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Laser Thrombolysis: Basic Ablation Studies
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Laser thrombolysis is a procedure that is being developed to treat cardiovascular disease and

stroke by removing clots occluding arteries of the heart and the brain. This thesis presents

studies of pulsed ablation phenomena that take place during during laser thrombolysis. The

main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation

mechanism. Most of the studies described here used a gel-based clot model, and selected results

were verified using porcine clot.

A parametric study was performed to identify the optimal wavelength, spot size, pulse en-

ergies, and repetition rate for maximum material removal. The minimum radiant exposures to

achieve ablation at any wavelength were measured. The results suggest that most visible wave-

lengths were equally efficient at removing material at radiant exposures above threshold. Larger

catheters are likely to ablate more efficiently. Ablation was initiated at surface temperatures just

above 100◦C. A vapor bubble was formed during ablation. The vapor bubbles expanded and

collapsed within 500µs after the laser pulse. Less than 5% of the total pulse energy is coupled

into the bubble energy. A large part of the delivered energy is unaccounted for and is likely

released partly as acoustic transients from the vapor expansion and partly wasted as heat. When

the ablation process was studied within the cylindrical confines of a tube, dilation of the vessel

due to bubble expansion was observed at clinically relevant energies.

The thesis concludes by summarizing the relevance of the gel results to the implementation of

xv



laser thrombolysis. It proposes optimal laser parameters for the design of a next generation laser

system; a doubled Nd:YAG laser is suggested. It also suggests that the current laser and delivery

systems may not be able to completely remove large clot burden that is sometimes encountered

in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes

where the occlusion is generally smaller and rapid recanalization is of paramount importance. A

final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold

to minimize any damaging effects of the bubble dynamics on the vessel wall.

xvi



Chapter 1

Introduction

Cardiovascular disease occurs when arteries and veins become occluded with atherosclerotic

plaque and clot cutting off blood supply to vital organs. This can lead to potentially fatal

conditions such as heart attacks, strokes, and pulmonary embolism.

Laser thrombolysis is an interventional procedure that removes clot by delivering microsecond

pulses via a fluid core catheter. The removal of the clot results in a restoration of blood flow

while maintaining vascular integrity. Some of the main advantages of laser thrombolysis over

conventional treatment of cardiovascular disease are higher efficacy rates and potential safety.

To cause injury to tissue with light, the tissue has to absorb the energy. The amount of energy

absorbed by the tissue depends on the wavelength of the light. The absorption by thrombus

is significantly higher than that by arterial tissue in the visible region of the electromagnetic

spectrum. This allows lasers to selectively remove thrombus without injuring the vessel wall

by using a wavelength in this region. Current investigations of laser thrombolysis use tunable

pulsed-dye lasers operating in the visible region with pulse lengths of 1–2µs. The absorption of

light by the thrombus leads to the explosive vaporization of part of the clot and the formation of

rapidly expanding and collapsing vapor bubbles (figure 1.1). The dynamics of the vapor bubbles

generate pressure transients that disrupt the clot.

Laser thrombolysis was first used to treat acute myocardial infarctions caused by thrombosed

native coronary arteries that supply the heart muscles. Preclinical and early clinical studies have

demonstrated effective removal of thrombus and restoration of blood flow. Pulsed lasers have

also been used to remove clots in occluded bypass grafts and femoral arteries. Recently, there

has been considerable interest in using this technique to remove cerebral clots in the arteries of

the brain. This can be an important step towards the treatment of stroke that can be caused by

occlusions in the brain arteries.

1
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1.1 Motivation

The use of lasers to remove tissue was suggested soon after the development of the first laser

in 1960. Some of the clinical applications of lasers to ablate tissue are bone removal, cartilage

smoothing, corneal reshaping, burn treatment, and laser angioplasty. Laser angioplasty targets

the plaque that is usually present along with clot in diseased arteries. The use of optical fibers

capable of delivering light to previously inaccessible places in the body has made the medical

laser particularly attractive for many minimally invasive techniques.

The development of a safe and effective laser system for arterial recanalization is a complex

task involving the selection of optimal laser parameters and delivery of the energy. Early enthu-

siasm for laser angioplasty and laser thrombolysis was tempered by unacceptable failure rates.

Some of this was due to poor designs of laser and delivery systems and a lack of understanding

of the ablation mechanism. The last ten years have seen progress in the design of the system and

have rejuvenated the interest in laser-assisted recanalization techniques.

The broad goal of this research is to make laser thrombolysis a safe and rapid procedure,

so that it may be accepted as a standard treatment modality for vascular disease. Both basic

research into the physical ablation phenomena and clinical trials are required to achieve this.

This thesis addresses some of the questions regarding the basic physical processes during laser

thrombolysis. With a better understanding of the ablation process, it may be possible to specify

optimal parameters for the design of the laser and delivery systems.

1.2 Vascular disease

Vascular disease is the major cause of death and disability in the United States. More health

care dollars are spent on the treatment of various types of vascular disease than any others.

One cause of vessel disease is the accumulation of plaque and thrombus (clot) in the arteries

resulting in reduction and/or cessation of blood flow to vital organs. Another related cause is

thromboembolism where a piece of a clot formed elsewhere breaks off and floats downstream

blocking blood flow to a vital organ.

Coronary artery thrombosis resulting in myocardial infarction occurs in over 1.5 million people

in the United States, and over 500,000 will die as a consequence [1, 2]. Thrombosis of coronary

artery bypass grafts is the major cause of bypass graft closure at a rate of about 200,000 cases per

year [3]. Thrombosis can also occur in cerebral arteries and lead to strokes. Over 80% of strokes
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are ischemic in nature and are attributed to thrombosis and embolism [4]. Venous thrombosis

can lead to pulmonary embolism where a piece of the clot detaches and embolizes downstream

in the lung.

Normally, blood constituents do not interact with intact vascular endothelium that is a thin

layer of cells lining the insides of vessels. However, the exposure of flowing blood to disrupted

vasculature or to cardiovascular devices initiates complex mechanisms leading to thrombosis.

There is rapid deposition of platelets, insoluble fibrin, leukocytes, and entrapped erythrocytes

[5]. Clots can also form when the blood flow slows down as in most cases of venous thrombosis.

Not all clots are created equal. The etiology and characteristics of the thrombus, and therefore

its preferred treatment modality depend on where it is formed. Vascular occlusions can occur

almost anywhere in the vascular system including in the coronary arteries, bypass grafts, cerebro-

vasculature, and in the peripheral blood vessels. Arterial flow conditions give rise to platelet-rich

“white” thrombi, and static venous flow yields “red” thrombi rich in fibrin and red blood cells.

The mainstay of thrombus management is a regimen of pharmacological therapy that includes

thrombolytics to dissolve the clot and anticoagulants to prevent clotting. Streptokinase, uroki-

nase, and tPA are examples of thrombolytics, and heparin is an anticoagulant. The use of these

drugs has been shown to improve cardiac function [6, 7]. Alternate approaches to vascular re-

canalization are balloon angioplasty, rotoblader atherectomy, and aspiration devices [8, 9, 10, 11].

In balloon angioplasty a balloon is inflated inside the vessel to mechanically re-mold the lumen.

When all else fails or if the thrombus burden is too large, bypass surgery may be performed.

1.2.1 Thrombosis of coronary arteries

Acute coronary thrombosis is common to the pathogenesis of myocardial infarction and of un-

stable angina. Fissuring or rupture of an atherosclerotic plaque plays a fundamental role in

the formation of coronary artery thrombosis [12]. When the injury to the vessel is mild, the

thrombogenic stimulus is relatively limited, and the resulting occlusion is transient as in unsta-

ble angina. The endothelium is denuded with thrombi adherent to the surface of the plaque.

Deep vessel injury results in persistent thrombotic occlusion and myocardial infarction. Major

plaque disruption exposes the lipid core to the lumen. Blood enters the core and thrombus forms

within the plaque expanding its volume rapidly. The intraplaque component of the thrombus is

very rich in platelets. The intraluminal part forms as the last stage of the occlusion and is rich

in fibrin and red cells.
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Thrombolytic therapy with pharmacological agents is paramount in myocardial infarction, but

it is less effective in unstable angina [13]. The reduction in mortality associated with the use of

thrombolytic agents is impressive [14, 7]. The most feared complication of thrombolytic therapy

is intracranial hemorrhage since fatality rates in such cases can range from 44% to 75% [15]. Some

patients have contra-indications to the drugs and cannot receive them due to bleeding disorders,

recent strokes, etc. Also, the thrombus burden is usually not removed completely. Residual

thrombus is very thrombogenic acting as substrate for additional clot formation. Re-occlusion

of the artery is therefore a problem.

Percutaneous interventional techniques like balloon angioplasty and atherectomy were initially

used as a secondary treatment to keep the vessel open after thrombolytic therapy. Angioplasty

has now evolved as a primary intervention for patients who have shown contra-indications to

thrombolytics. Acute results of balloon angioplasty are promising with a relatively low rate of

abrupt vessel closure (∼5%) [16]. Drawbacks, however, appear in the short-term follow-up phases

where vessel closure rates of 30–50% within six months have been reported [17, 18]. This has

been largely attributed to the damage incurred by the vessel wall during inflation of the balloon.

The last line of defense is bypass surgery where a piece of a vein from the leg is grafted

around the occlusion to re-establish blood flow. This is an open chest procedure and involves

severe trauma to the patient. There is also an increased risk of re-occlusion due to thrombosis

of the vein graft.

1.2.2 Thrombosis of cerebral arteries

The term “stroke” is used to describe a number of brain disorders with a common feature of a

defect in the cerebral vasculature. Strokes are classified according to whether they are ischemic or

hemorrhagic. Most strokes are due to arterial occlusion with brain ischemia (oxygen deprivation)

leading to cerebral infarction or transient ischemic attacks [4].

Similar to the pathogenesis of acute coronary syndromes, thrombosis over a disrupted plaque

can play a key role in cerebrovascular occlusions [12]. However, intracranial hemorrhage and

embolism may also be involved; common sources for the thrombus embolus are the heart and the

carotid arteries. Transient ischemic attacks result from progressive narrowing of the vessel leading

to reduction of blood flow or from a transient occlusion by a thrombus. Cerebral infarction arises

from total occlusions.

Early studies of therapies for acute stroke show benefit at a high price [19]. It is clear
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that cerebral perfusion has to be re-established within 3–6 hours to restore normal neurological

function. The treatment is to infuse the patient with thrombolytics and agents that dissolve

thrombus and increase cerebral perfusion. This treatment modality is not always successful,

and sometimes the occlusion is not cleared in time. The thrombolytic tPA has recently been

approved by the Food and Drug Administration for the treatment of embolic stroke. Mechanical

intervention has not been tried on large scale due to difficult access to the occlusion via the

tortuous bends in the arteries. Also, the arteries of the brain are more fragile, increasing the risk

of vascular injury and vasospasm. A major problem in the treatment of stroke is the recurrence

of stroke. This is particularly true of strokes that are embolic in nature. In such cases the

underlying cause of the stroke has to be treated where possible.

1.2.3 Thrombosis of peripheral arteries

Claudication is the clinical term for pain in the muscles of the leg due to insufficient delivery

of oxygen resulting from a proximal obstruction to blood flow. Peripheral arterial disease is

frequently asymptomatic for long periods and often occurs together with coronary artery disease.

The risk of a leg amputation is relatively low (∼5%); however, life expectancy is generally reduced

[20]. A large number of patients die of cardiovascular causes.

Smokers demonstrate a higher incidence of fibrous, calcified, and ulcerated plaques in the

aorta and in the iliofemoral circulation [12]. Diabetes is also commonly associated with disease

of the iliofemoral and distal arteries of the leg. Major acute arterial occlusion is often due to

fibrin-rich emboli arising from the heart or occasionally from venous thromboembolism through a

patent foramen ovale (an abnormal communication between chambers in the heart). Microemboli

causing digital infarction may arise from cardiac sources or from fragmentation of a proximal

thrombus during vascular intervention.

In most patients with intermittent claudication, conservative therapy is usually lifestyle ad-

vice to exercise regularly and to reduce smoking. In acute cases the primary treatments are

reconstructive surgery and catheter recanalization procedures. Arterial bypass grafts and per-

cutaneous transluminal angioplasty are the most common procedures performed [21]. Systemic

thrombolysis with drugs has a low success rate and a significant risk of bleeding. Local throm-

bolysis delivers drugs via a catheter and has a higher success rate. Nevertheless, the use of

thrombolytics is frequently not the treatment of choice for peripheral arterial disease.
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1.2.4 Thrombosis of bypass grafts

Bypass surgery is generally performed for diffuse atherosclerotic disease resulting from a chronic

build-up or when there has already been a previous intervention. It is also done when arterial

disease develops at multiple sites. Basically, a piece of the saphenous vein in the leg is grafted

and implanted to bypass the occlusion.

A problem plaguing bypass surgery is thrombosis of the vein graft cutting off blood flow again.

Disease of vein grafts is a form of accelerated atherosclerosis that begins with acute vascular

injury, mural thrombosis, and proliferation of smooth muscle cells in the vessel wall. Injury to

the vein graft results from procurement of the vein from the leg, surgical handling, delays before

insertion, and from the increased shear forces of the pulsatile arterial system. There is platelet

deposition and secretion of growth factors for smooth muscle cells and white cells. Recent bypass

procedures have used a graft from the internal mammary artery that is more protected from

generalized injury and platelet deposition. This is probably due to previous adaption to arterial

shear forces.

There is no satisfactory treatment for thrombosed vein grafts. Mechanical intervention like

angioplasty is not preferred because of problems and embolization at lesions to distal coronary

arteries [22]. Thrombolytics ease the thrombus burden in about 50% of the cases, but the re-

occlusion rate is around 30% [3, 23]. Because platelet deposition starts as soon as blood flows

through the vein graft, perioperative antithrombotic therapy is critical.

1.2.5 Thrombosis of deep veins

Deep vein thrombosis is a common and potentially dangerous complication of a primary illness

in hospitalized patients. It may lead to pulmonary embolism that can be fatal. When venous

thrombi dislodge, they can reach the pulmonary arterial circulation and may adhere to the

bifurcation of the pulmonary artery. The thrombus generally forms in post-operative patients

who are under extensive bed rest. It is also common in people who spend extended periods of

time in a sedentary position.

Venous thrombosis develops when stasis in the deep veins of the legs occurs at times of

increased coagulability of the blood [12]. This combination leads to local generation of thrombin

that is the crucial event in the pathogenesis of the disease. Since the clot forms under static

conditions of blood flow more red blood cells are trapped and the clot appears red. Vessel wall

injury is less likely to be involved. Deep vein thrombosis can also go undetected for some time,
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and they can be several weeks old before turning symptomatic.

Prevention of deep vein thrombosis is a critical part of post-operative care. This involves

elimination of stasis and fighting blood coagulation. Although anticoagulant therapy is highly

effective, two thirds of the patients who die from pulmonary embolism succumb abruptly or before

the therapy can take effect. Thrombolytic therapy is generally more rapid than anticoagulants

in thrombus removal. Contra-indications again appear in the form of bleeding.

Surgical intervention for venous thrombosis consists of either thrombectomy or venous inter-

ruption. The role of thrombectomy remains controversial. There are several techniques for the

interruption of the inferior vena cava that is the main blood vessel carrying blood from the legs

back to the heart. One example is a variety of external clips designed to partially compress the

vein so that emboli floating in the stream are filtered [24]. However, compromised cardiac output

due to inadequate venous return led to low acceptance of these techniques in clinical practice.

1.3 Laser thrombolysis

The disadvantages of current techniques to rapidly clear large thrombus burden in occluded

arteries led to the search for an alternative method that did not endanger the vessel wall. The

potential for laser energy to remove atherosclerotic obstructions (plaque) was described as early

as 1963 [25]. Since then most investigations have concentrated on the removal of plaque in a

technique called laser angioplasty [26]. In 1983 Lee et al. used an argon laser to vaporize human

thrombus in vitro [27]. If the arterial occlusions is a combination of plaque and thrombus, it is

essential to remove both for effective therapy.

1.3.1 Continuous wave laser thrombolysis

Early studies of both laser angioplasty and laser thrombolysis used continuous wave laser to

remove the arterial obstruction. Crea and Abela attempted to recanalize thrombosed coronary

arteries in dogs using an argon ion laser [28]. The wavelengths used were 488 nm and 514 nm,

and the laser energy was transmitted via 140 or 200 µm cleaved silica fibers. The results were not

encouraging with recanalization reported in only 1 of 9 dogs. Perforation of the arterial lumen

was observed in 7 of 9 dogs. Minimal thrombus was removed and there was evidence of charring

at the laser delivery sites.

The results of several subsequent studies have demonstrated the limitations of both continuous

laser energy and delivery by hard silica fibers [29, 30, 31, 32]. Irradiation by a continuous wave
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laser does not confine the heat produced to the target area. The diffusion of heat out of the

target area can result in thermal necrosis and even charring in the surrounding tissue. These

factors also lead to intense vasospasm and thrombosis [33]. It has been reported recently that

accelerated intimal hyperplasia can be attributed to thermal injury [34]. Intimal hyperplasia is

a condition where the smooth muscle cells in the vessel wall proliferate and cause closure of the

vessel.

Bare silica fibers are generally stiff and have sharp edges. Tortuous bends in the vascular

system are difficult to navigate and therefore limit access to the occlusion. The sharp edges of

the fiber pose considerable hazards to the vessel wall, and arterial perforations and fracture of

fibers have been reported in animal trials. The fiber tip was then covered with a metal cap (“hot-

tip”) in an attempt to reduce the sharp profile of the fiber [35, 36, 37, 38, 39]. While results from

animal trials were promising, an unacceptable number of thermal injuries during angioplasty in

human coronary arteries were reported. Consequently, most attempts at laser angioplasty and

thrombolysis using continuous-wave lasers were abandoned.

1.3.2 Pulsed laser thrombolysis

Srinivasan et al. reported their experience using ultrashort excimer laser pulses to produce precise

cuts in polymers without adjacent thermal effects [40]. This approach of using pulsed lasers to

limit thermal effects can also be be used to ablate tissue. The limiting pulse length would be

determined by the thermal relaxation time of the material. This is the time for heat to diffuse

out of the irradiated volume and is determined by the thermal diffusivity of the tissue and the

dimensions of the volume. When laser energy is deposited in pulses shorter than the thermal

relaxation time, heat accumulates and high temperatures are achieved. The ablative event can

then occur before the heat diffuses out of irradiated volume. This confinement of heat can reduce

the thermal damage incurred by adjacent tissue [41, 42].

For vascular structures the thermal relaxation time is of the order of milliseconds, so lasers

with pulse durations less than 1ms are likely to produce little thermal injury [43, 44]. Pulsed

lasers from the ultraviolet [45, 46, 47, 48, 49], visible [50, 51, 52, 53, 54, 55], and infrared [56, 57, 58]

have been investigated for both angioplasty and thrombolysis. Notable among these are the

excimer (308 nm, 351 nm, 100–200 ns), tunable pulsed-dye (400–600 nm, 1µs), and the Ho:YAG

(2.1µm, 250µs) lasers. The excimer and holmium lasers are popular because of the potential for

a single laser system to treat both plaque and thrombus. The excimer laser targets the tissue
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proteins, while the holmium energy is absorbed by tissue water. Both these chromophores are

present in both plaque and thrombus.

Excimer laser thrombolysis

Excimer laser angioplasty systems emitting 308 nm light in 100–200 ns pulses are being tested for

thrombus removal in animal and clinical trials [47]. These systems were designed for and have

had extensive evaluation for the treatment of atherosclerotic obstructions.

The laser energy is delivered via a catheter made of bundles of 50–100 µm core diameter

fused silica fibers circumferentially arranged around a central guidewire lumen. Conventional

angioplasty guidewires are pushed through the thrombus into the distal part of the vessel. The

laser catheter is brought over the guidewire to the thrombus, and pulse energies of 40–50 mJ/mm2

are delivered at a repetition rate of 10–30 Hz. Balloon angioplasty immediately after the laser

procedure is generally required to open the vessel further.

Ultraviolet light of 308 nm is strongly absorbed by the tissue protein in the clot; the depth

of penetration is about 30 µm. This would theoretically allow for precise etching of clot similar

to that demonstrated in atherosclerotic tissue and polymers. However, the results have been

conflicting [59, 60]. The clinical excimer laser is configured to principally treat plaque. Refining

the laser and delivery systems, technique, and case selection specifically for treatment of thrombi

may improve the efficacy of the excimer laser for thrombolysis. However, ultraviolet photons

have sufficient energy to break certain carbon bonds and may result in unwanted photochemical

reactions.

