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THE ADDING-DOUBLING METHOD

Scott A. Prahl

5.1. INTRODUCTION

This chapter describes the adding—doubling method for solving the radiative
transport equation. The advantages and disadvantages of the method are pre-
sented, followed by sections describing its theory and computer implementa-
tion. A detailed example is given with intermediate numerical results. Accurate
tables with values of reflection and transmission for slabs of varying thick-
nesses with mismatched boundaries are given.

5.1.1. The Goal

The goal is to develop a model that generates fast and accurate estimates
of light distributions in any biological tissue. Such a model should generate
internal fluence rates as well as the amount of light reflected or transmitted. An
accurate model could serve as a “gold standard” for evaluating less accurate
models (e.g., Kubelka—Munk, diffusion), and to verify Monte Carlo implemen-
tations. Finally, a fast and accurate model could serve as the cornerstone of a
technique to derive intrinsic optical properties from measurements of reflection
and transmission, '’

Since this fast and accurate model is intended for light propagation in
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biological tissues, the particular features associated with this medium must be
incorporated:

* There should be no restriction on the ratio of scattering to absorption,
since the ratio varies from nearly zero in both the unltraviolet (= 300 nm
due to protein absorption) and mid-infrared (= 1300 nm due to water
absorption) to large values in the therapeutic window in the red and
near-infrared.’*

* There should be no restrictions on the scattering anisotropy, since tissue
scattering tends to be strongly forward-peaked (0.7-0.99).*’

* Internal reflection at boundaries should be included, since air—tissue in-
terfaces are common.

If we neglect any wave phenomena associated with light (e.g., diffraction, inter-
ference, then modeling light propagation in tissue is essentially equivalent to
solving the full time-dependent radiative transport equation.’” Analytic solu-
tions to this general equation are not available and the only accurate numerical
solutions are based on slow Monte Carlo techniques.*’

5.1.2. Assumptions

The following assumptions make the radiative transport equation more
tractable:

* no time dependence,

* a geometry consisting of uniform layers of finite thickness and infinite
extent in directions parallel to the surface,

« tissue layers with uniform scattering and absorbing properties,

* uniform illumination by collimated or diffuse light.

In general these assumptions restrict the type and shape of the tissue sample,
but do not contradict the known light propagation behavior of tissue. A model
that only makes these assumptions will retain relevance to many tissue optics
problems. If these assumptions are not valid, say when beam spreading from a
finite source is important, then the fluence rates can be accurately calculated
using the Monte Carlo method."

5.1.3. Why Adding—-Doubling?

Since the light propagation model must accurately simulate samples with
arbitrary scattering to absorption ratios, anisotropic scattering and boundaries,
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no analytical and few numerical options exist. Common approximations like the
diffusion equation," random walk models,” Kubelka—Munk," the seven-flux
model," and Chandrasekhar’s X and Y functions” place restrictions on one or
more of the basic tissue properties. Two methods, discrete ordinates' and add-
ing—doubling,"” allow accurate solution of the radiative transport equation for
anisotropic scattering and mismatched boundaries. Adding—doubling works nat-
urally with layered media and yields reflection and transmission readily, while
discrete ordinates generate internal fluences easily. We select the adding—dou-
bling method because reflectance is important for diagnostic applications using
light. Furthermore, when measuring the optical properties of a sample, the only
values needed are the total reflection and transmission of the sample.'

5.1.4. General Description

The doubling method assumes knowledge of the reflection and transmis-
sion properties for a single thin homogeneous layer. The reflection and trans-
mission of a slab twice as thick is found by juxtaposing two identical slabs and
summing the contributions from each slab.”'® The reflection and transmission
for an arbitrarily thick slab are obtained by repeatedly doubling until the desired
thickness is reached. The adding method extends the doubling method to dis-
similar slabs, thereby allowing one to simulate media with different layers and/
or internal reflection at boundaries.

The doubling method was introduced by van de Hulst for solving the radi-
ative transport equation in a slab geometry.” The advantages of the adding—
doubling method are that only integrations over angle are required, physical
interpretation of results can be made at each step, the method is equivalent for
isotropic and anisotropic scattering, and results are obtained for all angles of
incidence used in the integration.” The disadvantages are that it is (a) awkward
to calculate internal fluences, (b) restricted to layered geometries with uniform
irradiation, and (c) necessary that each layer have homogeneous optical proper-
ties. In practice, internal fluences are often not needed so (a) is not a problem.
When fluences are needed at a particular depth, they can be calculated by find-
ing the reflection and transmission matrices for light propagation through the
material above that depth as well as the matrices for everything below. These
matrices are used in Egs. (5.24) and (5.25) to find the upward and downward
radiance at the interface between these layers. The fluence follows directly once
the radiance as a function of angle is known. Items (b) and (c) place restrictions
on the sample geometry—the samples must have homogeneous layers and be
uniformly illuminated (e.g., finite beam irradiance is not allowed nor any situa-
tion causing variation in the light field perpendicular to the direction of propa-
gation). The adding—doubling method is well suited to iterative problems be-
cause it provides accurate total reflection and transmission calculations with
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relatively few integration points. The method is very fast for small numbers of
integration points, and consequently iteration is practical.

This chapter describes an implementation of the adding—doubling method
for solving the radiative transport equations numerically. Any phase function
may be chosen to characterize scattering in the medium and any tissue optical
thickness is possible. The method is accurate for any ratio of scattering to
absorption. Tissue layers with different optical properties may be added to-
gether to find the reflection and transmission for inhomogeneous layered media.
Light incident on a slab must be azimuthally independent. Boundaries may
have varied effects, but only those characterized by specular Fresnel reflection
are discussed.

In this chapter, the details of implementation are gathered from a range of
sources so that the reader may implement the adding—doubling method. The
basic equations have been outlined by Plass et al. and are repeated here for
completeness.” One especially tricky area is in the implementation of boundary
conditions for mismatched boundaries' and this aspect is treated in detail.

5.2. THEORY

The following assumptions are made throughout this chapter: the distribu-
tion of light is independent of time, samples have homogeneous optical proper-
ties, the sample geometry is an infinite plane-parallel slab of finite thickness,
the tissue has a uniform index of refraction, internal reflection at boundaries is
governed by Fresnel’s law, and the light is unpolarized. A nonabsorbing layer
with a different index of refraction may be present at the boundaries (glass
slide). Finally, the slab is assumed to have no internal sources.

