under refractive index (a) matched (n=1.0) and (b) mis-
matched (n=1.4) conditions. The optical penetration depth for planar
illumination predicted by the &6-P; approximation is plotted as a
dashed curve. Lower plots shows the percentage error of the &-P,
predictions relative to the MC simulations.

Fig. 11 Normalized optical penetration depth A,y versus (u!/p,) as
predicted by the 8-P, approximation (solid curves) and MC simula-
tions (symbols) along the beam centerline for Gaussian illumination
for g=0.9 with ro=100/* (O), 30/* (x), 10/* (), 3/* (X), and 1/*
(@) under refractive index (a) matched (n=1.0) and (b) mismatched
(n=1.4) conditions. The optical penetration depth for planar illumi-
nation predicted by the 8-P; approximation is plotted as a dashed
line. Lower plots show the percentage error of the &-P; predictions
relative to the MC simulations.

provided by thes-P, approximation while the dashed isoflu-
Figure 12a) provides a color contour plot representing the ence rate contours represent predictions given by the MC
2-D fluence rate distribution for a Gaussian beam of radius simulations. Figure 1®) provides the 2-D distribution of the
ro=3I* with (u4/ua) =100andn=1.4. The solid isofluence  relative errors between thé-P, predictions and the MC
rate contours and the color map correspond to the predictionsimulations. Thus, thé-P; and MC contours shown in Fig.
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Fig. 12 (a) Color contour plot of the normalized fluence rate ¢(r, z) as predicted by both the §-P; approximation (solid contours and color) and MC

simulations (dashed contours) for Gaussian beam irradiation with ro=3/* in media with (u./u,)=100 for g=0.9 under refractive index mis-
matched conditions (n=1.4); and (b) relative error between 8-P; approximation and MC simulations.
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Fig. 13 (a) Color contour plot of the normalized fluence rate ¢(r, z) as predicted by both the &-P; approximation (solid contours and color) and MC
simulations (dashed contours) for Gaussian beam irradiation with ro=3/* in media with (u//u,)=3 for g=0.9 under refractive index mismatched
conditions (n=1.4); and (b) relative error between §-P; approximation and MC simulations.
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12(a) provides some indication of the errors in penetration Error
depth that one makes when using theP; approximation, DR
while Fig. 12b) provides the errors in the actual optical do-
simetry. 102
The quality of thes-P, predictions are excellent; the error
in the fluence rate relative to the MC estimates never exceeds
20% and is less than 10% over the vast majority of the do-
main. In the axial direction, the maximum errors occur in the
near field close to the boundary, while in the radial direction,
they occur along the beam centerline. This is expected be-
cause it is at these locations where the spatial gradients anc
angular asymmetry of the light field are greatest. Figures
13(a) and 13b) provide plots under identical irradiation con-
ditions for a turbid medium witi{pg/ o) =3. In Fig. 13a)
we see similar errors in the location of the isofluence rate
contours when comparing th® P, approximation relative to
the MC predictions. However, in Fig. {3, we observe a
different spatial pattern and magnitude of the fluence rate er- 100 > bl ]’ . """0' /"""'l sl . S T,
rors incurred when using thé P, approximation rather than 10 10 10 110 10 10 10
a MC estimate. As in Fig. ), the maximum errors in the pslug
radial direction occur along the beam centerline. However, in
the axial direction, t_he max_lmum_ errors reSIde_ m_the_fa_r field files along the centerline of a Gaussian laser beam of normalized
and appear_ to pe_mcreasmg with depth. This is similar tq radius ry/I* as a function of (u;/u,) when using 8-P; predictions for
the planar irradiation case and occurs because the spatialhe planar irradiation case for n=1.0 (dashed) and n=1.4 (solid)
scale for the decay of the fluence rate with depth lies
betweerexp(— uei2) andexp(— uy 2); thereby leading to poor
predictions by thes-P, approximation in the far field under
these conditions. It is important to note that examination o
o-P, predictions at radial locations away from the centerline
reveals equivalent, if not better, accuracy in both fluence rate
profiles and OPD metrics. For example, for Gaussian beam