One feature that was noted was that the ablative event was different from previous continuous-

wave ablation studies. Ablation was initiated by explosive vaporization of the tissue and the

subsequent formation of a vapor bubble. The dynamics of this rapidly expanding and collapsing

bubble exert mechanical forces on the clot leading to removal of more clot. This bubble formation

occurs almost always when tissue is ablated under a liquid with a pulsed laser. The removal of

thrombus under these conditions is usually more efficient but less controlled.

Holmium laser thrombolysis

Holmium/thulium:YAG lasers emitting 2.1 µm radiation have been successfully used for angio-

plasty and are now being tested for thrombolysis [56]. Other applications include cutting bone

and intervertebral discs. The pulse duration is 250 µs in the free running mode and 1 µs in a
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Q-switched mode. Water has an absorption peak at 2.1 µm, and the penetration depth of the

holmium radiation in water-containing tissues is about 300 µm.

The holmium laser is a solid state device and is favored for its smaller size and ease of

operation. The clinical laser for angioplasty and thrombolysis is configured to emit 250 µs pulses.

The energy is delivered to coronary artery thrombi via a catheter similar in design to the one for

the excimer laser. The catheter is 1.4–1.7 mm in diameter and delivers 250–600 mJ pulses at a

repetition rate of 5 Hz.

The results of holmium laser thrombolysis are fair. In one study the majority of the thrombus

was cleared and the residual stenosis was less than 30% in all cases [61]. No acute adverse

procedural complications were reported. However, balloon angioplasty was still required as a

follow-up procedure.

There is some reservation regarding the holmium laser for thrombolysis. Stress wave effects

and the formation of vapor bubbles have been shown to induce damage to adjacent tissue [62].

Hassenstein et al. reported formation of thrombotic occlusions during holmium laser angioplasty

[63]. Another potential disadvantage is the inability of the holmium laser to selectively target

thrombus without ablating the vessel wall. Since water is present in roughly the same proportions

in all tissues, the holmium laser does not discriminate between an arterial occlusion and healthy

vessel wall. This presents the danger of perforations caused by inadvertent ablation of arterial

tissue.

1.3.3 Selective thrombolysis

A laser system capable of selectively targeting the thrombus is therefore desirable. This capa-

bility is offered by lasers emitting in the ultraviolet and visible regions, where the absorption by

thrombus is much higher than that by artery. The principal chromophore of thrombus in the

visible waveband is hemoglobin present in the red blood cells. Since higher absorption coefficients

require less energy per unit area to achieve ablation, the ablation threshold for artery is higher

than that for clot. Pulsed lasers operating in this waveband at radiant exposures between the

thresholds for artery and clot can therefore selectively remove clot.

Prince et al. reported that differential absorption of light of selected wavelengths between

plaque and arterial wall resulted in differences in ablation thresholds [64, 65, 50]. LaMuraglia et

al. conducted spectrophotometric studies to determine the absorption spectra of thrombus and

normal arterial tissue in the 400–600 nm waveband [53]. An increase in absorption of nearly two
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orders of magnitude between clot and artery due to the presence of hemoglobin was observed

(Figure 1.2).

Based on these tissue spectrophotometric studies, a pulsed-dye laser system was developed.

The wavelength of emission is tunable between 400–600 nm, and the pulse duration is 1–2µs.

A longer pulse could potentially work as long as it stayed below the thermal relaxation time

of tissue (∼1 ms). The lasers currently configured in clinical settings operate at 480 nm with

pulse widths of 1–2 µs [55, 66]. The ablation thresholds for acute arterial thrombus and normal

arterial tissue measured with this laser in vivo and in vitro were approximately 15 mJ/mm2 and

1500 mJ/mm2 respectively [67, 54].

1.3.4 Catheter system

Light delivery is achieved with a fluid-core light guide, that is essentially a tubing of low refractive

index filled with an optically transparent fluid of higher refractive index (Figure 1.3) [67, 68].

Light propagation is similar to that of a regular optical fiber. The light is launched from the laser

into an optical fiber contained within the fluid catheter. The fiber in turn launches the light into

the optical fluid that finally delivers it to the target. Further, the catheter is open-ended at the

distal end allowing the fluid to flow out of the catheter. The advantages over delivery by regular

optical fibers are:

• increased flexibility and reduced risk of perforations because of the soft material of the

tubing;

• removal of blood and ablation debris by the flowing fluid to clear the path for laser delivery

to the thrombus;

• contact with the target is not necessary because light can be transmitted past the end of

the catheter, and this feature may reduce mechanical injury to the vessel wall;

• the optical fluid used is radiographic contrast used in conventional angiography. Being

radio-opaque, contrast gives the additional capability of monitoring laser thrombolysis

progress in real time using fluoroscopy.

The laser catheter is fitted with a Y-adapter. The optical fiber is inserted into the catheter

tubing through one leg of the adapter. The distal end of the fiber is kept about 20 cm from the

distal part of the catheter. A fluid injector injects the contrast media through the other leg of
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the Y-adapter. The catheter can be inserted into the femoral artery in the leg and advanced to

the occlusion in the coronary artery over a monorail guidewire.

The initial pulse energy at the output end of the fiber is approximately 80mJ. The trans-

mission through the optically clear fluid is about 75% resulting in an output energy of 60mJ.

The internal diameter of the optical channel is 1.1 mm that results in a laser spot diameter of

similar dimensions. The pulse repetition rate is 3 Hz. The fluid injector maintains the contrast

flow between 0.3–0.5 m/s that provides adequate light transmission up to 1 cm from the tip of the

catheter. The tip of the catheter is marked with a gold band for visualization during fluoroscopy.

1.3.5 Initial results

The pulsed-dye laser thrombolysis technique was tested on a canine model with promising results

[67]. Coronary artery thrombi were removed in all of 22 dogs without perforation, vasospasm, or

other untoward incidents. All thrombi were removed within 600 pulses. The patency rate of the

vessels 90 minutes after the procedure was 80%.

Based on these favorable animal studies of laser thrombolysis and approval from the Food

and Drug Administration, a pilot study of laser thrombolysis in acute myocardial infarction in

humans was performed. The criteria for patient selection was contra-indications to or failure of

thrombolytic drugs. The procedures were performed at St. Vincent Hospital, Portland, Oregon

and at St. Joseph’s Hospital, Atlanta, Georgia. Effective thrombus removal was demonstrated in

16 of 18 patients [69].

1.4 Goals

All the pulsed laser thrombolysis systems described above are prototypes and are in early phases

of experimental and clinical investigation. Laser thrombolysis appears feasible but is yet to

be established as an adjunct or stand-alone therapy for the various types of vascular disease.

This requires further research into the following areas: (i) physics of the ablation process, (ii)

engineering of laser and delivery systems, and (iii) in vivo clinical trials.

Laser thrombolysis is initiated by a light pulse delivered through the fluid catheter. The

temperature of the thrombus increases as it absorbs the light reaching levels sufficient for vapor-

ization. Vapor bubbles expand and collapse and disrupt the thrombus. The relationship between

these phenomena and their contribution to thrombus removal is not clear. Investigation and

quantification of the basic mechanism will serve as a basis for maximizing the efficiency of the
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procedure. Briefly, the areas addressed by this thesis are as follows:

• Optimal laser parameters for efficient ablation are identified.

• Ablation threshold exposures for thrombus and artery are estimated.

• Vapor bubble formation and its role in the ablation process are studied.

A qualitative and quantitative understanding of the ablation process will provide insight into

the physical phenomena associated with the process and help provide design parameters for laser

and catheter systems.

1.4.1 Visualization studies

A major goal is to determine and describe the phenomena that take place during pulsed laser

ablation of thrombus and thrombus phantoms under water. This is done by visualizing the

ablation process and the associated bubble action using flash photography. Two processes are

active during pulsed ablation:

• volumetric heating due to absorption of light resulting in vaporization of the clot,

• the mechanical action of vapor bubbles formed as a result of vaporization.

The relative importance of each mechanism was unknown. Photographic visualization of ablation

will achieve a qualitative understanding of the removal process. Quantification of mass removal

and comparison with existing thermal ablation models will elucidate the significance of heating

versus bubble dynamics in the ablation process. This will serve as a basis to maximize the

efficiency and safety of laser thrombolysis by optimizing laser and light delivery parameters.

Bubble kinetic energies will be calculated based on size and lifetime of the bubbles. A cal-

culation of bubble energies will yield estimates of the fraction of the total laser energy that is

utilized in the creation of the vapor bubbles.

I shall also investigate the confining effects of boundaries (vessel walls and delivery catheter)

on the bubble formation and ablation efficiency. The interaction of the bubble with the delivery

catheter may result in adverse effects such as recoil and perforations of the vessel wall. Studies of

boundary effects on bubble formation and ablation efficiency will help in maximizing thrombus

removal and minimizing collateral damage to surrounding structures.
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1.4.2 Optimization of laser parameters

Another major goal is to optimize the efficiency of ablation by identifying the ideal laser param-

eters for thrombolysis. Effects of wavelength, spot size, pulse energy, and repetition rate on the

ablation efficiency will be studied. Ablation efficiency is characterized by mass removed per unit

energy per pulse.

The selective ablation of thrombus is achieved by using a laser wavelength between 400–

600 nm. However, the optimal wavelength within this waveband was not known. Wavelengths

that are better absorbed than others may result in more efficient ablation, or vice versa. Also,

dye lasers are currently used that emit microsecond pulses in the visible region. These lasers,

requiring water and dye pumps, are too bulky and unwieldy for use in the operating theater.

Identification of an optimal wavelength will not only result in efficient ablation, but it may

simplify the design of a next-generation laser operating at a single wavelength.

The other laser parameters that are investigated in this work are the spot size, pulse energy,

and repetition rate. The spot size is crucial in two aspects:

• It will largely determine the diameter of the delivery catheter.

• It will fix the threshold energies for ablation of thrombus and vessel wall, thus providing

lower and upper limits respectively for the pulse energies to be used.

Higher pulse energies will obviously result in more mass removal. Identifying the relationship

between delivered energy and efficiency may help to better understand the ablation process. Also,

an upper limit for the pulse energy to be used is essential in the design of the laser system.

Finally, the pulse repetition rate will influence how long the laser thrombolysis procedure

takes. If the amount of clot removed per pulse does not depend on the repetition rate, the laser

pulses can potentially be delivered at a faster rate thus reducing the procedure time. Further, a

fixed repetition rate will help in the design of the laser. However, the repetition rate influences

the transmission characteristics of the liquid core catheter, and this may provide the upper limit

for the pulse repetition rate. Also, the debris from the previous pulse has to be removed by the

time the next pulse arrives.

All the ablation efficiency studies proposed above depend on an accurate measurement of

mass removal of the order of micrograms. The ability to measure such small amounts is further

complicated by the fact that the ablation takes place in a liquid environment. A major step

towards the completion of the above studies therefore involved the development of a method to
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accurately measure the ablation mass within 5% in an aqueous environment.

1.4.3 Ablation threshold studies

Increasing the radiant exposure above a certain threshold level will result in ablation of the vessel

wall. Threshold radiant exposures for ablation of thrombus and artery at any wavelength have

to be measured to provide a window of efficient and safe ablation. The threshold energy for

ablation over a uniform spot depends on two factors:

• the optical absorption coefficient µa of the target tissue,

• the laser spot size on the surface

The spot size and the absorption coefficient determine the energy confined per unit volume and

the rise in temperature. Barring stress confinement (where ablation can occur due to tearing),

ablation is generally initiated when the heating per unit volume is sufficient for vaporization. The

absorption in turn depends on the wavelength of light delivered. The wavelength and spot size

studies outlined above will result in optimal wavelength(s) and spot size(s) at which thrombolysis

can be performed. It is therefore necessary to be able to predict the ablation threshold radiant

exposures (energy per unit area) for thrombus and artery at any wavelength.

In this study, thresholds were determined as a function of absorption and mapped onto the

absorption spectra of thrombus and artery. Thresholds were measured by using mass-removal,

optical, acoustic, and visualization techniques. Thermal signals from the surface were monitored

at radiant exposures below and above threshold.

1.4.4 Thrombus phantoms

Laser thrombolysis is a complex process involving thermal and mechanical events. Investigations

of these processes is further complicated when the target is a biological tissue such as clot. This

is due to the inherent variabilities associated with tissue. To elucidate the physical mechanism of

laser ablation, most experimental work reported here is done on gelatin tissue phantoms. The gel

models are reproducible and allow comparative experiments using various optical properties and

laser and delivery parameters. The results of the third chapter in this thesis suggest that ablation

thresholds for gel and clot are similar at equivalent optical absorptions. This comparison is a

rather limited validation of gel as optical model for clot. Also, their mechanical properties differ.

Nevertheless the processes that take place in these controlled models should provide insight into
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the phenomena that take place during ablation of clot. Gel has been used to model soft tissues

by numerous researchers [70, 71, 72, 73, 74]. Selected gel experiments will be validated with real

thrombus.
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Figure 1.1: Microsecond ablation of porcine clot in a 3mm silicon tube. The tube simulates
the cylindrical geometry of a blood vessel. Light is delivered by a fluid-core catheter. The clot
absorbs the light and a portion is vaporized. A vapor bubble is formed that expands and collapses
causing the clot to be further disrupted.
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Figure 1.2: Absorption spectra of human thrombus and vessel wall. A wavelength in the visible
region is selected for laser thrombolysis to selectively ablate thrombus without incurring injury
to the vessel wall.
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tubing (refractive index n2 < n1)

optically clear fluid (refractive index n1)
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Figure 1.3: Schematic representation of the fluid-core catheter used to deliver microsecond laser
pulses to the clot during laser thrombolysis. The laser energy is launched from the laser into an
optical fiber contained in a catheter. The fiber in turn launches the light into an optically clear
liquid that transmits the light to the target by total internal reflection. The distal tip of the
catheter is open-ended so that the fluid can flow out of the catheter and wash away the blood in
front of the clot. A clear path for direct laser delivery to the clot is thus established. Another
important advantage of the catheter over a bare solid fiber is that the fiber does not extend all
the way to the end but ends roughly 20 cm from the distal open end. The distal part of the
catheter is therefore softer and more flexible and therefore less traumatic. Finally, the fluid is
optically clear but radio-opaque that makes live monitoring by angiography possible.



Chapter 2

Laser parameters for efficient ablation

This chapter describes experiments carried out to determine the optimal wavelength, spot size,

pulse energy, and repetition rate for laser thrombolysis.1 The clot was simulated by gelatin

containing a light-absorbing dye. Arteries were simulated by 3mm inner diameter plastic tubes,

and the gel was ablated under water. Laser parameters were deemed optimal when the maxi-

mum amount of gelatin was removed per pulse per unit energy (ablation efficiency). A unique

spectrophotometric method was developed to measure the mass removed. Wavelength studies

were conducted by varying the absorption of gelatin between 10–2000 cm−1 corresponding to clot

absorption in the 400–600 nm range. Laser energy was delivered via optical fibers of 300–1000µm

core diameter to investigate the effect of spot size. The pulse energies ranged from 25–100mJ,

and the repetition rate was varied from 1–10 Hz. The results of this study suggest that any wave-

length between 410–590 nm can be used for effective thrombolysis. The mass removed per pulse

depends on the total energy delivered rather than on the radiant exposure. The pulse repetition

rate did not strongly influence the total mass removed. The high ablation efficiencies suggest a

dominance of the mechanical action of vapor bubbles over thermal events in the ablation process.

2.1 Tissue optics

Generally, light transport in tissue is governed by three intrinsic parameters of the material:

absorption µa, scattering µs, and anisotropy g. Both absorption and scattering have dimensions

of inverse length and represent the average number of absorption and scattering events undergone

by a photon traversing a distance of unit length in the medium. The anisotropy g is the average

cosine of the angle between the directions of a photon prior to and after a scattering event. The

1This chapter is a part of the paper “Threshold and ablation efficiency studies of microsecond ablation of
gelatin under water” to be published in Lasers in Surgery and Medicine, 19:3, 1996.

20
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g value of an isotropic scatterer is zero, while a highly forward scattering medium would have

a g value close to unity. Based on the scattering coefficient µs and anisotropy g, an effective or

reduced scattering coefficient µ′s = µs(1−g) can be defined. A highly forward scattering medium

such as blood therefore has a low effective scattering.

The light distribution within the tissue is a complex function of µa, µs, and g and is described

by the integro-differential radiative transport equation [75]. Numerous analytical, numerical, and

statistical models have been developed to solve the radiative transport equation [76, 77, 78, 79, 80,

81]. Analytical models include the Beer’s law, Kubelka-Munk, and diffusion theories. The validity

of each model depends amongst other factors on the relative magnitude of the absorption and

effective scattering coefficients. Statistical models such as Monte Carlo simulations are considered

exact but tend to be time-consuming.

The radiant exposure E(z) in mJ/mm2 at depth z in an absorbing only medium is given by

Beer’s law:

E(z) = E0 exp(−µaz) (2.1)

where E0 is the incident radiant exposure. This equation is exact for an absorbing only medium

and is a reasonably good approximation for materials where absorption greatly dominates scat-

tering. Blood is a strong absorber in the visible region (µa ∼ 100–1000 cm−1) with a low effective

scattering coefficient (µs ∼ 300 cm−1, g ∼ 0.99). Therefore Beer’s law can be used to calculate

light distribution in blood and blood clots.

At irradiation levels where non-linear effects like dielectric breakdown can be neglected, the

ablative effect of a high power laser pulse on tissue is largely determined by its duration and how

deep it penetrates into the material. The optical penetration depth δ is defined as the depth

at which the radiant exposure in the medium drops to 1
e of the incident radiant exposure. In a

medium where Beer’s law applies, this is simply given by:

δ =
1
µa

(2.2)

The absorbed fraction of the light can be converted into heat, photochemical reactions, or re-

emitted light. Typically, most of the light is converted into heat. If all the absorbed light is

converted into heat, the volumetric heating produced is given by µaE(z) with dimensions of

J/cm3. The rise in temperature at depth z is given by:

∆T =
µaE(z)

ρc
(2.3)

where ρc is the heat capacity of the material.
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It is not clear how the absorption affects the total mass removed. At lower absorption coeffi-

cients the light penetrates deeper (equation 2.2) and larger volumes are heated that could result

in more mass being removed. However, a low absorption may also cause insufficient heating for

ablation to take place (equation 2.3). Higher temperatures are achieved at higher absorption

coefficients. This means the threshold radiant exposure to ablate the tissue will be lower, and

suggests that any extra energy can be utilized for ablating more material. However, that does not

necessarily have to be true. Light does not penetrate deeply into highly absorbing tissue. This

means that the high temperatures are confined to a shallow depth of tissue, and the the extra

energy might just be overheating that layer. Therefore, there may exist an optimal absorption

at which the mass removed per unit energy may be maximized.

2.2 Goals

The goals of the experiments described in this chapter were to study the effects of wavelength,

spot size, pulse energy, and pulse repetition rate on ablation efficiency. Efficiency is defined here

as the total mass removed per pulse per unit energy. While a range of safe wavelengths for laser

thrombolysis has been identified, the relative efficiency of each wavelength between 400–600 nm

is not known (figure 1.2). It is also not clear whether the ablation efficiency depends on the

radiant exposure (mJ/mm2) or on the total energy delivered. No complete parametric study of

microsecond ablation of a soft target under a liquid has been undertaken yet. The spot size is

also important in determining the size of the catheter delivering the laser energy. The repetition

rate will be a major factor influencing the total procedure time in a clinical setting.

Since the wavelength determines the absorption and hence the penetration depth into the

tissue, it has been theorized that an optimal wavelength for laser thrombolysis would be found at

an optimal penetration depth. Early studies have speculated that deeper penetrating wavelengths

in the 400–600 nm waveband would result in higher ablation efficiency since a larger volume would

be heated [52], for example 480 nm. Another reason for favoring 480 nm was its good absorption

by beta-carotene present in atherosclerotic plaque [50]. Later studies suggested that primarily

the 410 nm and to a lesser extent the 450–500 nm wavelengths were among the most effective

for laser thrombolysis since they provided the highest degree of selectivity in absorption between

thrombus and vessel wall [53]. However, there is no experimental evidence available to positively

justify the choice of a particular wavelength.