This section has four parts. The first describes the nomenclature and geo-
metries used. The second gives explicitly the relationship between reflection
function R(v’, v) and the reflection matrix R;;. The third introduces quadrature
as an integration method. The fourth gives the matrix formulas for combining
two dissimilar layers.

5.2.1. Notation

Since the entire discussion that follows assumes azimuthal symmetry, the
behavior of a light ray is determined by the angle it makes with the normal. We
use the notion v = cos 8 to specify direction. If the absorption and single
scattering coeffcients are denoted by w, and p,, then the albedo is defined as a
= WM/(ps + W,). The single scattering phase function p(v) is the fraction of
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light scattered in direction v from the incident direction. The phase function is
normalized so that

1
J. pv) do = 2nf pv)dv =1 5.1
4rn -1
The scattering anisotropy g is defined as the average cosine of the phase func-
tion over all angles,

1

gEZﬂj

1p(V)v av (5.2)

The dimensionless optical distance T is defined as T = (u, + w,)d, where d is
the physical distance within the medium.

A cone of light incident at an angle v on an arbitrary turbid slab will
backscatter (reflect) and transmit different amounts of light depending on the
angle of departure. We will follow the definition of van de Hulst” for the
reflection R(v’, v) and transmission T(v’, v) functions. The reflection function
R(v', v) is defined as the radiance reflected by the slab in direction v for light
conically incident from the v’ direction (Fig. 5.1). The reflection is normalized
to an incident diffuse flux w. This definition has the advantage that R(v’, v) has
finite nonzero values when v = 0 or v/ = 0 and thereby improves the compu-
tational accuracy. Furthermore, R(V', v) is the ratio of the actual reflection
function to the reflection function of an ideal white Lambertian surface the
transmission function is defined smilarly.

With this definition of the reflection function, the reflected intensity distri-
bution I,.¢ for an azimuth-independent incident intensity I;, is

1
Ledv) = J; Lin(VHR(V', v) 2v' aV’ (5.3)

Both [;; and I..¢ have units of power per unit solid angle. To obtain the total
reflection for normal irradiance R,

Figure 5.1. Light incident at an angle v’ that is re- T .v)
flected and transmitted by a slab at an angle v. (
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L[ (1 — V'
R. = f f R, vy 2L =Y o vt avay

0 Jo 2v
1 (5.4)
= | R(, V) 2vdv
0
The total transmission for collimated irradiance T is
1
T. = j T(1, v) 2vdv (5.5)
0
The total reflection R; and total transmission T, for diffuse irradiance are
11
R; = J. J. R(', v) 2v' dv' 2vdv 5.6)
o Jo
and
1M
T, = f f V', v) 2V’ dv’ 2vdv 5.7
o Jo

5.2.2. Matrix Approximation

Consider a homogeneous slab with isotropic scattering (g = 0.0), a fixed
albedo (@ = 0.9), optical thickness (t = 1), and matched boundaries. For an
infinitely wide beam of light normally incident on this slab the reflection will
vary with the exit angle (Fig. 5.2). The reflection curve can be approximated by

Exit Angle (Degrees)

0408 T 60 50 40 30 200
| Normal Irradiance (
Reflection (a=0.9, g=0, T=1)
2v matched
1 boundaries
0.34
0.2, , : — ~
0 02 04 0.6 0.8 1

Cosine of Exit Angle (v)

Figure 5.2. Reflection from a normally irradiated slab with isotropic scattering, an optical thick-
ness of unity, and an albedo equal to 0.9. The four circles represent quadrature points.
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the four circles shown in Fig. 5.2. If more points are used, then the approxima-
tion will be better. The number of points will be denoted by M,and M = 4
gives a very fast, reasonably accurate estimate. Four approximation points are
used in the sample calculations. (The more accurate results tabulated at the end
of this chapter use M = 32.)

The four angles used to approximate the transmission are chosen according
to the quadrature scheme (see the next subsection). The angles shown in Fig.
5.2 are

A 0.09 ~ 85°
v, | _|041) _ |~ 66
vs| (079 | ~38° (3:8)
Vi 1.00 0°
The corresponding reflection values are
R(vy, Vi) 0.37
R(vs, Vo) | _ ] 0.32
R(va vs) | — | 024 5.9
R(V4, V4) 0.21

Similar vectors for reflection exist for the other three angles of incidence
Vi, V,, and v3. Combining these into a single matrix yields the reflection matrix
for this particular slab,

1.66 0.72 0.45 0.37
_ 072 052 037 032
R =045 037 028 024 (5.10)

0.37 0.32 0.24 0.21

Note that this reflection matrix is symmetric: R(V;, V)) = R(vj, v;). The individ-
ual entries in the reflection matrix can be greater than unity because each entry
is divided by twice the cosine of its quadrature angle.

5.2.3. Quadrature

Since the adding—doubling method consists of integrating various combi-
nations of reflection and transmission functions, the integration method is cru-
cial. For example, the total reflection for normal collimated irradiance is given
by

1
R, = J R(1, v) 2vav (5.11)
o
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This integral may be approximated using quadrature. For example, consider the
integration of a function f(x) over the interval (a, b) with a weighting function
g(x) using M points,

b M
f fg(x) dx = X fixpw; (5.12)

The integration points x; and weights w; are chosen in such a way that the
integration will integrate a polynomial of degree 2M (or possibly 2M — 2
depending on the method) exactly. The approximation for R, is

1 M
j R(1, V) 2vdv = D, 2viwRip (5.13)
0 i=1
The extension to two arbitrary functions is
1 M
f A(V,V') B(V, V') 2V' dv = X A;2viw,Bj (5.14)
0 j=1

This shows explicitly the relation between integration and matrix multiplica-
tion, the only difference being the factor of 2v,w; that must be included,

M 1
AB=XA2vwBj =~ f A(V,V)B(V', V") 2v" dv’ (5.15)
=1 0
The identity matrix E for matrix multiplication of this type is
1
E; = —3; 5.16
ij 2ViWi 81] ( )

Here 8; is the Kronecker delta. Grant and Hunt have shown that an algebra
based on this implied multiplication is a semigroup,”* and have proven that all
manipulations that follow are valid.