/1

10%

1L
0% 30%

Normalized beam radius 7

Fig. 14 Contours for the error incurred in predicting fluence rate pro-

f (ro/1*) and optical propertie§us/pn,). Contours are pro-
vided for differences of 1, 3, 10, and 30% for 1.0 (solid
contours and 1.4(dashed contoufsrespectively. These re-
sults indicate that as absorption becomes more dominant, the
. . . ) centerline fluence rate profiles produced by laser beams of
radii ro>31*, the errors in bothA and Ajy at the radial - gmajer diameter can be adequately approximated using the
locationr =r, are <5 and<8%, respectively, over the full  yjanar jrradiation predictions. This can also be seen in the
range of(u/ua). This result is consistent with the errors of  opp results shown earlier in Figs. 10 and 11. In these figures,
the full fluence rate distributions shown in Figs. 12 and 13. e opserved that for a given beam radius, there is a certain
value of (ui/pm,) above which the OPDs corresponding to
3.3 Gaussian Beam versus Planar Irradiation Gaussian irradiation drop below the OPDs for planar irradia-
Treatment tion. We note that this value dfu./u,) becomes lower as
As is evident from the results, the use of laser beams of small smaller beam diameters are used. Note also that the inaccura-
diameter significantly alters the fluence rate profile and optical cies incurred in using the planar irradiation results are always
penetration depth. For example, Gaussian irradiation of a me-lower for the index-matched case. This is because the pres-
dium with (u4/us) =100 using a beam radius afy=3I* ence of a refractive index mismatch results in internal reflec-
results in a fluence rate that is onty50% of that achieved tion at the tissue-air interface that enhances lateral dispersion
using planar illumination. Moreover, the reduction in both of the Iight field. This additional source of dispersion hastens
fluence rate and OPD for decreasing beam diameters is morehe need for the use of a radiative transport model that is
prominent in media with largéu./ 1,) because the scattering geometrically faithful to the irradiation conditions.
enhances lateral dispersion of the collimated radiatiigs.
8-13. However, the Gaussian beam expressions are a bit .
more formidable than those for the case of planar irradiation. 4 Conclusion
As a result, for simplicity and convenience, it may be useful We have shown that thé-P, approximation to the Boltz-
to determine the conditions under which the results of a planar mann transport equation provides remarkably accurate predic-
irradiation analysis provides sufficiently accurate predictions tions of light distribution and energy deposition in homoge-
along the centerline of a Gaussian beam. This may obviate theneous turbid semi-infinite media. Examination of the
need to use the more complex expressions corresponding tdunctional expressions involved in th& P, approximation
Gaussian beam irradiation in some cases. reveals proper asymptotic behavior in the limits of absorption-
Figure 14 provides these results in the form of a contour and scattering-dominant media. Comparison of the fluence
plot showing the percentage difference between the fluencerate and optical penetration depth predictions given by the
rate predictions given by thé-P; approximation for Gauss-  6-P; approximation with MC simulations demonstrate the
ian beam irradiation along the centerline compared to planar greater fidelity and accuracy of tl#& P, model relative to the
irradiation as a function of both normalized beam radius standard diffusion approximation.
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The availability of an analytic light transport model pro-
viding accurate optical dosimetry predictions is an invaluable
tool for the biomedical optics community. By providing our

Radiative transport in the delta-P, approximation . . .

where A=(1+R,)/(1—R;) and h=2/3u,. This result is
identical to that provided by Eq12). HereR; andR, are the
first and second moments of the Fresnel reflection coefficient

results in terms of dimensionless quantities, they can be usedfor unpolarized light, as given by E@13).

to rapidly estimate the fluence rate distributions and optical

Note that in many implementations of the SDA,is ap-

penetration depths generated by a wide range of irradiation proximated instead by~ (1+R;)/(1—R;). While this is
conditions and tissue optical properties. Thus beyond a greaterstrictly incorrect, it results in slightly better approximations of

theoretical understanding of the significant gains to be real-

ized through the use of th& P, approximation over the stan-
dard diffusion approximation, these figures provide the bio-
medical optics community with charts that can be used for
rapid lookup and estimation of light-transport related quanti-
ties.

5 Appendix A Derivation of Surface Boundary
Conditions in the 6-P; Approximation

The governing equations of th& P, approximation ardsee
Sec. 2:

VZ4(r) = 3papyeq(r) = —3uk uyE(r,2)
+3g* us VE(r,2)-2 (31)

1
j(r=- 3—[V<pd(r)—3g*,u§ E(r,2)z], (32

Metr
wherer is the position in the mediunt, is the unit vector
colinear with the direction of the collimated sour&dyr,2) is
the irradiance distribution of the collimated sourgg, is the
absorption coefficientu,= u,+ ps is the transport coeffi-
cient with ¢ being the isotropic scattering coefficiegt is
the single scattering asymmetry coefficient of #hgportion
of the 5-P, phase function, angty = u(1—f) is a reduced
scattering coefficient. Selection éfand g* depends on the
selection of the phase function as described in Sec. 2.1.

Two boundary conditions are required to solve E2fl).

Requiring conservation of the diffuse flux component normal
to the interface, we obtaif®

2)dé

JA - Ly(r,o)(@-
w-2=0

J
(33

where z is the inward-pointing surface normal, and
re(— w-2) is the Fresnel reflection coefficient for unpolarized

- Ly(r, @) e(— - 2)(— - 2)dd,

-z<0

the fluence rate in the near field at the expense of providing
worse fluence rate approximations in the far field as well as
violating conservation of energy when integrating the light
field over the entire volume. The following cubic polynomial
provides an estimate fohk=(1+R,)/(1—R;) that typically
differs from the exact value by less than £%6:

A(n)=—0.1375%°+4.3390M?— 4.9036@ + 1.6896.