The question then arises: how important is light absorption in mass removal at energies
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above threshold? Laser thrombolysis is done in a fluid medium, and an important phenomenon

influencing removal of tissue under a liquid is cavitation or the formation and collapse of a

vapor bubble [71, 82, 83]. The contribution of the bubble dynamics to the ablation process may

be comparable to or even overshadow the absorption-dependent thermal effects. It is therefore

important to estimate the relative significance of the absorption coefficient in the ablation process

at energies above threshold.

In this parametric study, gelatin was used to model clot. A dye was added to the gelatin to

absorb the laser light. The use of the thrombus model eliminated the biological variability of

thrombus. Another important advantage of the model was that the absorption could be controlled

by just changing the amount of dye in the gelatin. This facilitated the use of a single laser in the

wavelength studies. An absorption range of 10–2000 cm−1 was studied that corresponded to the

waveband between 400–600 nm on the absorption spectrum of thrombus (figure 1.2).

Since laser thrombolysis is performed under an aqueous medium of saline and contrast, the

gelatin was ablated under water. An important aspect of laser thrombolysis is the constraining

cylindrical geometry of the vessel wall. In these experiments, the gelatin was confined in plastic

tubes to simulate the cylindrical boundaries of the arterial wall. Solid glass fibers were used

to deliver the laser energy. A unique spectrophotometric method was developed to accurately

measure the ablated mass within 5%. The radiant exposure was varied by varying both the

pulse energy and irradiated spot size, and ablation efficiency was characterized as the amount of

gelatin ablated per pulse per unit energy.

2.3 Materials and methods

2.3.1 Thrombus model

The thrombus was modeled using 3.5% by weight gelatin (175 Bloom, Sigma Chemicals, St. Louis,

MO) in water containing a photostable absorbing dye as the chromophore (Direct Red 81 from

Sigma, 75% dye content). The bloom number is a measure of the stiffness of the gel and is

supplied by the manufacturer: a higher bloom number represent stronger gels. Gelatin of this

strength and concentration was chosen because it appeared to be closest in mechanical strength

to fresh arterial clot. No rigorous mechanical testing was carried out to validate the choice of

these parameters.

Young’s modulus is one useful measurement of the strength of a material. Samples of gel
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and porcine clot (many weeks old) were compressed using a Liveco V1000 universal tester. The

average Young’s modulus for the gel was found to be 18 kPa, and the value for clot varied be-

tween 5–15 kPa depending on the site of the measurement. While this correlation is acceptable,

the dynamic mechanical properties of the materials may very well be different under the explo-

sive conditions of microsecond ablation. The conclusions of this study do not depend on the

mechanical properties of the model, and should therefore still have valid implications for laser

thrombolysis.

The gelatin-water mixture was heated to 60◦C to dissolve the gelatin and sufficient chro-

mophore was added to achieve the desired absorption coefficient at the laser wavelength used.

Liquid gel samples were drawn into and cured by cooling in Tygon tubes (Norton) simulating

coronary arteries (figure 2.2). The tubes had an inner diameter of 3 mm and a wall thickness

of 1.5 mm. The absorption coefficients of the samples had a linear relationship with the con-

centration of chromophore in the gelatin solution: 0.089 g of chromophore in a solution of 1.4 g

gelatin and 40 cm3 water gave an absorption coefficient of 100 cm−1 at 577 nm. The absorption

coefficients ranged from 10 cm−1 to 2000 cm−1.

Figure (2.1) shows the absorption spectrum of 6µg/ml direct red solution measured in a 1 cm

cuvette. The absorption coefficient µa was calculated from absorbance A and path length d using

the relation:

transmission ≡ 10−A = e−µad (2.4)

2.3.2 Laser delivery

A 1.3 µs (FWHM) pulsed dye laser (Palomar Medical Technologies, Beverly, MA) operating at

a wavelength 577 nm was used for ablation. In subsequent experiments that included the pulse

repetition rate studies the laser wavelength was changed to 506 nm. This was done because

506 nm is close to the absorption peak of the Direct Red dye (figure 2.1), and therefore smaller

amounts of dye were required to achieve desired absorption coefficients. Quartz fibers of 300,

600, and 1000µm core diameter were used to deliver the laser pulses to the gelatin targets. Solid

glass fibers were used to instead of a fluid core catheter because they were easier to use. Since

the focus of these experiments were the effects of laser parameters on the ablation efficiency, the

actual delivery device was not important.

The fiber tip was maintained at a distance of 1 mm from the gel surface. A steady flow of

water at 0.3 m/s was established by a fluid injector (Medrad MarkV) and directed around the
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fiber to target site (figure 2.2). The flow served to collect the ablated gel and also to clear the

path for laser delivery to the target area. The flow rate of 0.3m/s corresponds to the flow used

in the fluid core catheters in clinical settings.

Ten pulses were fired on each sample and the ablated gel was collected by the flowing water

in 1 cm cuvettes. The steady flow was continued after the last pulse until 4ml of liquid was

collected; this was sufficient to collect all the ablated gel. The above procedure was repeated on

control samples without light delivery to account for the gel removed by the flow of water alone.

The ablated gel was dissolved completely in the water by shaking, and its mass was determined

by the spectrophotometric method described below. The ablation efficiency was then calculated

as the mass removed per unit energy per pulse.

Absorption studies were conducted by delivering pulse energies of 25–100mJ via a 1000µm

fiber to gels with absorption coefficients varying from 10–2000 cm−1. Radiant exposure studies

were conducted by delivering pulse energies of 25–100 mJ via 300, 600, and 1000µm fibers to gels

with an absorption of 300 cm−1. An absorption of 300 cm−1 was chosen in the radiant exposure

studies since thrombus has this absorption at 577 nm which is one of the wavelengths used in

clinical trials of laser thrombolysis. Absorption and radiant exposure studies were done at a

pulse repetition rate of 3Hz which is currently used in clinical settings. Values of 1Hz, 3 Hz,

6 Hz, and 10Hz were used in the repetition rate studies with 100 mJ pulse energy delivered via a

1000 µm fiber to a 100 cm−1 target. An absorption of 100 cm−1 was chosen since thrombus has

this absorption at 480 nm which is another wavelength used for laser thrombolysis.

Ten samples and five controls were used for each data point. Pulse energies were measured

with a joulemeter (Molectron). The effective spot sizes produced 1 mm from fiber end were

determined by ablating fiber polishing paper under water and measuring the resulting burn

diameters under a microscope. The spatial profile of the laser spot was measured using a CCD

camera focused 1 mm from the fiber output end and is shown in figure (2.3).

2.3.3 Spectrophotometric mass removal measurement

Since the mass of the ablated material was small and ablation took place in a fluid environment,

conventional methods of measuring mass were not suitable. I therefore devised a method in which

the absorbance of the solution was compared with the absorbance of a known concentration of

dye solution to determine the mass of the ablated gel.

The method is based on the following argument: The absorbance A(λ) of a dye solution at a
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particular wavelength λ is proportional to the concentration C of the dye solution with the path

length kept constant

A(λ) ∝ C. (2.5)

If the volume of water is not changed, the absorbance is proportional to the mass M of the dye

dissolved,

A(λ) ∝ M (2.6)

or

A(λ) = K(λ)M. (2.7)

A calibration experiment measuring the absorbance of known dye concentrations will determine

the proportionality constant K(λ). The amount of dye Mxd in the total ablated mass Mx can

therefore be calculated by measuring the absorbance Ax(λ) and using equation (2.7). For a

particular absorption µa, the exact amount of dye Md that went into the gel preparation is

known. Mw and Mg are the masses of water and gelatin used for dye preparation. The total

mass of gel prepared is therefore:

Mgel = Mw + Mg + Md (2.8)

If the amount of dye Mxd in the total ablated gel Mx is determined by measuring the absorbance

Ax(λ) of the ablated material, Mx can be calculated using:

Mx =
Mxd

Md
Mgel (2.9)

Substituting for Mxd using equation (2.7),

Mx =
Ax(λ)
K(λ)

Mgel

Md
(2.10)

Absorbance A(λ) was measured at 510 nm that corresponded to the absorption peak of the

Direct Red chromophore (figure 2.1). The calibration curve was established by measuring ab-

sorbances of 0–50µg of the dye dissolved in 4 ml water. Five measurements were made for each

data point to obtain an error estimate. There was a linear relationship between absorbance and

dye mass which validated equation (2.7).

Two wavelengths

The measured absorbances in the calibration experiment had relatively large errors associated

with them (∼10–20%). This was probably due to the low dye concentrations used and variations
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in the plastic cuvettes used to measure absorbance on the spectrophotometer.

A′(λ) = A(λ) + ε(λ) (2.11)

Here A′(λ) and A(λ) are the measured and true absorbances respectively, and ε(λ) is the error.

To reduce the calibration error, absorbances at two wavelengths were measured and the

difference was calculated.

A′(λ1)−A′(λ2) = [A(λ1)−A(λ2)] + [ε(λ1)− ε(λ2)] (2.12)

If the errors are not strongly dependent on wavelength, the subtraction will reduce the error, and

the measured difference in absorbances will approach the true value.

The slope of the calibration line now becomes

S(λ1, λ2) = K(λ1)−K(λ2) (2.13)

and the mass of the ablated gel is calculated by

Mx =
Ax(λ1)−Ax(λ2)

S(λ1, λ2)
Mgel

Md
(2.14)

Absorbance was measured at 510 nm and 800 nm offering the largest dynamic range (figure

2.1). The error in the data points in the calibration experiment was of the order of 5%. The

calibration line is shown in figure (2.4). The slope was determined to be 0.009µg−1.

Finally, corrections due to material collected by washing, given by the control samples, were

made.

total mass ablated =
(A510

s −A800
s )− (A510

c −A800
c )

S(λ1, λ2)
Mgel

Md
(2.15)

where A510 and A800 are the absorbances at 510 nm and 800 nm respectively. Subscripts ‘s’ and

‘c’ refer to laser ablated samples and controls.

A direct correlation to the calibration and ablation experiments is possible since the ablated

material was also collected in 4 ml of water. The ablation efficiency for each absorption coefficient

and laser energy was calculated as the average mass ablated per laser pulse per unit energy.

2.4 Results

Ablation of gelatin was characterized by a snapping sound and visible removal of material. The

ablated gelatin was removed in small chunks that quickly dissolved in the water. All the ablated

material was collected in the mass removal experiments. The spectrophotometric method of
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measuring the ablation mass proved accurate and reproducible with an error estimate of less

than 5%. An increase in crater depth with multiple pulses was observed. Control samples

showed that gelatin collected by the washing action alone typically accounted for less than 3%

of the total mass removed.

2.4.1 Effect of absorption

At pulse energies of 25, 50, and 100 mJ, no material was removed at an absorption coefficient of

10 cm−1 (figure 2.5). No snapping sound could be heard and gross visual examination revealed

no craters. Pulse energies of 50–100 mJ resulted in ablation efficiencies of less than 1 µg/mJ at

30 cm−1. Acoustic signals were muted or absent. At higher absorption coefficients the ablation

efficiency increased and remained roughly constant between 2–3 µg/mJ from 100–1000 cm−1 for

all three pulse energies. Ablation in this region was accompanied by a loud snapping sound

indicating explosive removal of material. Visual examination of the craters after 10 pulses showed

the diameter to be within 10% of the spot size made by the fiber and the depth to vary from

4–6 mm. Above 1000 cm−1 the ablation efficiency reduced slightly.

2.4.2 Effects of radiant exposure and repetition rate

More gelatin was removed with larger fibers at the same energy. The 1000 µm fibers ablated

about twice as efficiently as 300µm fibers (figure 2.7). Loud snapping sounds were heard for all

the ten pulses fired through the 1000µm fibers, but the acoustic signals were muted after about

five shots using the 300 µm and 600µm fibers. The ablation efficiency was roughly constant at

all pulse energies for a single spot size.

The spot sizes made by 300, 600, and 1000 µm fibers one millimeter from polishing paper under

water were measured to be 520, 650, and 1070 µm in diameter respectively. Radiant exposures

were calculated by dividing the pulse energy by the spot size made by the fiber. Energies of

50 mJ and 85 mJ through 300 µm and 600 µm fibers respectively produced iso-radiant exposures

of about 250 mJ/mm2, but resulted in different ablation efficiencies. Larger spot sizes resulted

in greater ablation efficiencies at similar energies although the radiant exposures were lower.

Ablation efficiency was slightly lower at higher repetition rates (figure 2.8).
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2.5 Discussion

This study was carried out to find a suitable wavelength, radiant exposure, and repetition rate for

microsecond laser ablation of thrombus. Since the choice of wavelength governed the absorption

coefficient of thrombus, the effect of absorption on the ablation efficiency was studied using a

gelatin-based thrombus model. The gelatin was ablated in Tygon tubes under water and ablation

masses were measured.

Gelatin was ablated under simulated conditions of cylindrical geometry and a unique, yet

simple method to accurately measure the ablation mass was presented. This method is based on

the spectrophotometric signature of the ablated chromophore and allows the effects of various

laser parameters and irradiance conditions on ablation under water to be investigated.

2.5.1 Effect of absorption on ablation efficiency

To find an optimal wavelength for laser thrombolysis, gelatin of various absorption coefficients

was ablated and the mass removed was measured. At low absorption coefficients of 10 cm−1,

pulse energies of 25, 50, and 100 mJ (radiant exposures of 28, 56, and 112 mJ/mm2 respectively)

are below ablation threshold since no material was removed. This is confirmed in the next chapter

where threshold radiant exposures are measured as a function of absorption (figure 3.7).

The ablation efficiency increases as the absorption increases from a low value of 10 cm−1 to

about 100 cm−1 due to the decreasing threshold energies to below 25 mJ which was the lowest

energy used in the ablation mass experiments (figure 2.5). However, at 100 cm−1 and above, when

all three pulse energies were above threshold, the ablation efficiency did not change much with

absorption. The slight decrease in efficiency at high absorption coefficients may be the result of

overheating the target material. The comparable mass removal between 100–1000 cm−1 indicates

that ablation efficiency does not strongly depend on the optical penetration depth (10–100µm)

at energies above threshold.

Figure (2.6) shows the same data as figure (2.5), but it relates the pulse energy to the threshold

energy at the corresponding absorption coefficient. The x-axis value for each data point is

obtained by dividing the pulse energy by the threshold energy for the corresponding absorption

coefficient. The threshold values for the various absorption coefficients were taken from chapter

3, where the threshold experiments are described in detail. Slight mass removal is observed at

energies just below threshold. This was probably due to melting of the gelatin and not due to

explosive ablation. The mass removal curves for the three pulse energies become flat when the
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pulse energy reaches threshold. In other words, the mass removed does not depend on whether

the delivered energy is just at threshold or well above it. It does however depend on the total

energy delivered; a 100 mJ pulse removes twice as much as a 50mJ pulse.

It has now been shown that absorption has little effect on the mass removal in the absorption

region of 100–1000 cm−1 at pulse energies of 25–100 mJ. This has a direct implication for the

choice of wavelength for laser thrombolysis as seen in figure (2.9), with the caveat that a change

in ablation efficiency can be expected due to the different mechanical strengths of thrombus

and gelatin. Thrombus has an absorption range of 100–1000 cm−1 in the waveband between

410–590 nm, and therefore any wavelength in this range can be chosen without significantly

compromising the efficiency. Selectivity would still be retained since vessel wall absorption is less

than 10 cm−1 in this waveband.

Two main theories have been proposed to model pulsed laser ablation of tissue. The steady-

state model assumes a constant ablation velocity during the laser pulse [84]. The blow-off model

assumes that ablation commences after the laser pulse [85]. Both models describe mass removal

in air and assume that material is removed as a result of heating and vaporization of tissue. The

vaporized volumes predicted by the two models are:

Vss =
Q(E0 − Eth)
ρ(c∆T + Lv)

(2.16)

Vbo = Q
µa

ln(E0

Eth)
(2.17)

E0 is the incident radiant exposure (mJ/mm2), Eth is the threshold radiant exposure, and Q is

the area of the irradiated spot (mm2). ∆T in equation (2.16) is the temperature rise to boiling

(100◦C), and the radiant exposure needed to achieve that rise is given by equation (2.3). Lv is

the latent heat of vaporization (J/g).

Both the steady-state and blow-off models predict a strong dependence of the mass removal

on the absorption coefficient as seen in equations (2.16) and (2.17) [84, 86]. However, this study

has shown that the total mass removal under water is fairly independent of absorption at energies

above threshold. This implies that vaporization is not the dominant factor in the mass removal

under a liquid at energies much above threshold. The dominant factor in mass removal under

a liquid is some mechanical action which is most likely the result of expansion and/or collapse

phases of the vapor bubble.
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2.5.2 Effect of radiant exposure

Radiant exposures produced by a 300µm fiber (520µm spot size) were about four times those

produced by a 1000µm fiber (1070 µm spot size) at similar energies, and yet ablation per unit

energy was more efficient with the larger fiber. Also, iso-radiant exposures did not result in

similar ablation efficiencies. Thus there is no direct relationship between ablation efficiency and

radiant exposure.

Some previous studies have reported a linear increase in mass removal with radiant exposure

[86, 87, 88]. However, in those studies the tissue was ablated in air and in an unconfined geometry.

Further, the radiant exposure was varied by varying the pulse energy while maintaining a constant

irradiated spot size. We also observed a linear increase in mass removal with pulse energy

(constant ablation efficiency) for a single spot size.

The vaporization models described in the previous section predict an increase in ablation mass

at higher radiant exposures. The results I have reported here do not reflect such a trend. This

again suggests that vaporization does not remove most of the material in the ablation process.

A possible explanation for the higher ablation efficiencies with larger fibers at the same energies

could be that the dynamics of the vapor bubbles formed are different once the energy is above

threshold.

Etch depths were calculated on the assumption that the ablated mass was removed from a

cylindrical volume with a diameter equal to the spot size. The density of the gelatin was assumed

to be 1 g/cm3. Figure (2.10) shows the etch depth per pulse as a function of pulse energy for the

three fibers used. It suggests that while smaller spot sizes remove less mass than bigger spot sizes

at similar energies, they dig deeper craters. This hints at another explanation for the smaller

average efficiency of the smaller fibers. Since smaller fibers dig deeper holes, it is possible that

the ablation debris from a laser pulse is not cleared completely by the time the next pulse arrives.

The debris will then attenuate the energy delivered to the gel leading to decreasing mass removal

per pulse with increasing pulses. This hypothesis is partially supported by the muted acoustic

reports heard during the later pulses delivered by the smaller fibers. The amounts removed per

pulse by the early pulses may therefore be similar with small and large fibers. However, it is

clear that the total mass removed after 10 pulses is greater with the larger fibers. The efficiency

of the later pulses could be increased by increasing the flow rate of the fluid stream.

The ablation efficiencies measured are in rough agreement with the ablation of calcified plaque

and normal artery under saline as reported by Prince et al. [89]. However, they are about
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an order of magnitude higher than the results of other investigators who ablated tissue in air

[86, 50]. This again suggests that most of the work in the ablation process in a liquid is cause

by some mechanical action resulting from the vapor bubbles. Earlier studies have suggested

the participation of the vapor bubble in tissue removal and damage [71, 70]. Van Leeuwen

et al. and Jansen et al. investigated vapor bubble formation during excimer and holmium

laser angioplasty. They found that the pressure transients generated by bubble expansion and

collapse within arteries could cause dissections in the vessel wall. Vogel attributed retinal damage

incurred during intraocular surgery to bubble formation [105]. However, they did not measure

mass removal. There is little doubt that pulsed laser ablation of tissue in a liquid is an explosive

process, partly due to the cavitation effects. The bubble activity has both beneficial effects by

removing unwanted tissue, and detrimental effects by inducing damage to collateral tissue. The

hypothesis that the bubble is principally responsible in mass removal is investigated in chapter

4.

2.5.3 Effect of pulse repetition rate

Ablation efficiencies were largely independent of the pulse repetition rate between 1–10 Hz. This

means that the ablative events last for less than 100ms which was the shortest time interval

between consecutive pulses. Ablation efficiency decreased slightly at higher repetition rates

(figure 2.8). Possibly the ablated material from a previous pulse was not cleared from the target

area by the time the next pulse arrived. The laser energy would then be attenuated before

reaching the gel surface.

2.5.4 Clinical Implications and Limitations

The results of this investigation indicate that laser wavelengths between 410–590 nm are most

suitable for removing thrombus in vessels. Currently used wavelengths of 480 nm and 577 nm

for laser thrombolysis were chosen because of good absorption by beta-carotene and hemoglobin

respectively. As shown in this study, these are acceptable wavelengths from an ablation efficiency

point of view. Choosing a wavelength must take other factors into consideration, e.g., cost and

ease of design.