5.2.4. Matrix Relations for Adding Layers

This derivation follows Plass et al."® with the terms representing internal
light sources omitted for clarity. Define 7" and R™ as the transmission and
reflection operators for light incident on side » and moving towards side m of a
slab. Homogeneous tissues have no preferred direction and so 7™ = T™" and
R™ = R™. As in Fig. 5.3, let the vector L (v) denote the radiance incident
on side 0 in a downward direction (indicated by the +). Let L' ~(v) denote the
radiance incident on side 1 in an upward direction (indicated by the —). Sim-
ilarly define L°~ and L'" as the radiance exiting from sides 0 and 1, respec-
tively.
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+
L()

G
Boundary 0
;; :' Boundary 1

L) Ly

Figure 5.3. Nomenclature for the derivation of the adding—doubling equations. A minus sign indi-
cates upward travelling light and a plus sign downward directed light.

The downward radiance from side 1 is the sum of the transmitted incident
radiance from side 0 and the reflected radiance from side 1,

L't = T'L°F + R"L'™ (5.17)

The upward radiance from side 0 is the transmitted radiance from side 1 and the
reflected radiance from side 0,

L’ = RO'L°" + TL'~ (5.18)
Analogous formulas apply to a layer with sides 1 and 2,

L = T2L'" + RP'L*” (5.19)
and

L'" =RZL'" + T*'L*” (5.20)

Juxtaposition of layers (01) and (12) yields a combined layer (02). The equa-
tions for the layer with sides 0 and 2 are

2% = 79210+ + R®L?" (5.21)
and
[0~ = RO2LO* + 1L~ (5.22)

Presumably, the reflection and transmission operators for the (01) and (12)
layers are known. To express reflection and transmission operators for the (02)
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layer in terms of the individual layers, we left-multiply Eq. (5.17) by R'? and
add it to Eq. (5.20) to get

(E — RVR') L'~ = RPTO'LO+ 4+ 7212~ (5.23)

Solving for L'~ yields

Ll— . (E _ RIZRIO)—I(R12T01L0+ + T21L2—) (524)
This equation expresses the upward radiance at the interface between two
layers. An equation for the downward midlayer radiance can be obtained by
left-multiplying Eq. (5.20) by R'? and adding it to Eq. (5.17):

L1+ == (E _ RIORIZ)—I(T 01L0+ 4 R]OTZILZ—) (525)
Substituting Eq. (5.25) into Eq. (5.19) yields

L2+ N [TIZ(E _ RIORIZ)—IT 0]] L0+
.0 [TIZ(E _ R10R12)—1 R]OT 21 + R21] L2— (526)

Comparing this with Eq. (5.21) indicates that
T% = T'2(E — ROR!%)~ 1 01 (5.27)
and
R® = 1'%F — R°R'2)-1 piop 21 | poi (5.28)

Similarly, Eq. (5.24) can be substituted into Eq. (5.18) and compared to Eq.
(5.22) to obtain

T 20 _ TIO(E _ RIZRIO)—IT 21 (529)

and
R02 — TIO(E _ RIZRIO)—I R12T01 o+ ROI (530)
Equations (5.27)-(5.30) define the reflection and transmission operators
for a combined layer in terms of the operators for each individual layer. Repeat-
edly using these equations allows the reflection and transmission of an arbitrary

layered sample. If the internal radiance is required, then the sample is divided
into two pieces at the depth at which the radiance is wanted. After calculating
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the reflection and transmission properties of both pieces, the internal radiance is
found using Egs. (5.24) and (5.25).

The equations given above are entirely appropriate if the direct beam coin-
cides with one of the quadrature angles. If this is not true, then the equations for
doubling become more complex. Equations with separate terms for primary and
scattered light are given in Hansen and Travis® and van de Hulst."”

5.3. IMPLEMENTATION

The implementation of the adding—doubling method for calculating the
reflection and transmission of a turbid slab in a medium with a different index
of refraction consists of the following steps:

* Choose quadrature scheme.'

* Generate starting layer.”

* Generate boundary layers.”

* Double starting layer until desired thickness is reached.”
* Add boundary layers. '

* Calculate reflection and transmission.*

5.3.1. Quadrature

Nearly every integration in the adding—doubling method is over the range
zero to one. Three quadrature methods which naturally span this range and have
the desired weighting function are Gaussian, Lobatto, and Radau.'"*? These
methods have nearly equal accuracy,' but vary in whether or not the endpoints
of integration are included as quadrature points. The specific choice of quadra-
ture methods is determined by the boundary conditions. In Gaussian quadrature,
neither endpoint (0 or 1) is included. In Lobatto quadrature both endpoints are
included. In Radau quadrature, one quadrature point may be specified and nei-
ther endpoint need be included. To avoid extrapolation/interpolation errors, the
VvV = 1 endpoint (normal incidence) is usually chosen as a quadrature angle.

Internal reflection at the boundaries (due to mismatched indices of refrac-
tion) is included in the calculation by including an additional layer for each
mismatched boundary. The transmission matrix of such a layer is diagonal and
any entries on the diagonal that correspond to angles greater than the critical
angle will be zero. This changes the effective range of integration. If the cosine
of the critical angle is denoted by v, for a boundary layer with total internal
reflection, then the effective range of integration is reduced to v—1 (because
the rest of the integration range is now zero). To maintain integration accuracy,
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the integral is broken into two parts and each is evaluated using quadrature over
the specified subrange,

1 c
J A(v, V)B(V', V") 2v' dv' = JN A(VVHB(V', V") 2V' dV’
0 0

1 (5.31)
+ j A(v, V)B(V', V") 2v' dv’
vc
Here A(v, v') and B(v, V') represent reflection or transmission functions, and if
either is identically zero for values of v less than v,, the integration range is
reduced. The calculations in this paper used Gaussian quadrature® for the range
from O to V., thereby avoiding calculations at both endpoints (in particular, the
angle v = 0 is avoided, which may cause division by zero). Radau quadrature
is used for the range from v, to 1, so v = 1 could be specified as a quadrature
point.” Each part of the integration range gets half of the quadrature points;
when no critical angle exists, Radau quadrature is used over the entire range.
Radau quadrature requires finding the n roots of the following equation®”:

X; — 1
P,_i(x) +

P,_i(x) =0 (5.32)

Here, P,(x) is the nth Legendre polynomial of order zero and P, _(x;) is the
first derivative of the (n— 1)th Legendre polynomial. These roots are the re-
quired quadrature points for the integration range — 1 to 1. To modify for the
range V, to 1, the following relations are needed to find the necessary integra-
tion angles v; and weights w;:

1 +v 1 —v 1 —v
VY = < — < i d = < 5.33
2 IR e Y AN Tl
The nth integration angle v,, corresponds with x, = —1 (normal incidence).