(39
6 Appendix B Solution of the 5-P;
Approximation for Planar Illumination
of a Semi-Infinite Medium
For planar illumination the source term is given by
E(z,&)=Eo(1-Ryexp—ul2)8(1—a-2), (36)

whereEj is the irradianceg is the unit direction vector, and
Z is the inward pointing unit vector normal to the surface of
the medium and is colinear with thecoordinate axis. Sub-
stituting Eq.(36) into Eq.(10), we obtain the governing equa-
tion for a planar geometry:

dz(Pd(Z)
T_?’Maﬂtr@d(z)
=—3us (uf +9* ua)Eo(1—Rg)exp — uf 2).
(37)

The boundary conditions for the 1-D case reduce to

(QDd_Ah

dey(2)
dz

0

—3Ahg* uEqo(1—Ry),

z

(38)

?4(2)| 0. (39
The solution to Eq(37) satisfying the Eqs(38) and (39) is

¢d(2)=Eo(1~Ry)[aexp(— ui 2) + B exp( — uer2) ],

light. The preceding condition can be described in words as where

equating the amount of diffuse light that travels upward
(w-2<0) and gets internally reflected at the interface with
the amount of diffuse light traveling downwairdv-z=0)
from the interface.

Substituting the approximation for the diffuse fluence rate
given by Eq.(9) and using Eq.(32) to eliminatej(r), we
obtain the following form for the surface boundary condition
in the 6-P, approximation:

[@a(r) =AhV @q(r)-2]|,—o= —3ANhG* uSE(r,2)],—o,
(39

(40)
3 * *+ * )
o Ms(é"’t_ % M @
Mefi™ Mt
and
—a(1+AhuX)—3Ahg* u*
= ( M) 9" Kq 42

(1+Ahﬂeﬁ)

These results are identical to that provided by EHGS) to
(20).
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7 Appendix C Solution of the &-P,
Approximation for Gaussian Beam Illumination
of a Semi-Infinite Medium

The source term for a Gaussian beam profile is given by

2
E(r,z2)=Ey(1—Rg)exp — u; z)exp< — 2r_2) , (43
0

wherer  is the1/e? beam radius, anff,=2P/(7r3), where
P is the power of the laser beam. The governing equation in
cylindrical coordinates has the form

19 deqy(r,2))  Feq(r,2)
Tl Ty + 972 — uipd(r,2)
=—3ul(uf +9* ug)E(r,2), (44)
subject to the boundary conditions:
(9Q0d x  *
(Pd_AhE = _3Ahg Mg E(T,Z)lzzo, (45)
z=0
(9(,Dd(r,2)
r=0
¢d(riz)|z~>00_>01 (47)
@4(r,2)|;_—0. (48)

The solution procedure begins by assuming that both
¢q4(r,z) and the right-hand side of E¢44) can be written as
Hankel transforms of two function§(k,z) and u(k,z), re-
spectively, i.e.,

J’:f(k,z)jo(kr)kdk=<pd(r,z) (49

and

fo u(k,2) To(kr)kdk=— 3% (¥ +8* 1) Eo(1~Ry)

2r?
_2_> (50
o

where 7, is the zeroth-order Bessel function of the first kind.
Substituting Eqs(49) and (50) into Eq. (44) we obtain

X exp(— uf z)exr{ -

19

f:f(k,z)jo(kr)kdk

P (=
+Efo f(k,z) Jo(kr)kdk

—Miﬁfwf(k,Z)Jo(kr)de fWU(k,Z)Jo(kr)kdk.
0 0

(51)

We note that the first term of E¢51) appears in the Bessel's
equation:
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Jd J
fﬁjo(kr)+k2‘70(kr)=0,

ror (52)

for which 7, is a solution. Thus Eq51) can be rewritten by
adding and subtractink? 7,(kr) on the left-hand side of Eq.
(52), which yields

f?—kz—uéﬁﬁ(k,zmo(kr)kdk

0

0 &2
+ fo Pjo(kr)f(k,z)kdk

= jwu(k,z)jo(kr)kdk.

0

(53

Using a table of Hankel transform$u(k,z) can be chosen
such that Eq(50) is satisfied, namely,

2

(k2= (K+uZpf(k2)

2
o
=—3us (uf 9% ra)Eo(1-Ry)

X ex;{

The boundary conditions i(k,z) space are obtained through
Hankel transformation of Eq$45) to (48):

r2k2

- OT) exp(— ui z). (54

ﬁfk 1fk
E('Z) M(’Z)

3 * % 2
=29 Ms Eo(1-Ryrg
z=0

-

f(k,2)|, ...—0. (56)

Solving the Eq.(54) for f(k,z) and substitution of the
results into Eq(49) gives the following form forpy(r,z):

r2k?

0
- ?)’ 59

and

@4(r,2)=Eo(1-Ry) f:{vexp(—ﬂ?z)

+ £ expl — (K2+ ud) Y221} Jo(kr)kdk, (57)

where

| Bud (uf +0* pa)rg exp(—rgk’e)
- 4(K2+ ugg— mr %)

(58)

and

B —3g* uraexp(—rak?/8) — 4y[(Ah) "1+ uf]
B A[(Ah) "2+ (K2+ w20 2] '
(59

These results are identical to that provided by HEG®) to
(24).
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