The higher ablation efficiencies with larger fibers at similar energies suggest that larger diam-

eter catheters would be better at creating wider lumen during laser thrombolysis. Clearly, the

size of the catheter constrained by flexibility requirements and the size of the vessel. Despite the
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evidence that larger catheters would not dig as deeply into the thrombus as a small catheters

at similar energies, this effect (30–40%) could be compensated by more pulses or greater pulse

energies. Higher pulse energies result in greater ablation masses. The maximum energy that

can be used with a particular spot size during laser thrombolysis would be limited by (i) the

ablation threshold for the vessel wall, and (ii) big bubbles formed in thrombus that might cause

dissections in the vessel.

The repetition rate currently in clinical use is 3Hz. The results of this study imply that laser

thrombolysis can be done at about 10 Hz without seriously compromising the efficiency. The

slight decrease in the ablation efficiency is compensated by the potential for reducing the total

time of the ablation procedure. This conclusion is verified in the fifth chapter where porcine clot

is ablated at different repetition rates.
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Figure 2.1: Direct Red absorption spectrum: The difference in absorbances at 510 nm and 800 nm
of the ablated gelatin in solution gives a measure of its dye content from which the total mass of
ablated material can be determined. Absorbance was measured in a 1 cm cuvette with 6 µg/ml
dye concentration in water.
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Figure 2.2: Gelatin containing an absorbing dye is confined in a 3 mm diameter tube. Laser
energy is delivered in 1 µs pulses via a solid glass fiber at a distance of 1mm to the gelatin. The
ablated material is collected in 4ml water and the absorbance is measured in a spectrophotometer.
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Figure 2.4: Calibration line for spectrophotometric mass removal measurements. Error bars are
smaller than the symbols. The absorbance of the ablated material is measured and the mass
of dye in the ablated mass is determined from the calibration line. The mass of dye is then
converted to the total mass removed by using a multiplication factor.
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Figure 2.5: Ablation efficiency as a function of absorption at different pulse energies. The squares,
circles, and triangles represent pulse energies of 25, 50, and 100mJ respectively. A 1000µm core
diameter glass fiber was used for laser delivery. Values are averages of 10 pulses. Error bars
denote standard deviation of 10 samples.
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Figure 2.6: Mass removal at the pulse energies of 25 mJ, 50 mJ, and 100 mJ related to threshold
energies for various absorption coefficients. Threshold values were taken from chapter 3. Mass
removal seems to be quite efficient even when the pulse energy is just at threshold. At high
absorption coefficients where the energy is well above threshold, mass removal decreases. This is
probably due to overheating of the material.
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Figure 2.8: Effect of repetition rate on ablation efficiency. A 1000µm fiber was used to deliver
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Figure 2.9: Wavelengths for laser thrombolysis: An absorption range of 100–1000 cm−1 corre-
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independent of wavelength in this range at pulse energies above threshold. Selectivity is still
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Figure 2.10: Calculated etch depths at various pulse energies and fiber sizes: Ablated mass
is assumed to be removed from a uniform cylinder with spot size as diameter. Etch depths
represented here are an average of ten pulses. Absorption was 300 cm−1. Error bars denote
standard deviation of 10 samples. Lines are visual best fits.



Chapter 3

Threshold radiant exposures for

microsecond ablation

This chapter describes experiments to determine microsecond ablation thresholds at any wave-

length.1 Stress and thermal confinement issues pertaining to onset of ablation are presented.

Thresholds are measured as a function of absorption and mapped onto the absorption spectra of

thrombus and artery.

Laser pulses were delivered to gelatin-based clot models under water and in air. The pulse

energy was increased until ablation was detected. Onset of ablation was detected both indi-

rectly and directly. Surface temperatures were monitored at radiant exposures below and above

threshold. Measured values were compared with those predicted by various ablation models.

Ablation thresholds for gel were found to be in good agreement with those available in lit-

erature for blood, atheroma, and vessel wall. Onset of ablation was governed by the radiant

exposure rather than by the pulse energy. The threshold radiant exposure was roughly inversely

proportional to the absorption coefficient. Visualization experiments showed that ablation com-

menced with the formation of a vapor bubble. There were no significant differences between

thresholds under water and in air.

A calculation of temperature increase indicated that the surface temperature has to be in-

creased to just above 100◦C for ablation to commence. The latent heat of vaporization was not

required. Microsecond ablation thresholds for thrombus under water can be estimated at any

visible wavelengths.

1This chapter is part of the paper “Threshold and ablation efficiency studies microsecond ablation of gelatin
under water” to be published in Lasers in Surgery and Medicine, 19:3, 1996.

44
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3.1 Stress and thermal confinement

The absorption of a laser pulse by tissue causes heating; ablation can follow as a result of tissue

tearing or vaporization [90]. Tearing can occur when the thermo-elastic expansion of the heated

volume causes stress to build up in the optical zone. Large stresses develop when the heating is

so rapid that the pressure transients do not have time to dissipate out of the irradiated volume.

The time it takes for pressure waves to leave the irradiated volume is given by:

τs =
δ

σ
(3.1)

where σ is the speed of sound in the tissue (∼1500 m/s), and δ is the optical penetration depth.

Stress confinement occurs when the laser pulse τp is shorter than τs [90].

Pulsed laser ablation may also proceed through vaporization. The laser energy is thermally

confined when the pulse duration is shorter than the time required for heat to diffuse out of the

irradiated volume during the laser pulse. This time is given by:

τh =
δ2

κ
(3.2)

where κ is the thermal diffusivity (∼0.0014 cm2/s). Temperature increases during the laser pulse

until 100◦C is reached. If more energy is deposited, then vaporization commences [70]. Ablation

with longer pulses or continuous wave lasers is also initiated by vaporization [84, 85]. However,

the energy required to reach vaporization temperature is higher due to diffusion of heat out of

the irradiated volume during the laser pulse.

Times for stress confinement are shorter than those required for thermal confinement. Pulsed

laser ablation of tissue can therefore be broadly divided into three regimes: stress confinement

(τp < τs), thermal confinement (τs < τp < τh), and no confinement (τh < τp). In the case

of blood and thrombus, the optical penetration depth varies between 10–100µm in the visible

region. The microsecond pulse from the dye laser therefore does not meet stress confinement

conditions. However, the absorbed energy is thermally confinement, and ablation should proceed

through vaporization.

3.2 Goals

One of the goals of the preceding chapter was to find an optimal wavelength for laser thrombolysis.

The results of those experiments suggested that almost all visible wavelengths were suitable for

efficient ablation. They also showed that increasing the pulse energy resulted in more mass
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removal. However, the energy cannot be increased indiscriminately since that will lead to ablation

of the arterial wall. The radiant exposure therefore has to be maintained at a level that is both

efficient and safe: above the ablation threshold for thrombus and below that for arterial wall.

Threshold values for atherosclerotic plaque, thrombus, vessel wall, and blood are available in

literature only at selected wavelengths [50, 52]. Since the choice of wavelength is largely flexible,

threshold information for the entire visible region is crucial.

Determination of thresholds will also help understand the basic ablation process. The steady-

state and blow-off thermal ablation models mentioned in the preceding chapter both predict

ablation thresholds based on vaporizing tissue in a thermal confinement regime. The radiant

exposure required to heat the tissue surface to 100◦C and then vaporize it is given by:

Eth =
ρ(c∆T100 + Lv)

µa
(3.3)

Van Leeuwen et al. and Jansen et al. investigated bubble formation in a liquid during excimer

and holmium angioplasty and proposed a partial vaporization theory. This theory suggests that

at threshold for bubble formation, the temperature of the liquid needed to be raised to just above

100◦C [71, 70]. The latent heat of vaporization for the phase change of the entire irradiated area

was not required. Any extra energy would initiate vaporization at a few nucleation sites over the

irradiated area.

Eth =
ρc∆T100

µa
(3.4)

It is not clear which is model is applicable to predict microsecond ablation thresholds for laser

thrombolysis. The partial vaporization model may be more accurate since the results of the

preceding chapter suggest that the mass removal is influenced by bubble formation.

3.3 Materials and methods

Gelatin containing a light-absorbing dye (Direct Red 81) was used to model clot and vessel

wall. The absorption was controlled by varying the amount of dye in the gel. Since the laser

wavelength determines the absorption of thrombus and artery, thresholds were measured as a

function of absorption. The threshold at a particular wavelength would then be the value at the

corresponding absorption.

Microsecond pulses were delivered to gel targets under water, and the pulse energy was

increased until ablation was detected. Four different methods were used to detect ablation:

• acoustic signature of ablation
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• deflection of a HeNe probe beam

• direct mass removal measurements

• direct visualization of ablation

The first two methods were indirect methods based on the assumption that an acoustic signal

and the deflection of a probe beam were caused by an ablation-related phenomenon. To verify

the results of these methods, thresholds were determined at selected absorptions by directly

measuring mass removal and by visualizing the ablative process.

Surface temperatures at threshold were calculated using equation (2.3) to estimate the temper-

ature necessary for vaporization. Infrared emission from the surface following pulsed irradiation

below and above threshold were monitored to detect any changes in the surface temperature

signals at threshold. Such a change would give an indication of the energy that goes into the

phase change during vaporization.

3.3.1 Acoustic ablation signals

Ablation threshold energies at absorption coefficients from 10–2000 cm−1 were determined by

detecting an acoustic signal accompanying ablation in a semi-infinite medium under water (figure

3.1). Gel samples were prepared in a 250 ml beaker to form a 1 cm thick layer and covered

with water. The beaker was then placed on a PVDF transducer (Hydrosonics) connected to a

digital signal analyzer (Tektronix DSA 602A) through an amplifier (Hydrosonics). A photodiode

detecting the laser light provided the trigger source for the oscilloscope.

Laser pulses were delivered from a distance of 1 mm to the gel surface via a 1000µm fiber, and

explosive ablation was accompanied by an acoustic signal that was detected by the transducer

(figure 3.2). The threshold energy was the pulse energy required to produce a signal of 30 mV

peak-to-peak on the signal analyzer. A value of 30 mV was chosen because it was the minimum

signal differentiable from the background noise.

Each pulse was fired on a fresh target area to maintain surface geometry and fiber-to-target

distance. Five measurements were taken for each absorption coefficient and radiant exposures

were calculated by dividing the threshold energy by the spot size on the gelatin surface. Ablation

threshold energies for 300 cm−1 gels were also determined using 300µm and 600µm fibers and

threshold radiant exposures were calculated.
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3.3.2 Deflection of He-Ne probe beam

Gelatin was prepared in 1 cm plastic cuvettes with transparent walls and covered with water. A

HeNe beam was directed into the cuvette through one of the walls such that it just grazed the

surface of the gelatin (figure 3.3). Upon exiting the cuvette through the opposite wall, the beam

was detected by a photodiode and the signal was fed into the digital oscilloscope. The diameter

of the beam was reduced with a 200 µm pinhole before entering the cuvette. A similar pinhole

was placed in front of the photodiode such that only light along the straight path between the

pinholes could be detected. A minor deflection in the HeNe beam would now manifest itself in a

drop in the photodiode signal.

Laser pulses were delivered via a 1000µm fiber with the tip 1mm from the gel surface. The

orientation of the fiber was such that its axis intersected the HeNe probe beam at 90◦. Any

ablation event would then be initiated just under the probe beam and either deflect or block the

beam. A photodiode detecting the laser light provided the trigger source for the oscilloscope. The

threshold energy was the minimum pulse energy required to produce a drop in the photodiode

signal (figure 3.4). Unlike the previous experiment with the acoustic transducer, this was an

all-or-none experiment. The photodiode signal either dropped completely to zero, or it did not

drop at all.

3.3.3 Mass removal measurements

Mass removal measurements were carried out in a similar manner as described in chapter 2.

Gelatin was confined in 3 mm inner diameter tubes and light was delivered via a 1000µm fiber

(figure 2.2). Water was directed around the target site at a rate of 0.3m/s using a fluid injector.

Mass removal was measured using the spectrophotometric method. Pulse energies were increased

from a low value at which there was no mass removal. Threshold was designated as the pulse

energy at which mass removal commenced. Absorptions of 10 cm−1, 100 cm−1, and 1000 cm−1

were used.

3.3.4 Visualization of ablation

Flash photography was used to directly visualize the events occurring following laser delivery

(figure 3.5). Gelatin was ablated in 1 cm cuvettes using a 1000µm fiber, and the ablation process

was captured using a CCD camera (CV-250, Motion Analysis, Eugene, OR) and a 1 µs strobe

(Machine Vision Strobe, EG &G). The image was captured 5 µs after the laser pulse and the
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delay was controlled by a delay generator. A photodiode detecting the laser pulse provided the

trigger for the timing. A delay of 5µs was chosen based on experimental determination that

ablative events at threshold lasted for about 10µs. The image was thus captured at roughly the

midpoint of the sequence of events. A laser filter was placed in front of the camera to avoid

blinding the CCD chip. Threshold was the minimum laser energy at which “something” visibly

happened.

3.3.5 Surface temperature signals below and above threshold

The thermal response at the surface following pulsed laser irradiation was monitored with a

fast infrared detector. Pulse energies below and above threshold were delivered, and the surface

emission signal was analyzed for any change at threshold. An absorption of 100 cm−1 was used.

This experiment was done in air instead of under water to avoid absorption of the infrared signal.

A 1 mm fiber delivered pulsed irradiation at right angles to the gel surface (figure 3.6). The

fiber tip was 5 mm from the gel surface, and the resulting spot size on the surface had a diameter

of 1.6 mm. The fiber was pulled back from the usual 1 mm distance for two reasons: the field

of view of the infrared detector was not to be obstructed, and a larger spot size was desired to

preclude significant diffusion of heat in the radial directions. Pulse energies of 15–70 mJ were

delivered which covered a range from subthreshold to supra-threshold radiant exposures.

A HeCdTe detector (EG &G, Judson) with an active area of 1mm2 detected the infrared

emission from the surface. The detection angle was about 45◦, and the optics included a telescope

made of germanium lenses with a conjugate ratio of 1:1. The rise time of the detector was

500 ns, and the wavelength detection range was 8–12 µm. The output signal was amplified by

a preamplifier (PA-350, EG& G, Judson) with a bandwidth of DC–1.5MHz and stored on the

digital signal analyzer.

Ablation pictures of the gel surface were taken at the same time using the flash photography

setup described in the previous section. This was done to determine whether thresholds were

different in air. The pictures were also taken at an angle of about 45◦.
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3.4 Results

3.4.1 Threshold radiant exposures

Threshold radiant exposures ranged from 160±10 mJ/mm2 at 10 cm−1 to 8.5±0.5mJ/mm2 at

1000 cm−1 (figure 3.7). Gross visual examination of the gelatin surface revealed craters at energies

that produced an acoustic signal. Some surface deformation was observed in a few cases at

energies below the designated threshold indicating minimal material removal. At high absorptions

the threshold values were low, and the the laser output was unstable at low energies (< 25 mJ).

The pulse energy had variations of sometimes up to 20%. Therefore the laser was run at higher

energies with a calibrated neutral density filter in the path of the laser beam to attenuate the

output energy. Output was then stable within 2%. Thresholds values measured with both the

acoustic and HeNe probe beam methods agreed with each other within 20%.

The threshold values obtained were validated by spectrophotometric mass loss experiments

using Tygon tubes at absorption coefficients of 10, 100, and 1000 cm−1. Threshold was designated

as the energy at which mass loss commenced. Figure (3.8) indicates a threshold value of about

130–170 mJ/mm2 for an absorption of 10 cm−1. The values obtained by the four methods at

these absorption coefficients are shown in table (table:thresholds) and agree favorably with each

other.

The spot sizes made by 300, 600, and 1000 µm fibers one millimeter from polishing paper under

water were measured to be 520, 650, and 1070 µm in diameter respectively. Threshold energies

of 4, 7, and 13 mJ were measured using 300, 600, and 1000 µm fibers respectively on 300 cm−1

gelatin. The radiant exposure was calculated in each case by dividing the threshold energy by

the corresponding spot size. This resulted in a threshold radiant exposure of 18±3 mJ/mm2.

The flash photography experiments show the formation of a vapor bubble at pulse energies

close to those designated as threshold in the previous experiments (figure 3.9). No bubbles or any

other discernable ablative events were observed at lower energies. Since the bubble was formed at

the gel-water interface, only the top half was clearly visible. The bubble shape at threshold was

oval with a base diameter equal to that of the 1mm spot size and a height of about 200–300 µm.

Bubble sizes increased with pulse energy and the shape became more spherical. Material removal

was observed during and after the bubble lifetime.
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3.4.2 Estimates of threshold surface temperatures

Surface temperature increases ∆T (0) at threshold were estimated using equations (2.1) and (2.3).

∆T (0) =
µaE0

ρc
(3.5)

E0 is the incident radiant exposure at threshold. The heat capacity ρc was assumed to be that

of water (4.184 J/(cm3 ◦C) which should be a valid approximation given the high water content

of the gel. Room temperature was (25◦C) added to obtain absolute temperatures (figure 3.10).

3.4.3 Surface thermal signals below and above threshold

Following absorption of the laser pulse, the surface heated up and emitted infrared radiation.

The amplitude time course of the surface photothermal signal scaled with the delivered pulse

energy at all times after the laser pulse (figure 3.11). This experiment was done at an absorption

of 100 cm−1, and threshold radiant exposure was measured to be about 20mJ/mm2 using the

methods described above. No change in the surface emission profile was observed between radiant

exposure levels below and above threshold.

The photothermal signals shown in the figure (3.11) were averaged over sixteen shots at 1 Hz

to reduce the noise level. Averaged signals were randomly compared to single-shot signals to

check if multiple shots caused a change in the time course of the signal. No such change other

than the noise level was observed. No calibration experiment was performed to convert raw

voltage into real temperatures for lack of a suitable calibrated thermal source.

Simultaneous flash photography of the gelatin surface showed a tiny vapor bubble being

formed at a pulse energy of about 35–40 mJ over a 1.6 mm spot (figure 3.12). Images were

captured at 5 µs after the laser pulse. Since multiple shots were fired, the bubbles formed by

each shot were stored as a sequence on a video tape and made into a movie. No bubbles were

seen at energies below threshold (15 mJ). The size of the bubble formed at threshold (∼35 mJ)

increased with each shot, and sometimes a discernable bubble was observed only after a few

pulses. However, at energies well above threshold (70mJ), a bubble was formed with the first

shot, and the size of the following bubbles did not change with subsequent shots.

3.5 Discussion

This study was carried out to determine microsecond threshold radiant exposures for thrombus

and artery at any wavelength in the visible region. The absorption of thrombus and vessel
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wall vary between 0.1–1000 cm−1 in this waveband, and thresholds were therefore measured as

a function of absorption. Gelatin containing an absorbing dye was used to model an absorbing

soft tissue. Microsecond laser pulses were delivered with 300 µm, 600 µm, and 1000 µm fibers to

gelatin both under water and in air. Thresholds were measured by detecting onset of ablation

using direct and indirect methods. The indirect methods were detection of an acoustic signal

accompanying ablation, and the deflection of a HeNe probe beam due to an ablation related event.

Direct methods included measurement of ablation mass and visualization of ablation. Though

the acoustic signal was probably degraded by acoustic mismatches at the gelatin-glass and glass-

transducer boundaries, the mere presence or absence of a signal was sufficient to differentiate

between ablation and non-ablation. No attempt was made to quantitatively analyze the signal.

The threshold values obtained with all the four methods agreed with each other within 20%.

This suggests that onset of ablation is not affected by the cylindrical confinement of the ves-

sel. Measurements with 300, 600, and 1000µm fibers on 300 cm−1 gelatin resulted in nearly

equal threshold radiant exposures. This shows that the onset of ablation is governed by radiant

exposure and not by energy.

The thresholds agree with those found by Prince et al. for microsecond ablation of atheroma

and normal aorta at similar absorption coefficients (68 mJ/mm2 at 54 cm−1 and 160 mJ/mm2

at 26 cm−1 respectively) [50]. LaMuraglia et al. reported a threshold radiant exposure of

11 mJ/mm2 for the ablation of fresh thrombus at a wavelength of 482 nm. The absorption

of thrombus at this wavelength is ∼100–200 cm−1, and according to the measurements on gel

the threshold radiant exposure for this range lies between 15–20mJ/mm2 (figure 3.13). The

experimental values reported here also agree with thresholds measured by de la Torre et al. for

bubble formation in lysed blood at various hematocrits within 10% [91]. This close correlation

goes towards the validity of gelatin as an optical model for soft tissue. Evidently the threshold

radiant exposure depends mainly on the absorption coefficient and is relatively independent of

material.