The n integration points for Gaussian quadrature for the interval —1 to 1
are the roots of

P,x) =0 (5.34)
The required adjustment for the integration range 0tov,is

Ve

T 1 - D) PP

a —x) and w; (5.35)

An algorithm which takes advantage of the many properties of orthogonal poly-
nomials to find all the roots of a particular Legendre polynomial is given by
Press et al.”®
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5.3.2. The Redistribution Function

The single scattering phase function p(v) for a tissue determines the
amount of light scattered at an angle v = cos 8 from the direction of incidence.
The dot product of the unit vectors §; and §; associated with the incident and
scattered light directions

§;-8 = I8 s cos & = v (5.36)

can be used to relate v to the angles v, and V; (see Fig. 5.4). If the inward
normal to the slab is parallel to the z axis and §; lies in the xz plane, then §; =
(sin 6;, 0, cos 6,) = V1 — vZ 0, v,). If 0 is the azimuthal angle from the
positive x axis to the projection of §; onto the xy plane, then

§; = (sin ; cos ¢, sin 6, sin ¢, cos 0) = (V1 — vf cos ¢, V1 — vjz sin ¢, v;).
The subtended angle v is then given by the dot product
v =vy; + V1 — viV1 — v?cos ¢ (5.37)

The redistribution matrix k; determines the fraction of light scattered from
an incidence cone with angle v; into a cone with angle v;. The redistribution
matrix is calculated by averaging the phase function over all possible azimuthal
angles for fixed angles v; and Vi,

1 2n
h(v;, v)) = EJ poviv; + V1 — v V1 — V2 cos ¢) do (5.38)
0

Note that the angles v; and v; may also be negative (light travelling in the
opposite direction). The full redistribution matrix may be expressed in terms of
a2 X 2 matrix of M X M matrices

h= h™*
h = [h+7 h++] (539)

y
o) |
Figure 5.4. Nomenclature for derivation of subtended
X

angle.
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The first plus or minus sign in the superscript indicates the sign in front of the
incident angle and the second is the sign of the direction of the scattered light.

When the cosine of the angle of incidence or exitance is unity (v; = 1 or
v; = 1), then the redistribution function A(1, v;) is equivalent to the phase
function p(v;). In the case of isotropic scattering, the redistribution function is a

constant,

1
h(vi, v) = p(v) = — (5.40)
4
THT "
For Henyey—Greenstein scattering, the redistribution function can be expressed
in terms of the complete elliptic integral of the second kind E(x),”

_ 2
h(v,-,v,)—2 1-¢ E( & ) (5.41)

_n(a—y)\/a+'y Voc+y

where g is the average cosine of the Henyey—Greenstein phase function and

=1+g -2y, and y=2V1- vVl - v/ (542

The function E(x) may be calculated using algorithms found in Press et al.”

Other phase functions require numerical integration of Eq. (5.38). If the
phase function is highly anisotropic, then the integration over the azimuthal
angle is particularly difficult and care must be taken to ensure that the integra-
tion is accurate. This is important because errors in the redistribution function
enter directly into the reflection and transmission matrices for thin layers. Any
errors will be doubled with each successive addition of layers and small errors
rapidly increase.

An alternate way to calculate the redistribution function is the §—-M
method.” This method works especially well for highly anisotropic phase func-
tions. The number of quadrature points is specified by M. The §—M method
approximates the true phase function by a phase function consisting of a Dirac
delta function and M — 1 Legendre polynomials

prV) = 28" 81 —v) + (1 — g 2 2k + DXFP (V) (5.43)

where

_ oM 1
s X T8 g = = ['pvPuv) av (5.44)
Xk 1 — gM Xk 2 Op k :
When the 8—M method substitutes p*(v) — p(v), then both the albedo and
optical thickness must also be changed, a* — a and T — 7. This approxima-
tion is analogous to the similarity transformation often used to improve the

diffusion approximation by moving a part (g") of the scattered light into the
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unscattered component.’ The new optical thickness and albedo are, respec-
tively,

T* a Myt and * il
= - a a* = a—;
J 1 — ag™

(5.45)

This is equivalent to transforming the scattering coefficient as uf = (1 —
&M). The redistribution function can now be written as

M-—1
h*(v;, v) = kzo (2k + x5 Pk(vi)Pk(vj) (5.46)
For the special case of Henyey—Greenstein phase function,
k M
-8 "8
Xr= T (5.47)

5.3.3. Layer Initialization

Starting the adding—doubling method requires knowledge of the reflection
and transmission operators for a thin slab. Several methods exist for obtaining
these operators: dizmond initialization,” infinitesimal generator,” and succes-
sive scattering.”® Wiscombe found successive scattering to be the worst, and that
diamond initialization was better than the infinitesimal generator method about
two-thirds of the time.* The optical thickness of the starting layer, AT*, varies
with the smallest quadrature angle, since the optical thickness should satisfy™

At < v, (5.48)

This relation between distance and angles is possible since both v and At* are
dimensionless.

The basic idea behind diamond initialization is to rewrite the time-inde-
pendent, one-dimensional, azimuthally averaged, radiative transport equation

JoL(T, * 1
vEEV) | revy = 9—J‘ h(v, V)L(T, V') dv’ (5.49)
ot 2 J-1
in a discrete form as
oL(T, £ V)
vy, ——— + L(t, £ V)
ot
(5.50)

a* M
= ?lej [h(v,, VIL(T, £V)) + h(v;, —V)L(T, V)]

When this equation is integrated over a thin layer from T to Tf, we get
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VLt £Vv) — L(t§, £Vvy)] + AT* Lip(£v)

a* (5.51)

= 721w,- AT* [h(v;, V)L1o(£V) + h(V;, =V)L1p(FV))]
~

where AT* = 1F — 1§ The integrated radiance L;/(V) is given by

Ti

1
Lyp(v) = AT*L L(z, v)dt (5.52)

Diamond initialization assumes that this integral can be replaced by a simple
average of the radiances at the top and bottom of the layer,

1
Lip(v) = 5 [L(W V) + L(1f, V)] (5.53)

After suitable algebraic manipulations,” Eq. (5.52) can be used to express
the reflection and transmission of a thin layer with thickness At* as, respec-
tively,

31 ¢
Ra» = 2GB(E + A)™! and Ty = 2G — E (5.54)
where

1 S gk AT* a*[ 1 _ Art*
A:[Vi SU](E—7h++C)T and BZ? ;8,7 ht~ c—
(5.55)

and )

5y i

G=[E+A—-BE+A) '"Bl"'" ad ¢ =[wd] (556

These equations were used to obtain the starting reflection and transmission
matrices for all the calculations in this chapter.

5.3.4. Boundary Layers

Boundary conditions are included in the transport calculation by using the
adding—doubling equations to add an additional layer that imposes the neces-
sary boundary conditions. The reflection and transmission matrices for this
boundary layer depend on the physics of the light interaction at the interface.
For example, if we assume that specular reflection is approptirate, then

r(vy)
RO](Vi’ Vj) = W 8,1 and TOI(V,', Vj) =

1 — nv)

2
aV)
—19%; (5.57
2\’,' (nm) Y ( )

This equation assumes that light is passing from a medium (01) with an index
of refraction ng; into a medium (12) with an index of refraction n;, (Fig. 5.5).
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o

boundary 01

slab 12
Figure 5.5. Geometry for calculating light

transport through a slab with an index of refrac-  boundary 23
tion different from its environment.

The reflection ~(v,) is the usual unpolarized Fresnel reflection function. The
Kronecker delta makes both matrices diagonal; this ensures that light is spec-
ularly reflected at an angle equal to the incidence angle. The square of the ratio
of the indices of reflection accounts for the difference in radiance across a
mismatched boundary (due to refraction, also known as the n2-law of radiance®).
Finally, the factor of 2v; ensures conformity with our original definition of the
reflection function.

All the angles v are for light inside the slab. As light leaves the slab it will
be refracted, and therefore the exiting light angles will differ from v. Some
light will be totally internally reflected and therefore such angles in the slab do
not correspond to any physical angle outside the slab. By using interior angles,
it is possible to (1) select angles that would otherwise be unphysical due to
refraction, (2) let the reflection and transmission matrices for the boundaries be
diagonal, and (3) optimize the selection of quadrature angles for multiple light
scattering. In an air-glass—slab configuration, the critical angle is defined as
that for light travelling from a material with index of refraction of the slab to
the outside—the presence of a glass slide does affect the maximum angle at
which light can exit the slab.

The reflection and transmission operators for light travelling from the me-
dium (12) into the medium (01) are, respectively,

4
ROv,v) =R (v,v) and  T'%v,v) = T°(v, v) (?) (5.58)
: 12

Since light is refracted at the boundary, care must be taken to ensure that the
incident and reflected fluxes are identified with the proper angles. If a glass
slide is present at the boundary, then either two separate boundary layers must
be added, or a single boundary layer that includes all the multiple internal
reflection properties in the glass slide must be used.

If equal boundary conditions exist on both sides of the slab, then, by sym-
metry, the transmission and reflection operators for light travelling from the top
to the bottom are equal to those for light propagating from the bottom to the
top. Consequently, only one set need be calculated. Let the top boundary be
layer (01), the turbid slab layer (12), and the bottom layer (23). Since the
boundary conditions on each side are equal, we have R°! = R32, R'© = R%, 70!
= T, and T' = T%. The unusual numbering arises because light exits the
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medium at the top surface by going from 1 to 0, and leaves though the bottom
by going from 2 to 3. The reflection and transmission for the entire slab, includ-
ing boundaries, is

T = T'%E — R® R'%)~ 7% (5.59)
and
R = T'° (E — R R'%~! R®T°! + R (5.60)
where
T = T2 (E — R R'%)~!7°! (5.61)
and
R® = T'2E — R R'?)~! RI°72! + R*! (5.62)

Further increases in efficiency may be made by exploiting the diagonal nature
of the reflection and transmission operators for the boundary layers, since most
matrix—matrix multiplications above become vector—matrix multiplications.

5.3.5. Example

In this section we show the intermediate calculations necessary for a turbid
sample using four integration points. The sample has a single scattering albedo
of a = 0.9 and an optical thickness of T = 1. The scattering is characterized by
Henyey—Greenstein scattering with an anisotropy of g = 0.9. The index of
refraction of the sample is n = 1.5, and the index of refraction of the surround-
ing medium is unity. Light interaction at the boundary is assumed to follow
Fresnel reflection for unpolarized light.

The first step is to choose appropriate quadrature angles. In this example,
the critical angle for total internal reflection is 6, = 41.8°, which means v, =
0.745. Therefore, two quadrature angles between o and 0.745 are chosen using
Gaussian quadrature and two angles between 0.745 and 1 are chosen using
Radau quadrature. The resulting quadrature angles and weights using Eqgs.
(5.32)—(5.35) are, respectively,

Vl 016 Wi 037
_ V2 _ 059 _ Wy _ 037
Vil T loss| ™ wi=1u T oo (5.63)

Vg 1.00 Wy 0.06
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Note that these angles are measured inside the slab, consequently the two
smaller angles correspond to virtual angles in the surrounding medium. These
quadrature angles are only slightly different from angles obtained using only
Radau quadrature [Eq. (5.8)]. However, the differences in accuracy are dra-
matic.

When scattering is specified by the Henyey—Greenstein phase function and
the anisotropy is 0.9, then the 8—M method requires that the optical depth T be
replaced by T* = 0.410. Since AT* must be less than v;, and we want At* - 2"
= 0.410 (so that n doubling steps will yield a slab with the desired thickness),
we find that the largest value of At* possible is At* = 0.102. This corres-
sponds to At = 0.25 and just two doubling steps are needed to reach T = 1.
The redistribution function is found using Eq. (548,

h™™ h~t

h = [h+— h++}
1.61 1.30 0.66 —0.04 1.35 0.66 0.23 —0.03
1.30 1.94 1.96 1.74 0.66 0.06 0.09 0.35 :l

0.66 1.96 3.16 4.24 0.23 0.09 0.12 0.15
—0.04 1.74 4.24 6.85 -0.03 0.35 0.15 -0.37

0.66 0.06 0.09 0.35 1.30 1.94 1.96 1.74
0.23 0.09 0.12 0.15 0.66 1.96 3.16 4.24

l: 1.35 0.66 0.23 —0.03 1.61 1.30 0.66 -0.04
—0.03 0.35 0.15 —0.37 —0.04 1.74 4.24 6.85:'

\v.UTy

Note that the boldface entries are the only unique values because of symmetry,
e.g., h(—v; —Vv) = h(v;, vj) and h(v;, V)) = h(vj, v)).