It is now possible to predict microsecond ablation thresholds for both thrombus and vessel

wall at any wavelength in the visible region. The thresholds can be read off the graph in figure

(3.14) at the corresponding absorptions. Thresholds were not measured at very low absorptions

(∼1 cm−1) corresponding to a wavelength of about 600 nm due to energy output limitations of

the laser. However, the inverse relationship between thresholds radiant exposure and absorption

evident in figure (3.7) can be extrapolated back to obtain a value of about 2000–3000 mJ/mm2
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at 1 cm−1. It is also highly unlikely that such a poorly absorbed wavelength would be used for

laser thrombolysis.

The experimental threshold values reported in this paper are about an order of magnitude

lower than those predicted by both the steady-state and the blow-off models. They are, however,

of the same order of magnitude as theoretically calculated by the partial vaporization model. The

partial vaporization theory describes the formation of a vapor bubble during pulsed laser ablation

under a liquid. It predicts that at threshold, the temperature of the liquid needed to be raised to

just above 100◦C [71, 70]. Vaporization was then assumed to be initiated at a few nucleation sites.

The visualization experiments under water confirm that ablation is initiated by the formation of

a vapor bubble. The bubble expands and collapses, and material is removed. The acoustic signal

detected is probably the result of bubble expansion and collapse during ablation.

The measured thresholds at very low absorptions (∼15 cm−1) are slightly lower than those

predicted by the partial vaporization model. A possible explanation could be that a microsecond

pulse comes close to being stress confined at those low absorption coefficients (τs ≈ 0.67 µs).

Therefore pressure transients could be participating in the initiation of ablation. Also, at high

absorption the measured values are higher than those predicted by the partial vaporization model.

Since the microsecond pulse is well within the thermal confinement regime (τh ≈ 800 µs), it is

unlikely that the higher thresholds are due to heat diffusion out of the irradiated volume during

the laser pulse. I propose two possible reasons for the discrepancy, both experimental:

• Absorption greater than 500 cm−1 were not measured directly due to limitations of the spec-

trophotometer. Instead, dye concentrations required for moderate absorptions (∼100 cm−1)

were extrapolated to calculate the concentrations needed for high absorptions. This was

based on the assumption that absorption had a linear relationship with dye concentration.

Any small error in absorption measurement would get multiplied by the extrapolation.

Therefore, there is an uncertainty associated with high absorption values.

• The dye-content of highly absorbing gels is high, and it was noticed that when the gel was

covered with water some of dye diffused out of the gel into the water. A thin layer of dye

solution of non-negligible absorption was formed over the gel surface. This layer may have

attenuated the laser energy before it reached the gelatin thus increasing the threshold.

A calculation of threshold temperatures shows that the surface needs to be heated to about

100◦C for ablation to be initiated. The latent heat of vaporization has to be supplied for the

phase change. If the whole disk under the irradiated area is to be vaporized, the additional energy
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required for the latent heat is about an order of magnitude larger than that needed to raise the

temperature to 100◦C. The partial vaporization theory suggests that the whole disk need not

be vaporized. Instead, once the surface has been heated to 100◦C, any extra radiant energy is

utilized to vaporize a fraction of the disk under the irradiated area [70]. The threshold radiant

exposure would then be that required to raise the surface temperature to just above 100◦C so that

there is enough latent heat to initiate vaporization at a few discrete places over the irradiated

spot. If vaporization is initiated at many sites, the multiple microbubbles formed coalesce to

form a bigger bubble. Van Leeuwen et al. and Jansen et al. photographed the formation of such

microbubbles at threshold produced 0.5 µs after delivering a Q-switched Ho:YAG laser pulse

(τp ≈ 1 µs) into water [71, 70]. The fact that the threshold surface temperatures calculated in

this study are about 100◦C lends credence to the partial vaporization model.

Infrared emissions from the surface were monitored to detect any change in the emission

profile at threshold. It had been hoped that the explosive vaporization of the gelatin would

emit a distinct thermal signature that could be analyzed to account for the energy going into

the vaporization process. However, no change was evident. Surface signals at energies below,

at, and above threshold were scaled to the energy (figure 3.11). The relative amplitudes of the

scaled signals would then give an estimate of the relative efficiency of the energy coupling into the

gelatin. All three scaled signals completely overlapped each other indicating equivalent energy

coupling. The transition from sub-threshold to supra-threshold radiant exposures is not evident

at all. At present there is no satisfactory explanation for this observation.

The radiometric experiments required ablation of gelatin in air to avoid masking of the infrared

signal by water. The events following laser delivery were monitored by flash photography. An

additional observation from these experiments was that threshold values did not change in air.

The pictures show the formation of a small sub-surface vapor bubble at threshold (figure 3.12).

These threshold bubbles were much smaller than the spot size indicating that vaporization did

not occur over the whole irradiated spot. The size of the bubbles increased with multiple shots.

This could have been due to the increase in the baseline temperature of the gel surface so that

more energy was available for the phase change. Visual examination of the gel surface revealed pit

marks that were probably due to the formation of multiple small bubbles. All these observations

are consistent with the partial vaporization theory.

The parametric study described in the previous chapter concluded that absorption had little

effect on ablation efficiency at radiant exposures above threshold. Some fraction of the material
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is heated and vaporized to form a vapor bubble. That mass has been shown to be a very small

fraction of the total mass removed (chapter 2). The rest of the mass is probably removed as

a result of the mechanical expansion and collapse of the vapor bubble. This study has shown

that while absorption may not be important in the total material removal above threshold, it is

nevertheless crucial in determining the energies at which a bubble can be created.

In conclusion, microsecond ablation thresholds have been measured as a function of the ab-

sorption coefficient µa. Since the choice of laser wavelength determines the absorption coefficients

of thrombus and vessel wall, ablation thresholds for thrombus and vessel wall at any wavelength

in the visible region can now be predicted. The radiant exposure for laser thrombolysis can then

be chosen such that it is above the threshold for thrombus, but below that of artery.

Current clinical trials use pulse energies of 50–60 mJ at a wavelength of 480 nm out of a 1 mm

catheter. The absorption of thrombus at 480 nm is about 100 cm−1 and that of artery is less

than 10 cm−1. The currently used radiant exposure range of 60–75 mJ/mm2 is about thrice and

half the ablation thresholds of thrombus and artery respectively.

However, it is important to note that the threshold values reported in this thesis were mea-

sured in vitro. The situation in vivo may be very different. For example, there may be a thin

layer of blood on the inside of the vessel wall. A radiant exposure lower than the artery thresh-

old may then result in ablation of the blood layer and lead to adjacent damage to the vessel

below. Another factor to be considered is that the intravascular bubble formed during ablation

of thrombus may be large enough to dilate the artery and cause dissections. The energy required

to form such a large bubble may be less than that required to ablate artery directly thereby

imposing a tighter restraint on the maximum energy used.

It should be emphasized that the thresholds reported here are applicable to pulse durations

where only thermal confinement conditions are met. Shorter pulses may fall in the stress con-

finement regime, and lower threshold values can be expected. Longer pulses may need higher

radiant exposures to reach threshold due to heat diffusion out of the irradiated volume during

the pulse.
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Figure 3.1: Ablation thresholds are measured by detecting an acoustic signal accompanying
ablation. Light is delivered in 1µs pulses, and the energy is increased until an acoustic signal is
observed.
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Figure 3.2: Acoustic signal due to ablation of gel under water by a 1µs laser pulse. The acoustic
signal is detected by placing the beaker containing the gel on PVDF transducer. The transducer
signal is amplified and fed into an oscilloscope. The top graph shows the laser pulse detected by
a photodiode that provides the trigger source for the oscilloscope. No acoustic signal is detected
at sub-threshold radiant exposures.
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Figure 3.3: Ablation thresholds are measured by detecting a deflection of a HeNe probe beam
due to an ablation event. Light is delivered in 1µs pulses, and the energy is increased until a
drop in the HeNe signal is observed.
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Figure 3.4: Deflection of the HeNe probe beam due to ablation of gel by a 1 µs laser pulse. The
HeNe probe beam is directed along the surface of the gel directly over the target area. Vapor
bubble formation and/or ablation debris following ablation deflect the probe beam. No deflection
is observed at sub-threshold radiant exposures.
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Figure 3.5: Gelatin was ablated in 1 cm cuvettes and was visualized using the CCD camera. The
moment of image capture was controlled by the delay generator. Pulse energies were increased
until ablation was detected.
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Figure 3.6: Gelatin was ablated in air and infrared emission from the surface was monitored with
a HgCdTe detector. Microsecond laser pulses were delivered via a 1000µm fiber 5mm from the
gel surface. Pulse energies ranged from below to above threshold. Ablation events at the surface
was monitored by a CCD camera. Timing was achieved using a delay generator and microsecond
strobe (not shown) similar to the flash-photography setup in figure 3.5. Absorption of the gelatin
was 100 cm−1.
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Figure 3.7: Threshold radiant exposures for gels of different absorption coefficients measured by
detecting an acoustic signature and a deflection of a HeNe probe beam. Laser delivery was via a
1000 µm fiber and maintaining a 1mm distance from the gelatin surface under water. Error bars
are smaller than some symbols.
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Figure 3.8: Threshold values obtained by the acoustic and HeNe methods were validated by direct
mass removal measurements. Threshold was designated as the energy at which mass removal
commenced. In this case, threshold is between 100–130mJ. Gelatin was ablated in 3 mm tubes;
absorption in this case was 10 cm−1. Mass removal was measured by the spectrophotometric
method. Laser delivery was with a 1000 µm fiber.
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Figure 3.9: Ablation under water was visualized with flash photography. At threshold a vapor
bubble is formed and material is removed. Pictures were taken 5 µs after the laser pulse.
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Figure 3.10: Surface temperatures at threshold were calculated. Rise in temperature is given by
µaE0

ρc . E0 is the incident radiant exposure and ρc is the heat capacity. Ambient temperature was
assumed to be 25◦C.
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Figure 3.11: Infrared emissions from the surface following pulsed laser irradiation. Absorption
was 100 cm−1. Surface signals have been scaled to the pulse energy. Pulse energy varied from
below to above threshold. No change indicating vaporization is evident in the signal profiles.
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Figure 3.12: Ablation of gelatin in air. Absorption was 100 cm−1. Laser delivery was with a
1000 µm fiber 5mm from the surface. The spot size was 1.6 mm in diameter. There is no effect
at a pulse energy of 25 mJ. At 35 mJ a small bubble starts to form at around the fifth shot on
the same spot. The bubble grows with each subsequent shot; one after the eighth shot is shown
here with the arrow pointing to the bubble. At pulse energies well above threshold (70mJ), a
bubble is formed with the first shot and does not change size with subsequent shots.
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Figure 3.13: Threshold radiant exposures measured on gel are compared with those for tissue
from literature. Thresholds for atheroma and aorta were measured by Prince et al. at 482 nm.
LaMuraglia et al. measured the ablation threshold for fresh thrombus at 482 nm. Thresholds for
lysed blood were measured by de la Torre et al.. at 577 nm for various hematocrits. Also are
shown the thresholds predicted by the steady-state and blow-off models (upper line). The values
measured in this study agree well with the partial vaporization model (lower line).
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Figure 3.14: Threshold as function of absorption mapped onto the absorption spectra of thrombus
and artery. Thresholds at any wavelength in the visible region can be read from this graph.
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absorption mass removal visual acoustic HeNe
coefficient threshold threshold threshold threshold
(cm−1) (mJ/mm2) (mJ/mm2) (mJ/mm2) (mJ/mm2)

10 130± 10 140± 10 160± 10 130± 10
100 14± 3 28± 5 20± 1 31± 4
1000 6± 2 not available 8.5± 0.5 5± 1

Table 3.1: Ablation thresholds were measured by detecting an acoustic signature and the de-
flection of a HeNe beam as a result of ablation. Threshold values were validated by direct mass
removal measurements and by visualization of ablation. Fiber diameter was 1 mm with the tip
1 mm from the gel surface.



Chapter 4

Bubble dynamics during microsecond

ablation of gelatin under water

In this chapter, experiments are described to study the formation and collapse of vapor bubbles

during pulsed laser ablation under a clear liquid.1 Bubble dynamics during pulsed laser ablation

of gelatin are chronicled and material removal is recorded. The effects of absorption, spot size, and

pulse energy are studied. Bubble energies are estimated using Rayleigh’s analysis of a collapsing

spherical cavity. Mass removal is measured and correlated with bubble energies.

A microsecond laser was used to ablate a submerged gelatin-based thrombus model containing

an absorbing dye. The gelatin was ablated without the confining effects of vessels in a large fish-

tank and in 1 cm cuvettes. Pulse energies of 25–100mJ were delivered via 300–1000µm fibers.

Flash photography was used to capture ablation events, and the mass removed was measured

using a spectrophotometric method. Bubble energies were calculated based on maximum size

and lifetime.

Vapor bubbles up to 5 mm in diameter lasting for 500–600µs were formed on gelatin in semi-

infinite space. Material removal was observed after the collapse of the bubble. Smaller bubbles

with shorter lifetimes were created in the 1 cm cuvettes. Ablation efficiency was roughly the same

with both the 300 µm and the 1000 µm fibers.

Bubble energy estimates show that less than 5% of the total pulse energy goes into bubble

formation at all times. Ablation mass increased roughly linearly with bubble energy. It did not

have a direct relationship with radiant exposure.

1Part of this chapter was published in the paper “The effect of spot size, pulse energy, and repetition rate on
microsecond ablation of gelatin under water” in SPIE Laser-Tissue Interaction VI, volume 2391, pages 336–344,
1995.

71
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4.1 Cavitation

The results of the parametric ablation study described in the second chapter suggest that me-

chanical effects dominate over thermal effects for three reasons. First, the total mass removed

was about an order of magnitude greater than predicted by heating and vaporization. Second,

the absorption did not influence the ablation efficiency at pulse energies above threshold. Third,

larger fibers were more efficient at removing material. The mechanical effects were suspected

to be caused by the dynamics of a vapor bubble formed when some of the material was vapor-

ized. Indeed, the visualization experiments in the third chapter show vapor bubble formation at

ablation threshold and none below threshold.

The formation and activity of bubbles in a liquid is called cavitation. The phenomenon of

cavitation was first rigorously investigated when the erosion of ship propellers was traced to the

formation and collapse of water vapor bubbles on the blades [92]. These bubbles were formed

due to low pressures in the water behind the curved blades of the propeller. A vapor bubble in

a liquid can be produced by:

• pressure variations in a flowing liquid;

• sound waves in a liquid causing pressure variations;

• absorption of light, laser-induced breakdown, or by spark gaps;

• underwater explosions.

Hydrodynamic and acoustic cavitation are brought about by tension in the liquid; optical cav-

itation is achieved by local deposition of energy. While the dynamics of a cavitation bubble

generally depends on the source of the cavitation, there are some features common to most

bubbles [93]. The bubble grows from a small volume to a maximum size due to high pressures

and temperatures inside the bubble. Equilibrium conditions are achieved when the forces within

the bubble are matched by the forces exerted by the surrounding liquid on the bubble. Inertia

causes the expanding bubble to overshoot its equilibrium size, and the outside forces overcome

the forces inside. The bubble then proceeds to collapse to a small size until the pressure the inside

the bubble again increases to a point when it is greater than the hydrostatic pressure outside.

Depending on the geometry of the bubble and the proximity of solid boundaries, the bubble may

re-expand to a size smaller than its initial maximum size. This may be repeated to produce a

damped oscillatory motion. Multiple expansion and collapse phases have been recorded during
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cavitation in a free liquid far away from any solid boundaries [94, 95]. The bubble dissipates

energy in each expansion-collapse cycle and reaches a final collapse stage when there is no energy

left to re-expand. The total lifetime of the bubble depends on its maximum size; a 5mm bubble

generally has a lifetime of the order of hundreds of microseconds. The presence of boundaries

can have significant effects on the bubble dynamics. The bubble geometry is usually distorted,

and the bubble may not re-expand upon collapse. The degree of distortion usually depends on

the distance from the bubble center to the boundary [96, 97].

The high pressure transients during the expansion and collapse phases of the bubble have been

shown to cause damage to nearby boundaries [98, 99, 100, 101]. Differential equations describing

the motion of the bubble have been widely used to determine the pressure and velocity fields in

the surrounding medium [93, 102]. However, bubble dynamics is influenced by numerous factors

such as content of the bubble, heat conduction, viscosity, compressibility, and surface tension.

The physics of the process is therefore complex. In 1917, Rayleigh considered the problem of an

empty spherical cavity and obtained an elegant solution for the bubble wall velocity and time of

complete collapse using energy considerations [103]. This analysis is used later in this chapter to

estimate the energies of the bubbles formed during pulsed laser ablation of gelatin.

The vapor bubbles formed when soft tissue is ablated under a liquid using a pulsed laser is a

form of optical cavitation. The absorption of the laser energy leads to heating and vaporization

of part of the target. Due to confinement by the surrounding liquid, the expanding vapor forms

a bubble. Strong pressure transients can be generated during both the expansion and collapse

phases leading to additional material removal. These transients can also cause unwanted damage

to collateral tissue. Van Leeuwen et al. and Jansen et al. investigated bubble formation during

holmium laser angioplasty as a possible source of vessel wall dissections [71, 70]. Vogel et al.

extensively studied the disruptive capabilities of bubbles during intra-ocular surgery [104, 96, 83,

105]. Picosecond and nanosecond laser pulses are used in intra-ocular surgery, and the bubbles

are formed as a result of stress confinement or laser-induced breakdown of the medium.

The content of a bubble formed by vaporization depends on the material being ablated; in

most soft tissues it is water vapor derived from the extracellular matrix of the tissue [106]. This

is often the case even when the principal chromophore absorbing the laser energy is not water.

The absorbing chromophore heats up and quickly transfers the heat to the surrounding tissue

water [71, 107, 108]. For example, during excimer laser angioplasty, the target is plaque and the

chromophore is the tissue protein. However, van Leeuwen convincingly demonstrated that the
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content of the vapor bubble formed was water vapor by measuring a threshold temperature of

100◦C for vapor bubble formation.

This is supported by the findings of the previous chapter where bubbles were formed at a

threshold surface temperature of 100◦C. The content of bubbles formed during laser thrombolysis

can therefore be reasonably assumed to be water vapor. Bubble dynamics during thrombolysis

may however be different from those during angioplasty and intra-ocular surgery because of

several factors. First, the pulse length is different which could result in different bubble shapes

and lifetimes. Second, the geometry of bubble formation is different since the bubble is formed

on the target surface. Figure (4.1) illustrates the difference. The differences in bubble dynamics

may result in different ablation processes and efficiencies.

4.2 Goals

The goals of the experiments in this chapter are to study formation of the vapor bubbles during

pulsed laser ablation relevant to laser thrombolysis. Specifically, the questions to be answered

are:

• How does material removal correlate with the bubble dynamics?

• How much of the total laser energy goes into the bubble action?

• How does bubble formation and collapse vary with absorption?

• Are bigger or more energetic bubbles formed with bigger fibers?

• What is the effect of pulse energy?

Relating the moments of material removal with the bubble dynamics may provide information

about the relative importance of the expansion and collapse phases of the bubble. This is largely

an academic question and goes towards understanding the basic ablation process. Of more

practical interest would be correlating the ablation mass with bubble sizes and energies. Are

bigger and more energetic bubbles needed to remove more material? To answer this question,

bubble energies have to be calculated.

An estimate of the total energy going into the bubble action will also be helpful in reaching

an energy balance for the ablation process. It was initially thought that the ablation mechanism

was largely thermal with most of the energy going into heating. However, it has now been
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shown that thermal ablation is not a significant factor. The energy seems to be channeled into

predominantly mechanical effects including the bubble dynamics. Also, during pulsed ablation,

an audible “pop” is evident indicating that some of the energy is converted to acoustic transients.

It is not clear how much of the energy goes into the formation of the bubble and how much goes

into just acoustic transients. Experiments in this chapter will provide data for estimating bubble

energies.

The ablation efficiency does not depend strongly on the absorption coefficient. If bubble

action is indeed a principal factor in ablation, bubbles of similar sizes are probably formed.