The reflection and transmission for the starting layer are found using dia-
mond initialization. The reflection and transmission matrices for the initial layer
(At = 0.25) are

0.69 0.11 0.03 —0.00

0.11 0.01 0.00 001
R 0.03 0.00 0.00 0.00 (3:63)
—0.00 0.01 0.00 —0.01
-
5.14 021 0.08 0.00
| 021 202 007 005 5.6

0.08 0.07 2.87 0.09
0.00 0.05 0.09 7.21

The negative entries in the reflectance matrix are the result of using a small
sumber of quadrature angles to simulate highly anisotropic scattering. Despite
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the impossibility of negative reflectances, the integrated quantities R. and R,
are always positive. If the reflectance at a particular angle for light incident at a
particular angle is of interest, then many more quadrature points must be used.
This ensures that the highly anisotropic phase functions are approximated accu-
rately. The transmission values on the diagonal of the matrix are much greater
than one because unscattered light is included. To include the unscattered light,
it must be divided by a factor of 2w,v; to ensure that the definitions for the
integrated quantities, e.g., 7. and T, are correct.

After doubling the layer thickness once, we have the reflection and trans-
mission for a layer, T = 0.5 thick:

0.95 0.19 0.06  0.00
_10.19 0.02 0.01 0.02
R = 0.06 0.01 0.01 0.01 (5.67)

0.00 0.02 0.01 —0.01

and

3.15 0.32 0.13 0.01
1032 1.79 0.13 0.10
T'=1013 013 261 0.17 (5:68)

0.01 0.10 0.17 6.63

Doubling once more yields matrices for a sample with the desired optical thick-
ness T = 1,

1.11 0.26 0.09 0.01
0.26 0.04 0.02 0.03

R=1000 002 002 o001 (5.69)
0.01 0.03 0.01 —0.02
and
124 039 0.18 0.03
o 039 143 022 017 -

0.18 0.22 2.18 0.29
0.03 0.17 0.29 5.60

The layers needed to account for internal reflection at the boundaries are
found using the usual unpolarized Fresnel reflection formula,
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0.117
0
0
0

Il

and

Adding these boundary layers to the top and bottom of the T

0

0
0

0

0.438 0
0.024

0

121

0
0
0 (5.71)
0.005

(5.72)

1 matrices

yields the transport matrices for the entire layer,

8.52
0.00
0.00
0.00

and

0.00
0.00
0.00
0.00

0.00
2.28
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.41
0.07

0.00
0.00
1.92
0.29

0.00
0.00
0.07
0.48

(5.73)

0.00
0.00
0.29
5.19

(5.74)

Many of the entries are zero because of total internal reflection inside the slab.
The total reflection for normal irradiance R, is found using Eq. (5.13). When
values from Eqs. (5.63) and (5.73) are substituted into this equation, it yields

R. = 2(0.83)(0.19)(0.07) + 2(1.00)(0.06)(0.48) = 0.087( (5.75)

Similarly, the total transmission for normal irradiance is

T. = 2(0.83)(0.19)(0.29) + 2(1.00)(0.06)(5.19) = 0.75%% | (5.76)

The discrepancy between the final result and multiplying the terms out is the
result of including only two decimal places.
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5.4. CALCULATONS

This section gives tables of accurate four-digit reflection and transmission
results for various albedos and optical thicknesses. The first four tables are
calculations for slabs with matched boundary conditions. The last two tables
give reflection and transmission values for an air—glass—tissue—glass—air sand-
wich.

Tables 5.1 and 5.2 give reflection and transmission for collimated light
incident normally on slabs of various optical depths and albedos. Isotropic scat-
tering was assumed for these tables. Values for reflection and transmission for
various optical depths T = 27> to T = 2° and T = = are identical to those
tabulated by van de Hulst."”

Table 5.1. Total Reflection from a Slab for Normal Irradiance as a Function of Optical
Depth (t = 2") and Albedo (a). Scattering is Isotropic and the Boundary Conditions are
Matched

-15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-13 .0001 .0001 .0001 .0001 .0000 .0000 .0000 .0000
-12 .0001 .0001 .0001 .0001 .0001 .0001 .0000 .0000
-11 .0002 .0002 .0002 .0002 .0002 .0001 .0001 .0000
-10 .0005 .0005 .0005 .0004 .0004 .0003 .0002 .0001
-9 .0010 .0010 .0009 .0009 .0008 .0006 .0004 .0002
-8 .0019 .0019 .0019 0018 0016 .0012 .0008 .0004
-7 .0039 .0039 .0037 .0035 .0031 .0023 .0015 .0008
-6 .0078 .0077 .0074 .0069 .0062 .0046 .0030 .0015
-5 0154 0152 0146 .0137 0121 .0090 .0059 .0029
-4 .0303 .0300 0286 .0269 0236 0173 0112 .0055
-3 .0589 0582 0553 0518 .0450 .0323 .0207 .0099
-2 1117 .1101 .1039 .0965 .0824 .0573 .0356 0167
-1 2025 .1989 .1851 .1690 .1401 .0927 .0553 .0250
0 3413 3329 3017 2674 .2108 1295 .0734 .0320

1 5175 4975 4287 3616 .2659 1510 .0820 .0349

2 .6909 .6450 5124 4081 .2840 .1553 .0833 0352

3 .8218 7288 5344 4148 .2853 1554 .0834 0352
4 .9036 7513 5355 4149 .2853 1554 .0834 .0352
5 .9498 7527 5355 4149 .2853 1554 .0834 .0352
6 9743 7527 .5355 4149 .2853 1554 .0834 .0352
7 9870 7527 .5355 4149 .2853 1554 .0834 .0352

8 .9935 7527 5355 4149 .2853 1554 .0834 .0352
9 .9967 7527 .5355 4149 .2853 1554 .0834 .0352




THE ADDING-DOUBLING METHOD 123

Tables 5.3 and 5.4 give reflection and transmission for anisotropic scatter-
ing with a Henyey—Greenstein phase function. Many values in this table are
identical to those tabulated by van de Hulst (t = 2°tot = 2% and T = ).

The implementation of boundary conditions is verified by comparison with
work by Giovanelli,” who calculated reflection from an isotropically scattering
semi-infinite slab bounded by glass slides. The indices of refraction were ng,,
= 1.333, nglass = 1.532, and ngyge = 1.0. Giovanelli obtains R, = 0.6541
for a = 0.99 and the adding—doubling method yields R, = 0.6547. This is
satisfactory, since Giovanelli states that the fourth digit in his values is ques-
tionable. It is unfortunate that more tabulated values for mismatched boundaries
are not available in the literature.

Table 5.2. Total Transmission by a Slab for Normal Irradiance as a Function of Optical
Depth (t = 2") and Albedo (a). Scattering is Isotropic (g = 0) and the Boundary
Conditions are Matched

n a=1 a=.99 a= .95 a=.9 a=.8 a=. a=4 a=.2
-15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
-14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 9999
-13 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
-12 .9999 .9999 9999 .9999 .9999 .9998 .9998 .9998
-11 .9998 9998 9997 .9997 .9997 .9997 .9996 .9996
-10 9995 .9995 9995 .9995 .9994 .9993 .9992 9991
-9 9990 .9990 .9990 .9989 .9988 .9986 .9984 9982
-8 9981 .9980 .9980 9979 9977 9973 9969 .9965
-7 .9961 .9961 .9959 9957 9953 .9945 19938 .9930
-6 9922 9922 9918 9914 .9906 9891 9875 .9860
-5 9846 .9844 .9838 9830 9814 9782 9751 9721
-4 9697 9693 .9680 9663 9630 9567 9506 .9449
-3 9411 .9403 9375 .9340 9272 9146 .9030 .8924
-2 .8883 .8867 .8806 .8733 .8595 .8348 8136 7951
-1 1975 7941 .7808 7654 7378 6928 6577 .6296
0 .6587 6510 .6226 5916 5414 4714 4251 3923
1 4825 4657 4093 .3565 .2859 2111 1730 1502

2 .3091 2755 .1869 1285 .0751 .0394 0272 0215

3 1782 1221 .0408 .0160 .0046 .0012 .0006 .0004

4 .0964 .0296 .0020 .0002 .0000 .0000 .0000 .0000
5 .0502 .0019 .0000 .0000 .0000 .0000 .0000 .0000

6 0257 .0000 .0000 .0000 .0000 .0000 .0000 .0000
7 .0130 .0000 .0000 .0000 .0000 .0000 .0000 .0000

8 .0065 .0000 .0000 .0000 .0000 .0000 .0000 .0000
9 .0033 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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Table 5.3. Total Reflection for Normal Irradiance as a Function of Optical Depth (t =
2") and Albedo (a) for Three Different Anisotropies (g = 0, g = 0.5, and g = 0.875)
Using a Henyey—Greenstein Phase Function and Matched Boundary Conditions

g=0 g=.5 g = 875

-15  .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-14 0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-13 .0000 0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000
-12 .0001 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000
-11  .0001 .0002 .0002 .0000 0001 .0001 .0000 .0000 .0000

-10  .0003 .0004 .0005 .0001 .0002 .0002 .0000 .0000 .0000
-9 .0006 .0009 .0010 .0002 .0003 .0003 .0000 .0001 .0001
-8 .0012 0018 .0019 .0004 .0006 .0007 .0001 .0001 .0001
-7 .0023 .0035 .0039 .0008 .0012 .0013 .0001 .0002 .0002
-6 .0046 .0069 .0077 .0016 .0024 .0028 .0003 .0004 .0005

-5 .0090 0137 0152 0031 .0048 0053 .0005 .0008 .0009

-4 .0173 .0269 .0300 .0060 .0096 0107 .0010 .0016 .0018
-3 .0323 0518 0582 .0114 .0190 0216 .0019 .0033 .0037
-2 0573 .0965 .1101 .0208 0375 .0438 .0035 .0064 0076
-1 .0927 .1690 .1989 .0352 0720 .0879 .0059 0125 0157

0 .1295 2674 .3329 .0528 .1298 1707 .0089 .0238 0327

1510 3616 4975 .0658 .2045 .3053 .0116 .0422 .0691
1553 4081 .6450 .0698 2612 4698 0128 .0657 1417
1554 4148 7288 .0700 2770 .6001 0129 .0826 .2584
.1554 4149 7513 .0700 2778 .6561 0129 .0864 3753

.1554 4149 1527 .0700 2778 .6644 0129 .0866 4311
1554 4149 1527 .0700 2778 .6646 .0129 .0866 4395
1554 4149 1527 .0700 2778 .6646 .0129 .0866 4397
1554 4149 7527 .0700 2778 .6646 .0129 .0866 4397
1554 4149 7527 .0700 2778 .6646 .0129 .0866 4397

O 00 AN BN -




Table 5.4. Total Transmission for Normal Irradiance as a Function of Optical Depth
(t = 2") and Albedo (a) for Three Different Anisotropies (g = 0, g = .5, and g =
0.875) Using a Henyey—Greenstein Phase Function and Matched Boundary Conditions

g=0 g=3S5 g = 875

-15 1.0000 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
-4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
-13 .9999 .9999 .9999 .9999  1.0000  1.0000 29999 1.0000  1.0000
-12 .9998 9999 .9999 .9999 .9999  1.0000 29999 1.0000  1.0000
-11 9997 .9997 9998 .9998 .9999 .9999 .9998 .9999  1.0000

-10 - .9993 .9995 .9995 .9995 .9998 .9998 .9996 .9999  1.0000
9 .9986 .9989 9990 .9990 .9995 .9996 .9992 9998 .9999
-8 .9973 9979 .9980 .9980 .9990 .9993 .9984 .9995 .9998
-7 .9945 .9957 9961 9961 .9980 .9986 .9967 9990 .9997
-6 9891 9914 .9921 .9921 .9960 9972 .9935 .9980 .9994