The bubble size and lifetime would then also not depend strongly on the absorption. Another

observation from the previous chapters was that bigger fibers were more efficient in removing

material. This could be because (i) bigger and more energetic bubbles are formed or (ii) the

bubble dynamics are affected by the physical dimensions of the fiber.

4.3 Materials and methods

Flash photography was used to record bubble dynamics on gel targets of various absorption

coefficients. Pulse energies of 25–100 mJ were delivered via glass fibers of 300–1000µm core

diameter. The gelatin was ablated in a large fish-tank and in 1 cm cuvettes. Ablation efficiency

was measured by the spectrophotometric method.

The targets were 3.5% gelatin containing Direct Red dye as the chromophore. The gel prepa-

ration is described in detail in chapter 2. The laser wavelength was either 577 nm or 506 nm.

In either case, sufficient dye was added to the gel to achieve the desired absorption at the laser

wavelength.

4.3.1 Flash photography

A standard flash photography setup was used in all the visualization experiments described in

this chapter. A photograph of the bubble action is taken at various moments after the laser

pulse (figure 4.2a). Figure (4.2b) shows the different targets. The flash or moment of image

capture is controlled by a delay generator. Once a bubble has been photographed, a new bubble

is created for the next image. Successive images of bubbles can then be pieced together to

form a montage showing the complete evolution of bubbles. Since this method only captures a

bubble at one particular moment, the history of a single bubble cannot be recorded. However,

figure (4.3) showing pictures of two separate bubbles taken under identical conditions proves the
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reproducibility of the method.

The laser pulse provides the timing source for the whole system. The energy pulse is delivered

to the target via a glass fiber or a fluid catheter. A photodiode detects the light passing through

the fiber and triggers a delay generator (Stanford Research Systems DG535). The delay generator

has output ports AB and CD that are used to trigger a CCD video camera and an illumination

source after an adjustable delay. The illumination source is a white light microsecond strobe.

The CCD camera is attached to a stereoscope (Olympus SZ-60) for magnification. A laser filter

is inserted in front of the microscope to avoid blinding the camera. The video frame from the

camera is recorded on a frame grabber card. The total system delay was about 5µs.

A Sony XC-57 CCD camera was used in the initial experiments. This camera was not trig-

gerable and operated in a live mode—continuously feeding 30 frames per second to the frame

grabber card. To capture an image at a particular time the frame grabber card was triggered

from the delay generator. The card then captured the particular 32 ms frame fed to it by the

camera at the triggering moment. All illuminated events in that 32 ms will be recorded. Later

experiments used a CCD (Motion Analysis) camera capable of being triggered asynchronously.

The exposure time was also adjustable from 1 µs to 10 ms. The trigger signal from the delay

generator was then fed directly to the camera. A factory-set exposure of 280 µs was used. The

software controlling the frame grabber card was NIH Image.

4.3.2 Ablation in semi-infinite space and cuvettes

The first set of experiments consisted of investigating the effect of absorption on the bubble

dynamics. This was done by ablating a large piece of gelatin in a fish tank to avoid any boundary

effects. The absorption was varied from 60–500 cm−1. Microsecond laser pulses were delivered

via a 1000µm fiber with the tip 1 mm from the gel surface. The pulse energy was 100 mJ. Each

shot was delivered on a fresh target area. Bubble action was captured at various times after each

shot using the flash photographic technique described above. The images were then arranged in

a chronological order to depict bubble expansion and collapse. Three photographs were taken

for each delay to test for reproducibility. Bubble dimensions were measured and plotted against

time. Bubble energies were calculated using Rayleigh’s analysis described later in this chapter.

The mass of gelatin was not measured since the aim had been to just investigate the effect

of absorption on the bubble dynamics. It has already been shown that ablation efficiency is not

seriously affected by µa at energies above threshold. Those initial ablation experiments had been
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done in tubes. Simultaneous mass removal measurements and flash photography were done to

correlate bubble energies with ablation efficiencies.

Gelatin was ablated in 1 cm cuvettes to facilitate collection of the mass removed and yet

avoid confinement effects. The gelatin was cured in the cuvette and topped off with water.

The absorption was fixed at 300 cm−1. Pulse energies of 30–100 mJ were delivered with 300 µm

and 1000 µm fibers to study the effects of spot size and pulse energy on the bubble dynamics

and ablation efficiency. The ablated material dissolved in the water above the gel. After laser

delivery the solution was carefully syringed out, and the mass removed was measured using the

spectrophotometric method. Ten pulses were fired to collect enough material to be measured

reliably. The repetition rate was 3 Hz. Flash photographs were taken only of the first bubble

formed. A fresh sample was used for each time delay. No light was delivered to control samples

to account for gel that dissolved naturally in the water. Bubble energies were calculated based

on size and lifetime measurements and correlated with mass removal.

4.4 Results

4.4.1 Ablation in semi-infinite space

Ablation was accompanied by a loud snapping sound and visible removal of material. Bubbles

up to 5 mm in diameter were formed. The lifetimes of the bubbles formed were of the order of

400–600 µs. Higher pulse energies produced bigger bubbles with longer lifetimes. The size and

shape of the bubbles were very reproducible except at times close to collapse. Bubble expansion

and collapse occurred at roughly similar rates. A tiny bubble was observed even when the delay

on the delay generator was set to zero. That was almost certainly due to the system delay of

about 5 µs in the photography setup.

Figure (4.4a) shows an incipient bubble formed on 100 cm−1 gel 10µs after the laser pulse.

The radius is already about 1 mm indicating a fairly rapid growth. The bright spot at the center

is fluorescence emitted by the dye following absorption of the laser wavelength. The fluorescence

lasts for nanoseconds and is over by the time the delay generator sends out the trigger for image

capture. However, since it is an luminous event it is still recorded on the 32ms video frame. This

artifact is overcome in later sets of pictures by using the triggerable CCD camera. That camera

starts exposure only after it gets the trigger signal from the delay generator.

Another interesting feature is the halo around the fiber tip (figure 4.4). This halo is barely
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discernable in the 10µs picture but is clearly evident in the 30 µs picture. It is most probably

due to vortices around the tip caused by pressure transients generated by the expanding bubble.

This halo-like feature was reproducible.

At 50 µs after the laser pulse the upper bubble wall has reached the fiber tip. At this point

the bubble wall is still intact, and careful examination reveals invagination of the wall around the

tip. The white arrow indicates the level of the fiber tip. The bubble continues to grow and the

wall is pierced at around 150–200 µs. The maximum size of about 5 mm in diameter is reached

at about 250–300 µs (figure 4.5). After that the bubble begins to shrink and collapses completely

at 500µs (figure 4.6). No significant material removal is observed up to this point except the

amount vaporized to form the bubble. However, about 20µs after the bubble has completely

disappeared, significant amounts of material are ejected (figure 4.7). This ejection of material

continues for almost a hundred microseconds. Figure (4.8) is a montage of individual pictures

showing the bubble history.

Bubble sizes and lifetimes were not strongly influenced by the absorption (figure 4.9). Partic-

ularly, bubble dynamics with 100 cm−1 and 300 cm−1 gel were almost identical. Slightly smaller

bubbles were formed on the 60 cm−1 and 500 cm−1 gels. The small error bars on the bubble

dimensions indicate the reproducibility of the experiment. The expansion-collapse curves for all

the bubble are fairly symmetric about the time of maximum size. Bubble wall velocities were

calculated by numerically differentiating the bubble growth curve. Highest velocities of around

20 m/s were calculated at early expansion and final collapse.

4.4.2 Ablation in cuvettes

Gelatin was ablated in 1 cm cuvettes so that the ablated material could be collected and correlated

with bubble energies. Absorption was 300 cm−1, and pulse energies of 30–100mJ were delivered.

Bubbles of maximum diameter of 1–3 mm were formed and collapsed 200–400 µs after the

laser pulse. There were no significant differences in bubble sizes and lifetimes produced with

the 300µm and 1000 µm fibers at 100 mJ (figure 4.10). This was well above the threshold for

both fibers, 4 mJ and 14 mJ respectively. Larger bubbles were produced with the 300 µm fiber

at 30 mJ. This was about twice the threshold energy for the 1000 µm fiber, but 7–8 times the

threshold for the 300µm fiber. Similar amounts of gelatin were removed with the 300 µm and

1000 µm fibers (figure 4.11).
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4.5 Discussion

This study was carried out to visualize bubble action during pulsed laser ablation of a soft target

under a clear liquid and to help understand its role in material removal. Gelatin was ablated

under water with microsecond laser pulses delivered by 300 µm and 1000µm fibers. The effect

of light absorption and pulse energy on the bubble dynamics were studied. Bubble dimensions

and lifetimes were measured.

4.5.1 Bubble dynamics

Fairly large bubbles (diameter ∼5 mm) were formed on the gel surface at energies of 100 mJ.

Bubble expansion was very rapid in the very early stages (∼10 µs). This can also be seen in

the early pictures where the bubble wall appears blurred indicating fast motion. The calculated

wall velocities were of the order of 20 m/s. Some studies have reported a jet formation at the

end of the collapse of a bubble in the vicinity of a boundary [96, 97]. These jets had velocities

of hundreds of meters per second and attained great impact pressures leading to erosion of the

boundary. From the flash photographs taken in this study it is not clear if such a jet is formed.

The bubble geometry became very indistinct towards the end, and it was difficult to measure

wall velocity and to distinguish any other features. More sophisticated recording techniques such

as particle image velocimetry may be useful in capturing bubble action during collapse [97].

A damped oscillatory motion has been reported by almost all investigators studying bubble

action. The bubble lost energy with each collapse but retained enough for re-expansion until

there was none left. No secondary bubble expansion after collapse was observed in this study.

Possible reasons could be the geometry of bubble creation and the target material. The bubble

is created at the interface of gelatin and water with roughly equal halves in both media. This

interface may disrupt the continuity of the wall as the bubble starts collapsing. Also, in many

cases the wall had already been breached by the fiber tip during the expansion phase providing an

outlet for releasing pressure during collapse. In his work on laser lithotripsy, Rink ablated stones

with a microsecond laser in a very similar geometry [109, 110, 82]. He observed a secondary

re-expansion and collapse, and sometimes even a third. The stone target in his experiments was

much harder than the soft gel, and the bubble probably expanded mainly into the water retaining

much of its geometry.

An interesting feature that was always observed was significant mass removal after the bubble

collapsed. The ejection of material usually commenced within 20µs after the final bubble collapse.
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This indicates that bubble collapse is important in mass removal. However, it is still not clear

whether the expansion phase is any less important. It may be that the bubble expansion loosens

the material while the collapse removes it. The material probably takes time to recover from the

impact of the collapse, and that may explain the delay before ejection. Acoustic measurements

of expansion and collapse pressures may better demonstrate the relative importance of bubble

expansion and collapse. No pressure measurements have been made in this study for lack of

suitable measuring devices.

In the next section, the model proposed by Lord Rayleigh to describe bubble collapse is

presented. The applicability of the model to the experimental results of this chapter is tested.

Finally, estimates of bubble energy are made based on measurements of maximum size and

lifetime.

4.5.2 Rayleigh’s equations for a collapsing cavity

In 1917, Lord Rayleigh proposed a simple model relating the maximum size of a cavitation bubble

to its collapse time based on energy considerations [103]. Numerous investigators have used this

model to calculate the work (pressure × volume) done by the bubble during its expansion and

collapse [96, 97, 105, 109, 110, 82, 71, 70]. Rayleigh’s equation relating the maximum radius

Rmax and the time of collapse from the maximum size Tc is:

Tc = 0.915Rmax

√
ρ

pstat − pv
(4.1)

ρ is the density of the liquid, pstat is the hydrostatic pressure, pv is the vapor pressure. The

energy content of a bubble can be calculated as:

EB =
4
3
πR3

max · (pstat − pv) (4.2)

Rayleigh’s model assumed a perfectly spherical bubble collapsing in an infinite medium. It also

assumed no energy loss during the collapse and predicted an undamped oscillatory motion. The

bubbles created in the experiments described in this chapter were not perfectly spherical and were

distorted by the boundaries of the fiber and the gel surface. Also, the bubble did not expand

after the first collapse implying that energy is lost at collapse.

Given these factors, the applicability of the Rayleigh model to estimate bubble energies in this

case is suspect. One way to test the applicability of the model is to validate equation (4.1) since

experimental data on the collapse time and maximum radius is available. Figure (4.12) compares

the experimental radii and collapse times with the Rayleigh model represented by equation
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(4.1). Given the limitations of the Rayleigh model, there is reasonable agreement between model

and experiment, particularly for the bubbles formed in semi-infinite space (absorption studies).

The measured collapse times of the bubbles formed in the cuvettes (spot size and pulse energy

studies) are slightly longer than those predicted by the Rayleigh model. This is probably due to

the additional influence of the cuvette walls. Stretching of collapse time due to the presence of

boundaries has also been reported by other investigators [97, 109, 110].

4.5.3 Bubble energies and the effect of absorption

Changing the absorption coefficient did not seriously affect the maximum bubble sizes and life-

times. Slightly smaller bubbles were formed at µa =60 cm−1; this may be because 100 mJ was

just twice the ablation threshold for 60 cm−1. In all other cases the pulse energy was 5–10 times

the threshold energy. Using Rayleigh’s equations bubble energies may be calculated (figure 4.13).

Two things are to be noted in this graph. First, the energy of the bubble does not change much

as the absorption is varied. This may be the reason that absorption does not strongly influence

the total mass removed as shown in the second chapter. Once the pulse energy is well above

threshold, similar sized bubbles are formed irrespective of the absorption. The bubble then seems

to the principal factor involved in the ablation process.

The other point of interest is that only about 2% of the total laser pulse energy is converted

into the pressure-volume work done by the bubble. It is not clear what happens to the bulk of

the energy. Obviously, the initial coupling of the pulse energy into the target is thermal due to

absorption. The heated material expands and some energy is released into pressure transients.

Part of the material is vaporized and forms the bubble. The energy content of the bubble is the

pressure-volume work given by equation (4.2). The bubble dissipates this energy in its expansion

and collapse phases in the form of acoustic transients [111]. It is yet to be determined how much

of the total laser energy goes into the initial pressure transients, and how much is wasted as heat.

Other researchers have also reported low coupling efficiencies of the pulse energy into the

bubble. Vogel et al. investigated bubble formation by laser-induced breakdown during intra-

ocular surgery. He estimated a large range of bubble energies between 1–25% of the total laser

energy [101, 83, 105]. Rink et al. reported bubble energies of 10–30% of the pulse energy [82].

Ward et al. calculated the total energy going into bubble dynamics and acoustic transients to

be about 18% of the laser energy. The coupling efficiency seems to depend on the pulse width,

energy, and the target. Regarding the rest of the energy, the consensus seems to be that it is
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wasted as heat. The interaction of a high power laser pulse with an absorbing sample under a

liquid is complex and is a field of study at many centers. Numerical codes designed to model

underwater explosions are now being used to clarify the energy balance issue [112, 111].

4.5.4 Effect of spot size and pulse energy

In the second chapter it was shown that larger fibers ablated gelatin in 3mm tubes more efficiently

than smaller fibers. A possible explanation had been that more energetic bubbles were formed

at larger spot sizes. To either confirm or disregard this hypothesis, gelatin was ablated in 1 cm

cuvettes to easily visualize the ablation process and chart the bubble dynamics. Laser energy

was delivered via 300 µm and 1000 µm fibers. Ablation masses were measured and correlated to

the bubble energies.

The surprising result of this experiment was that there was no significant difference in ablation

mass at the two spot sizes at energies above threshold (figure 4.11). In chapter 2, the larger spot

sizes were more efficient when the gel was ablated in tubes. The bubbles formed by the 300µm

and 1000µm fibers in the tubes are probably of similar size. However, the larger fibers may

produce a more confining effect in the tubes so that the bubble expands more into the gel than

into the water above and therefore disrupt more gel. This hypothesis is investigated in the next

chapter where bubble formation in tubes is photographed.

A linear increase in ablation mass with pulse energy was observed in this study. Bubbles of

similar energies were formed with the two fibers, and there was a linear relationship between the

calculated PV work and the pulse energy (figure 4.14). The coupling was less than that observed

during bubble formation in semi-infinite space. This was because the boundaries of the cuvette

walls decreased the maximum sizes and stretched the lifetimes.

The total mass removed is directly dependent on the energy of the bubble formed. The energy

of the bubble is proportional to the pulse energy and not the radiant exposure. The coupling

efficiency is less than 5%, and a large portion of the energy is not accounted for. This energy is

most likely dissipated into heat and may or may not participate in the ablation process.
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Figure 4.1: Three common geometries of bubble formation: (a) Intraocular surgery—bubble
formation is due to optical breakdown at the focus with picosecond and nanosecond pulses. (b)
Laser angioplasty—bubble formation is due to absorption of the pulse energy by the blood around
the fiber tip. (c) Laser thrombolysis—bubble is formed at the thrombus surface.
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Figure 4.2: (a) Flash photography setup for imaging bubble action. Light is delivered by an
optical fiber. A snap shot is taken at increasing delays after each laser pulse. The delay is
controlled by the delay generator. The photodiode detects the laser light and provides the trigger
for the delay generator. (b) The different target geometries used in the visualization experiments.
The gel in the fish-tank provided a semi-infinite medium to visualize bubble dynamics without
the influence of boundaries. The gel was ablated in 1 cm cuvettes to facilitate measurement of
ablation mass and correlate it with bubble energies.
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Figure 4.3: Two photographs taken of bubble formation under identical conditions using the
flash-photography technique. Although the technique takes pictures of only individual events, it
is reproducible.
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µa = 100cm-1 energy = 100mJ
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30 µs

Figure 4.4: An expanding vapor bubble shown at 10 µs and 30µs after the laser pulse. The pulse
energy is 100 mJ delivered by a 1 mm fiber to 10 cm−1 gel in a fish-tank. The bright spot in the
middle is fluorescence of the dye in the gel. A distinct halo can be observed around the fiber tip
at 30 µs.
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Figure 4.5: Bubble at 50 µs and 300 µs. At 50µs the bubble wall has reached the fiber tip and
engulfed it. The white arrow indicates the level of the tip. At 300 µs the bubble is at its maximum
size. The fiber tip has breached the wall.
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Figure 4.6: Collapsing bubble. Bubble wall velocity at collapse is about 20m/s.
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Figure 4.7: Significant material removal commences about 20 µs after the bubble has collapsed
completely. The ejection continues for about 100µs.
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Figure 4.8: Montage of bubble pictures taken at different delays. Each bubble was an individual
event and was formed by separate laser pulses.
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Figure 4.9: Bubble growth and collapse after the laser pulse. The bubble dimensions and lifetime
are not strongly influenced by absorption.
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Figure 4.10: Bubbles formed on 300 cm−1 gel in cuvettes using 300 µm and 1000µm fibers. A
pulse energy of 30mJ is just above the ablation threshold for the 1000µm fiber, and the bubble
formed is smaller than the one with a 300 µm fiber. However, similar sized bubbles are formed
at 100 mJ, well above the threshold energies for both fibers. The white bar indicates the level
of the fiber tip. Small bubbles can be seen around the fiber in the lower left picture That is the
place where the buffer of the optical fiber ends, and the bubbles are due to vortices around that
discontinuity.
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Figure 4.11: Mass ablated per pulse in 1 cm cuvettes using the 300µm and 1000µm fibers.
Absorption was 300 cm−1.
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Figure 4.12: Collapse times measured from time of maximum size compared with those predicted
by the Rayleigh model. The fairly reasonable agreement between the expected and measured
values allows estimation of bubble energies using the Rayleigh model.
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Figure 4.13: Ablation in fish-tank: Bubble energies calculated using Rayleigh’s equations. A
small percentage of the total laser energy goes into the pressure-volume work of the bubble at
all absorptions. Pulse energy was 100 mJ delivered through a 1000µm fiber.
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Chapter 5

Visualization of ablation of gelatin and

porcine clot in 3 mm tubes

This chapter investigates pulsed laser ablation under water in 3 mm tubes simulating coronary

arteries.1 Ablation of gel with different laser spot sizes is visualized. The effects of multiple pulses

and repetition rate on the bubble dynamics are studied. Bubble formation and mass removal in

gel are compared with ablation of porcine clot. The conclusion from the second chapter that laser

thrombolysis is equally efficient at most visible wavelengths is tested. The differences between

contact versus non-contact of the laser delivery device with the thrombus are investigated.

Initial experiments were conducted with a gel-based clot model confined in 3mm inner diam-

eter silicon tubes. Subsequent experiments used 24 hour old porcine blood clots. Quartz fibers

of 300µm and 1000µm core diameter were used to deliver 100mJ pulses. Bubble evolution was

photographed. Laser pulses of 50 mJ pulse energy were delivered via a quartz fiber contained

in a flushing catheter. Pulse repetition rates of 1 Hz, 3Hz, and 6 Hz were used. Wavelengths of

506 nm and 577 nm were used to ablate clot. Bubble action was captured by flash photography

using a CCD camera and recorded on video. The amount of material removed was measured

using a spectrophotometric technique.

Bubbles of similar size and lifetime were formed with laser pulses delivered by 300µm and

1000 µm fibers; yet more material appeared to be removed by the larger fiber. Ablation of clot

and gel proceeded in a similar manner. No significant differences in bubble action or mass removal

were observed at the three pulse repetition rates and the two wavelengths. Contact between the

catheter and the clot did not result in a pistoning effect of the catheter at the pulse energy used.

1Part of this chapter was published in the paper “Visualization of microsecond ablation of porcine clot and
gelatin under a clear liquid” in SPIE Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems
VI, volume 2671, 28–35, 1996.
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5.1 Goals

In the second chapter, a parametric study was done to identify the optimal wavelength, pulse

energy, and spot size for efficient ablation during laser thrombolysis. Larger fibers were shown

to remove more mass than smaller fibers at similar energies. This was suspected to be due

the formation of bigger and more energetic bubbles with the larger fibers. Experiments in the

fourth chapter studied the formation and collapse of vapor bubbles leading to ablation. The

results of these studies however showed that bubbles of similar size and lifetimes, and therefore

of similar energies, were formed with different sized fibers. Also, the mass removed was similar.

The only difference between the experiments in the second and fourth chapters was that in the

visualization study, the gel was ablated without the confining effects of the 3 mm tubes. Obviously

the geometry of ablation plays an important role in the efficiency of material removal. In this

chapter, gel is ablated in tubes with 300 µm and 1000 µm fibers, and the process is imaged.

The parametric and visualization studies used gelatin as a clot model. This removed the bio-

logical variability of clots and also allowed the absorption at a single wavelength to be controlled.

The results of the threshold studies in the third chapter showed that microsecond ablation thresh-

olds for clot and gel were similar at equivalent light absorption. Also, the Young’s moduli for

the two materials were similar. However, more validation of the gel model was required before

the results and their implications can be accepted as applicable to laser thrombolysis. One of

the goals of this study is to validate some of the results of the parametric and visualization stud-

ies by comparing clot and gel ablation. In particular, clot is ablated at 506 nm and at 577 nm

to test the conclusion that laser thrombolysis can be done at most visible wavelengths without

compromising the ablation efficiency.

Laser thrombolysis currently uses repetition rates of 3 Hz. The vapor bubbles formed upon

absorption of the laser energy have lifetimes of the order of hundreds of microseconds. This

suggests that the efficiency of ablation should be relatively independent of repetition rate, since

cavitation bubble dynamics are finished before the arrival of the next laser pulse. If this is indeed

true, laser thrombolysis could possibly be done at a higher repetition rate thus reducing the total

time for the procedure.

Early thrombolysis and angioplasty efforts used solid glass fibers to deliver the laser energy,

and in a few cases arterial perforations and dissections were reported. These were suspected

to be caused by a pistoning effect of the hard fiber when in direct contact with the clot. The

pistoning or jack-hammer effect was thought to be due to explosive vaporization of the clot and
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the subsequent bubble dynamics. Current laser delivery is achieved by a fluid core catheter that

considerably minimizes the danger posed to vascular systems by the edges of the delivery device

[68]. However, the concern about a pistoning effect due to direct contact with the clot remained

because exact placement of the catheter in vivo is extremely difficult.

Porcine clot and gel were confined in 3 mm inner diameter silicon tubes to simulate coronary

arteries. Pulse energies of 100 mJ were delivered through 300µm and 1000 µm fibers to visualize

the ablation process in the tubes. In the next set of experiments, a fluid catheter was used to

deliver pulses at repetition rates of 1 Hz, 3 Hz, and 6Hz. Vapor bubble formation was recorded

using freeze-action flash photography. The total mass removed was measured to quantify ablation

efficiency. The laser pulses were delivered with the catheter both in contact and non-contact

modes. Both 506 nm and 577 nm were used to ablate clot to study the effects of wavelength on

the ablation efficiency.

The results of the study show that bubble action is similar during ablation of clot and gelatin.

Ablation of gel with the 1000 µm fiber appeared to remove more mass than delivery by a 300µm

fiber. No significant differences in the and mass removal were measured as a function of repetition

rate for clot and gel. Contact did not result in pistoning. Both 506 nm and 577 nm were equally

efficient in ablating clot.

5.2 Materials and methods

5.2.1 Targets

Gelatin of 100 cm−1 absorption was prepared in a manner similar to that described in chapter 2

and confined in 3 mm inner diameter tubes. The tubes were made of silicon rubber that is more

flexible than the Tygon tubing used in earlier experiments. The wall thickness was 400µm; the

typical thickness of a coronary artery is ∼300 µm. However, a longitudinal tensile strength test

showed the tube to have a significantly higher Young’s modulus than an artery as seen in figure

(5.1). Nevertheless, it was the best experimental model available at the time. Further, the silicon

was transparent and that made it suitable for the flash photography.

The gel was cured in the tubes was topped off with water. The tube was immersed in a cuvette

filled with water resembling a miniature fish-tank (figure 5.2). This was done to minimize the

lensing effect of the tubes during flash photography.

Fresh non-heparinized blood was collected from domestic swine and allowed to clot in a
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waterbath at 37◦C for 24 hours. It was then cut into 0.5–1 cm pieces and confined in silicon

tubes. Two microsecond lasers emitting at 506 nm and 577 nm were used to ablate the clot. The

absorption coefficients of clot at these wavelengths were 100 cm−1 and 300 cm−1 respectively.

5.2.2 Ablation

Initial experiments involved the visualization of gel ablation with bare 300µm and 1000µm fibers.

Single pulses of 100mJ were delivered to the targets. The fiber tip was maintained 1 mm from

the gel surface. The standard flash photography set-up was used to image bubble dynamics at

various times after the laser pulse. Mass removal was not measured in this experiment.

In subsequent experiments, multiple pulses were delivered to the clot and gel targets. The

repetition rate was variable between 1–10 Hz. The laser delivery device consisted of a 400µm

quartz fiber contained within a 1mm flexible catheter. The tip of the fiber did not project out

of the catheter and was maintained at 1mm from the catheter tip. The pulse energy was 50 mJ

out of the tip of the catheter.

Light was delivered through the catheter with its tip about 1 mm from the target surface

for the non-contact experiments. Contact experiments had the catheter tip touching the target

surface. A steady flow of water at 4 ml/min was established by a fluid injector and directed

through the catheter to the target site. Pulse repetition rates of 1 Hz, 3Hz, and 6Hz were used.

Thirty pulses were fired on each sample and the ablated material was collected by the flowing

water in 1 cm cuvettes. The steady flow was continued after the last pulse until 4 ml of liquid

was collected. The above procedure was repeated on control samples without light delivery to

account for material removed by the flow of water alone. The ablated gel dissolved completely

in the water, and the hemoglobin lysed from the removed clot in about 10 minutes.

The total mass removed was determined by measuring the absorption of the dominant chro-

mophore in the ablated material. The chromophores are hemoglobin for clot and the dye Direct

Red for gel. A calibration curve was used to convert the measured absorbance to the total mass

removed. The calibration curves for clot and gel were established by measuring the absorbances

of known masses of the material in 4 ml water. The curve was linear, and the slope of the line

provided the necessary conversion factor. This method of measuring mass removal is described

in detail in the second chapter.
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5.2.3 Visualization

Flash photography was used to visualize the ablation phenomenon. Images were captured at

20 µs or 100 µs after the laser pulse using a CCD camera and recorded on video. The time of

image capture was controlled by a delay generator and a microsecond strobe. The trigger signal

was provided by a photodiode detecting the laser pulse (Figure 3.5).

The CCD camera (CV-250, Motion Analysis, Eugene, OR) captures a frame once it gets

a trigger from the delay generator. It then sends that frame to an image capture card on a

computer or to the video tape recorder. The camera has a frame memory option where it stores

the captured frame in a buffer and keeps sending the same frame to the frame grabber card or

video recorder until it gets another trigger and captures another frame. An individual frame

can therefore be recorded for several seconds on tape. This option is useful for capturing the

microsecond bubble action on video tape. The capture sequence is illustrated in figure (5.3).

5.3 Results

5.3.1 Ablation of gelatin with single pulse

Bubble sizes and lifetimes formed by single 100mJ pulses delivered by the 300µm and 1000µm

fibers were not significantly different (figures 5.4 and 5.5). However, visual observation showed

more material removed with the 1000 µm fiber after bubble collapse. In this set of pictures, part

of the bottom half of the bubble can also be seen. When the bubble was at its maximum size,

some dilation of the tube can be observed.

5.3.2 Ablation of gelatin with multiple pulses

The gel was removed in small chunks which quickly dissolved in the water. All the ablated

material was collected by the flowing water. There were no significant differences in the total

mass ablated at pulse repetition rates of 1Hz, 3Hz, and 6 Hz (Figure 5.6).

Visualization of the ablation process showed clear bubble formation for the first 4–5 pulses.

The images were captured 100 µs after the laser pulse. Figure (5.3) shows bubble formation at

100 µs in gel for a repetition rate of 1 Hz. The formation of a crater could be observed. The

size of the bubble at 100µs decreased with each pulse until no bubbles could be seen. However,

a deepening crater was evident implying that ablation was still taking place. There were no

significant differences in bubble action at 100 µs at the three repetition rates.
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The gel was ablated with the catheter tip in contact with and 1mm from the gel surface. The

bubble action and total mass removed were similar for both cases. No pistoning of the catheter

tip was observed (Figure 5.3).

5.3.3 Ablation of porcine clot

Ablation of clot was also characterized by a snapping sound and visible removal of clot. The

ablated clot was removed in sizeable chunks of about 100–200 µm. The mass of clot removed was

significantly higher than that of gel. The error in estimating the total mass was also higher. The

three pulse repetition rates were equally efficient in ablating clot (Figure 5.6).

Ablation pictures were taken at 20 µs after the laser pulse (Figure 5.7). Bubbles were formed

with each laser pulse delivered. Crater formation was not as clearly evident as with gel because

the strobe light did not transilluminate the clot very well. However, a crater could be seen in the

clot surface with a microscope. Ablation at higher pulse repetition rates seemed to be slightly

more violent. However, mass removal measurements indicate equivalent ablation efficiencies.

The clot was ablated in contact and non-contact modes. Bubble behavior and mass removal

were similar for both cases. No pistoning was seen with the catheter tip in contact with the clot

surface.

Two wavelengths were used to ablate clot: 506 nm and 577 nm. The absorption of clot at

these wavelengths is 100 cm−1 and 300 cm−1 respectively. The mass removal at both wavelengths

was roughly equal indicating that the ablation efficiency is independent of absorption. Bubble

action was also similar.

5.4 Discussion

In this study, microsecond ablation in 3 mm tubes simulating coronary arteries was studied. The

effect of the fiber size on the bubble dynamics was investigated to better understand why ablation

was more efficient with larger fibers in cylindrical geometry. Another goal was to visualize the

process of clot ablation and to investigate the effect of pulse repetition rate on the total mass

removed. The clot was ablated with a fluid catheter in contact with the clot surface to investigate

a possible pistoning effect of the catheter tip. Pulse repetition rates of 1Hz, 3 Hz, and 6 Hz were

used to ablate porcine clot and gelatin (clot model) in both contact and non-contact modes.

Images of bubble formation during the ablation process were captured on video tape with flash

photography. The total mass removed was determined by quantifying the absorption signature
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of the ablated material. Wavelengths of 506 nm and 577 nm were used to study the effects of

wavelength and absorption on the bubble formation and mass removed.

The results of the parametric study in the second chapter showed that larger fibers were more

efficient in tubes. It was thought that bubble dynamics were affected by the spot size and caused

the difference in ablation efficiencies. In the previous chapter, gel was ablated using 300µm

and 1000 µm fibers under semi-infinite conditions. Both mass removal and bubble dynamics

were similar with the two fibers; this result did not agree with those from chapter 2. In this

study, flash photography was used to see if the bubble dynamics were different in the confining

cylindrical geometry. Figures (5.4) and (5.5) show the evolution of the bubbles with the two

fibers. The maximum sizes and lifetimes seem to be similar. However, ablation with the 1000µm

fiber appears more violent visually. Since the boundary presented by the bigger fiber is more

confining in the 3 mm tubes, the bubble likely expands more into the gelatin than into the water.

This may result in more gel being dislodged upon bubble collapse. This again suggests that

larger diameter catheters would be better for creating wider lumens during laser thrombolysis.

However, the size of the catheter would be limited by flexibility requirements and the size of the

vessel. Also, larger spot sizes require higher threshold energies; any energy above that will create

larger bubbles that may pose danger to the artery.

Porcine clot was ablated to see whether the process was similar to gel ablation. Significantly

more clot than gel was removed with the thirty pulses delivered in both cases (figure 5.6). The

higher ablation efficiency with clot is also evident in the flash photography experiment that

was carried out at the same time as the mass removal experiments. This difference in ablation

efficiencies is most likely due to differences in the mechanical strengths of clot and gel. Bubbles

of almost equal size were created with every pulse while ablating clot. On the other hand, the

bubbles in gel ablation got progressively smaller with successive pulses. After about five pulses

no bubbles could be seen at 100 µs although a deepening of the crater was observed. Acoustic

reports were always heard. This was most like because the bubbles formed after the first five

pulses were so small that they had already collapsed by the time the image was captured at

100 µs after the laser pulse. These smaller bubbles with shorter lifetimes had less ablative energy

than bigger bubbles.

Ablation efficiencies were not affected by pulse repetition rate for both clot and gel (figure

5.6). This confirms the earlier postulated theory that efficiency is independent of repetition

rate because the bubble lifetimes are much shorter than the time interval between pulses. Each
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laser pulse thus initiates an independent ablation event. The only influence a laser pulse has

on the ablative efficiency of the next pulse is to change the target geometry due to removal of

material and thus affecting bubble dynamics. Visualization of clot ablation at 1Hz, 3 Hz, and

6 Hz seemed to indicate that more material is removed at higher repetition rates. This could

be because the ablated material from the previous pulse had not yet been removed by the time

the next pulse arrived. An important conclusion of this study is that thrombolysis could be

performed at higher repetition rates without compromising efficiency. The total time for therapy

would then be considerably shortened.

Contact between the catheter tip and the target surface did not result in a pistoning of the

tip. Such a pistoning effect effect had been suspected to be the cause of arterial dissections

reported in some studies of laser thrombolysis and angioplasty. A source for such a force would

have come from the bubble trying to expand against the catheter tip. However, as seen in this

study, the vapor bubble expands readily into the clot and gel with the majority of the bubble

volume being under the surface. Therefore not much force is exerted against the catheter and

there is not much recoil. The pulse energy used here was 50mJ that is close to that used in

clinical settings. Higher energies will create more energetic bubbles that may exert force against

the catheter tip causing recoil. The dissections observed in the earlier studies [62] were likely

caused by mechanical manipulations of the delivery device.

Finally, clot ablation at 506 nm and 577 nm was compared. Clot absorption varies from

100 cm−1 at 506 nm to 300 cm−1 at 577 nm. The earlier parametric study with gelatin had

predicted that ablation efficiency was largely independent of absorption. This was confirmed

by the equivalent mass removals at 506 nm and 577 nm reported in this chapter. Bubble action

was also similar in the two cases. Laser thrombolysis can therefore be done at most visible

wavelengths without compromising efficiency.

The main conclusions of this study are: (i) bubble formation is similar on clot and gel. (ii)

ablation efficiency is independent of pulse repetition rate between 1–6 Hz. (iii) contact does not

result in pistoning with a pulse energy of 50mJ. (iv) ablation efficiency and bubble formation

in clot are similar at 506 nm and 577 nm. (v) clot ablation is about an order of magnitude more

efficient than gel ablation.
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Figure 5.1: Longitudinal stress-strain curves for the silicon tube and a porcine carotid artery.
The tube had an inner diameter of 3mm and a wall thickness of 400 µm. The carotid artery was
4 mm in diameter and had a thickness of about 500 µm. The Young’s modulus of the silicon tube
is much greater than that for an artery. Coronary arteries are generally smaller and thinner than
carotid arteries.
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Figure 5.2: Porcine clot or gelatin is confined in a 3 mm diameter silicon tube. Laser energy is
delivered in 1µs pulses via an optical fiber or a flushing catheter to the target surface in either
contact or non-contact mode. For mass removal measurement, water is flushed at 4ml/min
around the target site. The ablated material is collected in 4 ml water. For visualization using
flash photography, the tube is immersed in a 1 cm cuvette filled with water. This reduces the
lensing effect of the curvature of the tubes.
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Figure 5.3: Ablation of gelatin at 1 Hz and 50 mJ pulse energy out of a 400 µm fiber in a 1 mm
catheter. Images are captured 100 µs after the laser pulse. Since the fiber tip is only about
0.5–1mm from the end of the catheter, the spot size is about 400–600µm in diameter. The
catheter tip is in contact with the gel surface. The bubble size becomes smaller with successive
laser pulses. Crater formation can be observed. No pistoning of the catheter tip is observed due
to contact. This figure also shows the frame sequence of the CCD camera. The camera captures
a frame and stores it in memory. It keeps feeding that frame to the video recorder until it gets
another trigger and captures a fresh frame.
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Figure 5.4: Bubble formation due to single microsecond laser pulses in a 3mm silicon tube. Light
was delivered with a 300 µm fiber. Absorption was 100 cm−1.
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Figure 5.5: Bubble formation due to single microsecond laser pulses in a 3mm silicon tube. Light
was delivered with a 1000 µm fiber. Absorption was 100 cm−1. Bubble size and lifetime seem to
be similar to those in the case of delivery by a 300 µm fiber. However, the mass removal appears
more violent with the 1000 µm fiber, particularly at bubble collapse. A possible reason is that
the bigger fiber produces a more confining effect in the 3 mm tube, and therefore the bubble
expands more into the gelatin instead of into the water.
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Figure 5.6: Ablation of clot and gel. More clot than gel is removed per pulse. Repetition rate
has little effect on the total mass removed. The were no significant differences in ablation masses
of clot between 506 nm (µa ≈ 100 cm−1) and 577 nm (µa ≈ 300 cm−1). Ablation was not affected
by contact of the catheter with the clot.
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Figure 5.7: Clot ablation at 1 Hz, 3Hz, and 6 Hz. The pulse energy was 50 mJ coming out
of a 400 µm fiber in a 1mm catheter. The catheter was not in contact with the clot surface.
Wavelength was 506 nm. The white light is the back-illuminating strobe light being transmitted
through the bubble. Bubble action and ablation seems more violent at higher repetition rates,
but the total mass removed was similar. Bubble action was similar at 577 nm.



Chapter 6

General discussion and conclusions

The broad aim of the experimental studies described in this thesis was to investigate and quan-

tify the ablation phenomena during laser thrombolysis. This chapter summarizes the problems

addressed and the main conclusions of the thesis. The practical implications for laser thrombol-

ysis are then discussed. The motivation behind the work was that a better understanding of the

ablation process would provide data for the design of optimal laser and delivery systems.

6.1 Laser thrombolysis

The cardiovascular system is the principal conduit for the supply of nutrients and oxygen and for

the removal of carbon dioxide in the body. Any compromise to this system such as blockages and

hemorrhages can reduce the blood supply to vital organs and result in far-reaching consequences

that are often fatal. A vast majority of heart diseases and strokes are caused by blockages

of arteries by atherosclerotic plaque and clot. A number of pharmacological and mechanical

treatment techniques have been developed to remove the blockages; each has its advantages and

disadvantages depending on the location and nature of the blockage.

Laser thrombolysis is a minimally invasive interventional cardiovascular procedure that seeks

to remove clot blocking coronary, cerebral, and peripheral arteries. Microsecond laser pulses are

delivered by a fluid catheter to ablate the clot. The advantages over traditional recanalization

techniques is seen in the rapidity of the procedure and in the potential to remove clot without

incurring injury to the artery. The technique has shown the ability to partially restore blood flow

in completely thrombosed coronary artery bypass grafts (8mm×6 cm) within ten minutes [113].

The fluid catheter that delivers the laser pulses is essentially an optically clear fluid stream

in a plastic tubing. The fluid flows out of the open end of the catheter and washes away blood

and ablation debris clearing the path for direct laser delivery to the clot. The liquid core makes

112
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the catheter more flexible than a traditional glass optical fiber, and the softer edges pose less

danger to the arterial wall. Also, the fluid used is radio-opaque allowing real time monitoring

of the procedure using angiography. The size of the catheter will largely be influenced by the

flexibility requirements, the size of the vessel blocked by the clot, and an optimal laser spot size.

6.2 Summary of goals and results

The process of establishing laser thrombolysis as an accepted treatment modality in cardiovascu-

lar disease required basic investigations into the ablation process and in vivo trials. This thesis

addressed some of the questions about the basic ablation phenomena with the aim to enhance

the efficiency and safety of the procedure. The three broad areas investigated are as follows:

• microsecond ablation threshold exposures for clot and artery,

• optimal laser parameters for efficient ablation,

• vapor bubble formation during pulsed laser ablation.

Throughout this study, the absorbing material of interest was clot. However, much of the

experimental work was done using a gel-based clot model. This allowed precise control over the

optical properties of the target so that a parametric study could be carried out. Optimization

of laser parameters required quantification of the mass removal. In this study, a unique method

was developed to measure mass removal following pulsed ablation of a soft target under a liquid.

There was some limited validation of the experimental model: ablation thresholds for gel were

similar to those reported for clot and artery, and single pulse bubble behavior also seemed similar.

However, the mechanical properties of clot and gel are not similar. This was shown in chapter 5

where clot was ablated more efficiently than gel.

6.2.1 Ablation thresholds

Goal

Laser thrombolysis uses wavelengths in the visible region of the electromagnetic spectrum: clot

absorbs these wavelengths much more than the artery. Since the ablation threshold is lower at

higher absorption coefficients, the energy density required to ablate clot is less than that required

to ablate the artery. This provides visible lasers the unique potential to selectively target clot.



114

The wavelength and spot size determine the threshold energy required to achieve ablation.

Previous studies had measured differences in microsecond ablation thresholds for lysed blood, clot

and atheroma under saline at 577 nm, 465 nm and 488 nm [50, 52, 91]. However, the relationship

between the absorption and the threshold radiant exposure had not yet been established. This

will enable one to predict microsecond ablation thresholds for clot at any wavelength. Also, an

estimate of the threshold surface temperature will provide information about how ablation is

initiated.

Results

The issue of threshold was explored in chapter 3. Microsecond ablation thresholds were measured

as a function of absorption over a range of 10–2000 cm−1. The measured values are within 10%

of the published ablation thresholds for lysed blood, clot, and atheromas at the corresponding

absorption coefficients. We can now predict microsecond ablation threshold of clot and artery

at any visible wavelength. Practically, this is important for choosing the radiant exposure such

that it is between the thresholds for clot and artery.

From a basic science perspective, the threshold data provides insight into the initiation of

the ablation process. Ablation is initiated at a threshold radiant exposure (energy per unit

area) rather than by the total delivered energy. This is because the temperatures achieved at

the surface of the absorbing medium is directly proportional to the radiant exposure and the

absorption coefficient (equation 2.3). A calculation of the threshold surface temperature using

equation (3.5) suggests that the surface needs to be raised to just above 100◦C. The radiant

exposure required to raise the surface temperature to 100◦C is given by

Eth =
ρc∆T100

µa
. (6.1)

A vapor bubble is formed when the radiant exposure is just above threshold (figure 3.9).

While modeling ablation, it is sometimes assumed that the material up to a depth equal to the

the penetration depth δ is vaporized. Let us consider a case where the target had an absorption

of 50 cm−1 (δ = 200µm). A threshold energy of 50mJ delivered by a 1mm fiber was measured at

this absorption. The energy required to heat 1 g of water from 27◦C to 100◦C and then to vaporize

it at 1 atmosphere is about 2675 J. If a cylindrical volume of 1 mm diameter and 200µm depth

is to be completely vaporized, the required energy to completely vaporize it is therefore 400mJ.

This is almost an order of magnitude higher than the measured threshold energy. Obviously, a

much smaller volume is vaporized. At threshold, the surface is heated to 100◦C, and any extra
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energy will go into the phase change of the surface layer.

6.2.2 Laser parameters for efficient ablation

Goals

The selective absorption of light by thrombus in the visible region is a main rationale for laser

thrombolysis. However it was not clear which visible wavelength was most efficient for clot

ablation. One of the main goals of this thesis was to identify an optimal wavelength for laser

thrombolysis. Fixing the wavelength for laser thrombolysis will simplify the laser design and help

replace the bulky pulsed-dye laser that is currently being used. Other laser parameters that were

studied are the spot size, pulse energy, and pulse repetition rate. The spot size will influence the

choice of the catheter diameter to deliver the laser energy.

Results

The experiments described in the second chapter showed that the absorption coefficient of the

gel did not seriously affect the amount of material removed once the pulse energy was above

threshold (figure 2.5). This suggested that almost any visible wavelength can be used for laser

thrombolysis without compromising the efficiency (figure 2.9). To ensure that the results of gel

ablation were extendable to clot, this conclusion was partially confirmed by the experiments in

the fifth chapter where clot was ablated at 506 nm (µa =100 cm−1) and 577 nm (µa =300 cm−1);

the ablation efficiency was similar in both cases.

Larger spot sizes removed material more efficiently in 3 mm tubes than smaller spot sizes

at similar energies (figure 2.7). The experiments in the fifth chapter led to the hypothesis that

the larger efficiency was due to the confining effects produced by a large catheter in a vessel.

This result suggests that larger catheters will remove more clot and also create wider lumen in

the arteries. The practical limitations are catheter flexibility and high threshold energies. Also,

smaller spot sizes produced by smaller catheters would dig deeper craters into the clot, and

therefore a channel could potentially be drilled through the clot in a shorter time.

The absorption and spot size experiments showed that while the radiant exposure is the critical

parameter to reach threshold, it becomes less important in the mass removal once threshold is

exceeded. Higher absorption coefficients result in higher surface temperatures; yet, the mass

removal did not change significantly for similar energies. In fact, the ablation efficiency was not

influenced by how much the delivered energy exceeded the threshold energy for that particular
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spot size (figure 2.6). Also, mass removal in the 1 cm cuvettes was similar at similar pulse energies

delivered by different fibers. The important parameter in determining the amount of material

removed is the total pulse energy delivered, and not the radiant exposure. The other implication

is that heating is not the principal factor in the ablation process.

The results of the parametric study also suggest that laser thrombolysis can be done at higher

repetition rates than the currently chosen 3 Hz without compromising the ablation efficiency.

This number was chosen because a higher repetition rate disrupted the streamlined fluid flow and

degraded the optical transmission when the catheter tip was 1 cm from the clot. The experiments

in chapters 4 and 5 showed that ablative events following delivery of a single pulse generally last

for only half a millisecond. The ablation debris must be removed by the fluid stream before

the next pulse can be fired. In practice, the tip of the catheter is usually 0–3 mm from the clot

in a typical 3 mm coronary artery. At a flow rate of 0.3m/s, it takes about 50ms for the fluid

stream to displace the volume between the catheter tip and the clot surface and clear the debris.

This means that the next laser pulse can be fired about 100 ms after the previous pulse. Pulse

repetition rates of 6 Hz and 9 Hz have been successfully tested in vivo in a swine model [114]. In

an independent observation, no degradation in the optical transmission by the fluid was observed

[114].

The choice of the wavelength should be dictated by the complexity of laser design or by the

adaptability of an existing laser system. The obvious choice seems to be the doubled Nd:YAG

laser emitting at 532 nm. This wavelength is well within the acceptable region for efficient laser

thrombolysis. Based on the parametric experiments, efforts are underway to build a doubled

Nd:YAG system for laser thrombolysis. This solid state device would be much smaller than

the pulsed-dye laser making it easier to operate. It also does not require handling of potentially

hazardous laser dyes. The maximum energy output is about 100 mJ in 10–100 µs pulses, a modest

requirement for such a laser system. Pulse repetition rate is fixed at 10 Hz. The issue of an optimal

pulse length has not been addressed in this thesis. It is believed that a pulse length of 10–100µs

would work for laser thrombolysis since that range is still within the thermal relaxation time of

clot. A longer pulse duration also makes energy coupling into a small optical fiber (∼100 µm)

easier, an essential requirement for ablating clot in small cerebral vessels. However, the bubble

dynamics may be different at longer pulse durations. Some researchers have suggested that less

energetic bubbles are formed at longer pulses, and therefore they induce less mechanical damage

to the collateral tissue [115]. Also, ablation thresholds may increase slightly for longer pulses.
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This system has yet to be tested in vitro and in vivo.

6.2.3 Vapor bubble formation

Goals

Pulsed laser ablation of tissue under a liquid is an explosive process that is often accompanied

by the formation of vapor bubbles. In laser thrombolysis, these bubbles are formed when part of

the clot is vaporized following absorption of the laser pulse. The results of the parametric study

in chapter 2 led to the hypothesis that the mechanical action of the bubble was actively involved

in the ablation process. It had also been suspected that the bubble dynamics may interact with

the delivery catheter and the vessel walls resulting in mechanical damage to the vessel. Ablation

was photographically studied in the fourth and fifth chapters of this thesis to better understand

the roles of heating and bubble dynamics in the mass removal process. The effect of geometry on

bubble evolution was also studied in the 3 mm tubes with the catheter in contact and non-contact

modes to identify any events that may cause mechanical trauma to the vessel.

Results

The visualization experiments in the fourth and fifth chapters showed that the vapor bubbles

expanded and collapsed within 500µs. As a rule of thumb, for every millimeter of maximum

bubble diameter, the bubble lifetime is 100µs. This agrees with an equation proposed by Lord

Rayleigh relating the maximum bubble size and the collapse time [103]. Bigger bubbles were

formed at higher energies, but the size was relatively independent of the fiber size except near

threshold. The greater efficiency of large fibers in tubes was not reproduced when gel was ablated

in semi-infinite conditions. It is now suspected that the 3 mm tube amplifies the confining effects

of the 1mm fiber and causes the bubble to expand more forward into the gel than into the water.

A simple model proposed by Lord Rayleigh was used to estimate the bubble energy based

on its maximum size and lifetime [103]. Less than 5% of the total laser energy is coupled into

the pressure-volume work of the bubble. It is not clear what happens to the rest of the energy.

From the maximum volume of the bubble, we could try to arrive at an energy balance. Let us

consider the case where a pulse energy of 100mJ was delivered by a 300µm fiber (520 µm spot

size) to a 300 cm−1 target. The observed maximum bubble size was 3 mm diameter, and the

lifetime was 400 µs. Assuming that the content of the bubble at maximum size is a perfect gas at

1 atmosphere and 300 K, we can calculate the number of moles of ablated material in the bubble
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using the equation

PV = nRT. (6.2)

where R is the gas constant and n is the number of moles. For a 3 mm bubble, this works out to

be 574 nanomoles or 11µg of material (1 mole of water = 18 g). Using the enthalpy of 2675 J/g,

the energy required to vaporize 11µg is 29mJ, well within the supplied energy of 100 mJ.

We can do the calculation from the opposite direction where we determine the amount of

material vaporized based on the incident radiant exposure and the absorption of the target. The

heat H(z) (units of J/cm3) produced within the 300 cm−1 gel is obtained by multiplying the

Beer’s law light distribution (equation 2.1) with the absorption coefficient µa,

H(z) = µaE0 exp(−µaz). (6.3)

This energy is used for heating, and for vaporization if any energy is left. In this particular

example, using equation (6.3) we can calculate that a heat of 2500 J/cm3 is produced at a depth

of 60 µm. The energy beyond that depth is wasted as heat. Therefore material up to a depth

55 µm or a volume of 0.012mm3 is completely vaporized. The energy required for that is about

31 mJ. This is quite close to the 29mJ that we calculated based on the bubble volume. The total

energy deposited into the first 60 µm is 82 mJ; of this, 31 mJ is used for vaporization, and the

remaining 51 mJ may go towards expansion of the vapor and into acoustic transients.

It would now seem that we could do a straightforward energy partitioning based on heating

and vaporization. However, this is not the case since bubbles have also been observed at radiant

exposures that are insufficient for vaporization. Consider for example the case where a pulse

energy of 100 mJ is delivered to 60 cm−1 gel by 1 mm fiber (1 mm spot size) resulting in a radiant

exposure of 127 mJ/mm2. From equation (6.3), the heat produced at the surface is 765 J/cm3,

and it decreases exponentially into the material. A strict application of Beer’s law will therefore

not account for vaporization, but a bubble is still formed. The size of the bubble is again about

3 mm diameter, and using the same analysis described above, the mass of material inside is

about 11µg. The energy required for this 29 mJ, and the supplied energy is 100 mJ. Therefore,

in absolute terms, there is sufficient energy available for vaporization. The threshold experiments

showed that enough energy had to be supplied to raise the surface to 100◦C to set the stage for

ablation. Apparently, any extra energy supplied will participate in some kind of thermal energy

transfer between the heated sites such that there is enough latent heat available at a particular

site for vaporization to be initiated. It is not clear what physical processes are behind this

apparent energy transfer, and how the vaporization sites are chosen.
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Once the material is vaporized, extra energy is available for expansion of the vapor and

acoustic transients. The calculated pressure-volume work of the bubble was less than 5% of the

total pulse energy in all cases studied. Some of the energy left after vaporization probably goes

into an initial acoustic transient when the vaporized material expands. Energy that does not

heat material to 100◦C is wasted as heat and does not participate in the ablative event.

The bubble energies scale linearly with the pulse energy under conditions well above threshold.

Mass removal also scales linearly with the pulse energy suggesting that there may be a correlation

between bubble energy and mass removal above threshold. It was shown in chapter 2 that heating

and vaporization accounted for a very small fraction of the ablated mass. The major part is

removed either by the bubble work or by initial acoustic transients.

Does this mean that forming an energetic bubble is the way to go in laser thrombolysis?

More energetic bubbles are bigger in size, and this may not be desirable. In fact, it was seen

in chapter 5 that bubble expansion at clinically relevant energies dilated the 3mm silicon tubes

(figures 5.4 and 5.5). Real arteries are weaker than the tubes (figure 5.1), and the dilation is

blood vessels will most likely be more pronounced. This could cause vessel wall damage such as

dissections and perforations, particularly in the weak and small cerebral arteries. Further, while

the interaction of the bubble with the catheter touching the target surface did not result in a

pistoning effect in a straight vessel geometry, it may still happen at higher energies, in smaller

vessels, or when there is a curve in the vessel. It is therefore probably wiser to use lower energies

closer to threshold so that smaller bubbles are created.

6.3 Can we work at threshold?

Analysis of the mass removal data at threshold brings a new perspective to the ablation mecha-

nism. Figure (2.6) shows the ablation thresholds incorporated into the mass removal at various

absorption coefficients. It suggests that mass removal is not influenced by whether the sup-

plied radiant exposure is just above threshold (e.g., 60mJ/mm2 on 50 cm−1 gel; threshold =

50 mJ/mm2) or well above threshold (e.g., 60 mJ/mm2 on 700 cm−1 gel; threshold = 4 mJ/mm2).

All that matters is that the energy is above threshold. However, bubble size and lifetime are

quite different in the two cases. This is readily seen in figure (4.10) where the bubble formed

with a 30mJ pulse via a 1000 µm fiber on 100 cm−1 gel is much smaller than the one formed

when the same energy is delivered by a 300 µm fiber. In the former case, the conditions are close

to threshold, while in the latter the energy was well above threshold. Yet, mass removal was



120

almost the same in both the cases.

The question now arises: how important is the bubble in the mass removal process? Does it

just happen to be formed, its size and energy being dependent on how much extra energy is left

after the vaporization process? The actual work in the ablation process may be done by the

unaccounted energy that manifests itself in an initial acoustic transient. It may then be possible

to remove clot without creating a big bubble.

This question has implications important enough to warrant further studies of ablation ef-

ficiency near threshold. It is particularly critical for applications to stroke treatment where

overdilation of vessels must generally be avoided (vessel dilation may beneficial in the treatment

of vasospasm). Threshold conditions can be achieved by choosing the appropriate combination

of pulse energy, spot size, and absorption coefficient. The easiest way is to just reduce the pulse

energy for a fixed spot size and absorption. If the bubble size can be drastically reduced by

operating just above threshold, any compromise in total mass removal can be accommodated by

firing more pulses, using a higher repetition rate, or both. The studies required to answer this

question are similar to those described in this thesis. However, the physical dimensions of the

delivery device and the vessel model and the pulse energies need to be reduced to more closely

represent conditions of laser thrombolysis in cerebral vessels, e. g., a 100–200 µm fiber delivering

1–10 mJ pulses in 1–3 mm tubes.

6.4 Where is laser thrombolysis now?

When this study was initiated, laser thrombolysis was seen as an alternate procedure to treat

thrombosis of coronary arteries and bypass grafts that causes acute myocardial infarction. The

experiments described in this thesis, particularly those using the silicon vessel models, were

performed with this aim in mind. The thrombus burden encountered in bypass grafts can be

quite large, maybe 3–5 mm in diameter and 10 mm in length. One of the disadvantages of current

techniques of removing thrombotic occlusions had been the inability to completely remove a large

thrombus burden.

Can laser thrombolysis remove large thrombus burden and clear completely thrombosed ves-

sels? In the second chapter, it was reported that the channel drilled into the clot model had a

diameter similar to the spot size, i.e., a 1mm spot made a 1 mm wide hole. The mural gel was

not removed. Most coronary arteries are about 3mm in diameter. Complete vessel closure in
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coronary arteries is generally due to a large atherosclerotic occlusion and some thrombus, gener-

ally the size of a grain of rice. Complete removal of the thrombus in such cases may therefore be

possible if the thrombus burden is small. However, complete closure of bypass grafts is mostly

due to a large clot burden, and several passes of the catheter through the clot would be necessary

to create a larger lumen. Once the catheter has been inserted and advanced to the clot, it is

difficult to control its precise position within the vessel lumen, and the catheter tends to retrace

the first path. It is unlikely that the presently configured delivery system can remove all the

clot. Some of the newer animal results seem to confirm this hypothesis [113]. Any mural clot

left behind would act as a substrate for further clot formation, and re-occlusion cannot be ruled

out. However, clinical experience has suggested that re-occlusion was not a problem [114].

Wider lumens could be formed by using a larger delivery catheter. The device will however

then be less flexible making negotiating tortuous bends difficult and dangerous. Further, the

threshold energy for ablation will be higher. Another way to remove more clot from the sides

would be to use some kind of a side-firing device. This presents serious engineering challenges as

it requires some reflective device to direct the laser beam sideways. There are some experimental

prototypes that are currently being tested in vitro. Bubble dynamics will probably be different

because the geometry has changed. A side-firing device will also encounter the situation men-

tioned briefly in the third chapter, where the vessel wall will lie directly under the targeted clot.

If a sizeable bubble is formed, the collapse may result in damage to the artery even if the vessel

wall is not irradiated directly.

On the other hand, laser thrombolysis is regarded as an attractive treatment modality for

strokes that are caused by thrombosis of cerebral arteries and sometimes by emboli originating

elsewhere in the body. Part of the reason for this is that there is really no other viable treatment.

Thrombolytics often take too long to take effect, and ballooning techniques are avoided. The

critical part in treatment of cerebral occlusions is the rapid restoration of blood flow to prevent

neurological deficit. Laser thrombolysis has already proven its ability to remove clot more rapidly

than any other technique. Also, the clot burden in most stroke cases is very small. Presently,

animal trials are planned using a canine model. Some of the main challenges lie in the engineering

of a delivery device small enough to negotiate a cerebral vessel. Threshold energies for a small

spot size (∼100–200 µm) are low (∼0.5mJ), and any more energy delivered may cause a bubble

big enough to burst the delicate vessel.
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Laser thrombolysis is still in the developmental stage. This study has investigated and quanti-

fied some basic ablation phenomena taking place during laser thrombolysis. It has not addressed

in vivo studies and biological effects of the laser radiation and therefore cannot claim to be a

complete evaluation of laser thrombolysis. However, based on some of the observations, one can

make intelligent guesses about what would happen in vivo. This study has produced results

of immediate practical interest, spawned speculation about the ablation process, and has made

suggestions regarding clinical practice.
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