-5 9782 .9830 9844 .9843 .9920 9944 9870 9960 9988
- 9567 .9663 .9693 9685 .9839 .9886 9741 9921 9975
-3 9146 9340 .9403 19372 9675 9770 .9487 9841 .9950
-2 .8348 .8733 .8867 .8758 9341 .9533 .8993 9679 .9898
-1 .6928 7654 7940 7602 .8672 .9057 .8068 .9354 .9790
0 4714 .5916 6510 .5629 7391 .8145 .6458 .8702 9558
1 2111 .3565 4657 2955 .5233 .6603 4067 7432 9057
2 .0394 1285 2755 .0744 .2505 4527 1539 5212 .8001
3 .0012 .0160 1221 .0041 .0544 2438 .0197 2335 .6081
4 .0000 .0002 .0296 .0000 .0025 .0860 .0003 .0410 3521
5 .0000 .0000 .0019 .0000 .0000 .0120 .0000 .0012 1263
6 .0000 .0000 .0000 .0000 .0000 .0002 .0000 .0000 0171
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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Table 5.5. Total Reflection as a Function of Optical Depth (t = 2") and Albedo (a) for
Three Different Anisotropies (g = 0, g = .5, and g = 0.875) Using a Henyey—Green-
stein Phase Function. The Slab (ng,, = 1.4) is Bounded by Glass (1as = 1.5) and Air
(nair = 1.0)

g=20 g=375 g = 875

-15  .0789 0790 .0790 .0789 .0790 .0790 .0789 .0789 .0789
-14  .0790 .0790 .0790 0789 .0790 .0790 0789 .0789 .0790
-13 .0790 0790 .0790 .0789 .0790 .0790 .0789 .0789 .0790
-12 - .0790 .0790 .0790 .0790 .0790 .0790 .0789 .0790 .0790
-11  .0790 .0791 0791 .0790 .0790 0791 .0789 .0790 .0790

-10  .0790 .0792 0793 0790 0791 0792 .0789 .0790 .0790

-9 .0791 0795 0797 0790 0792 .0794 .0789 .0790 .0790
-8 .0793 .0801 .0805 .0790 .0795 0799 .0789 .0790 .0791
-7 .0796 .0812 .0821 .0790 .0801 .0808 .0788 0791 .0793
-6 .0801 .0834 .0853 0791 0812 .0825 .0786 .0792 .0797
-5 0813 .0878 .0915 .0793 .0834 .0861 .0782 .0795 .0804
-4 .0835 .0962 .1037 .0795 .0877 .0932 .0774 .0800 .0819
-3 .0875 1120 .1269 .0800 .0959 .1069 .0760 .0809 .0850
-2 .0939 1399 .1695 .0804 1107 1331 0732 .0827 .0910
-1 11025 .1831 2408 .0801 .1348 .1801 .0682 .0857 .1029

0 .1098 2348 .3429 0775 .1659 2547 .0606 .0902 1263

1122 2721 4569 0724 .1883 .3482 0518 .0944 .1693
1122 .2835 .5540 .0693 .1905 4339 .0464 .0920 2328
1122 .2845 .6134 .0691 .1886 4973 0454 .0823 2875
1122 .2845 .6307 .0691 .1885 5273 0454 .0786 .3096

1122 .2845 6319 .0691 .1885 .5320 .0454 .0784 3165
1122 .2845 6319 .0691 .1885 5321 .0454 0784 3176
1122 2845 .6319 0691 .1885 5321 .0454 .0784 3176
1122 .2845 6319 .0691 .1885 5321 .0454 .0784 3176
1122 .2845 6319 .0691 .1885 5321 .0454 0784 3176

O o0~ AW~
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Figure 5.5. Geometry for calculating light

transport through a slab with an index of refrac-  boundary 23
tion different from its environment.

The reflection ~(v,) is the usual unpolarized Fresnel reflection function. The
Kronecker delta makes both matrices diagonal; this ensures that light is spec-
ularly reflected at an angle equal to the incidence angle. The square of the ratio
of the indices of reflection accounts for the difference in radiance across a
mismatched boundary (due to refraction, also known as the n2-law of radiance®).
Finally, the factor of 2v; ensures conformity with our original definition of the
reflection function.

All the angles v are for light inside the slab. As light leaves the slab it will
be refracted, and therefore the exiting light angles will differ from v. Some
light will be totally internally reflected and therefore such angles in the slab do
not correspond to any physical angle outside the slab. By using interior angles,
it is possible to (1) select angles that would otherwise be unphysical due to
refraction, (2) let the reflection and transmission matrices for the boundaries be
diagonal, and (3) optimize the selection of quadrature angles for multiple light
scattering. In an air-glass—slab configuration, the critical angle is defined as
that for light travelling from a material with index of refraction of the slab to
the outside—the presence of a glass slide does affect the maximum angle at
which light can exit the slab.

The reflection and transmission operators for light travelling from the me-
dium (12) into the medium (01) are, respectively,

4
ROv,v) =R (v,v) and  T'%v,v) = T°(v, v) (?) (5.58)
: 12

Since light is refracted at the boundary, care must be taken to ensure that the
incident and reflected fluxes are identified with the proper angles. If a glass
slide is present at the boundary, then either two separate boundary layers must
be added, or a single boundary layer that includes all the multiple internal
reflection properties in the glass slide must be used.

If equal boundary conditions exist on both sides of the slab, then, by sym-
metry, the transmission and reflection operators for light travelling from the top
to the bottom are equal to those for light propagating from the bottom to the
top. Consequently, only one set need be calculated. Let the top boundary be
layer (01), the turbid slab layer (12), and the bottom layer (23). Since the
boundary conditions on each side are equal, we have R°! = R32, R'© = R%, 70!
= T, and T' = T%. The unusual numbering arises because light exits the
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Tables 5.5 and 5.6 give reflection and transmission for an air—glass—tis-
sue—glass—air sandwich. These values have not been tabulated elsewhere, and
may serve as reference values for testing Monte Carlo implementations and
various approximate models (e.g., diffusion).

5.5. CONCLUSIONS

The adding—doubling method has been implemented with boundary con-
ditons and scattering functions similar to those for many biological tissues. The
intermediate details have been described for a sample calculation. The fast and
accurate nature of this method for any ratio of scattering to absorption, for any
scattering anisotropy, and for any boundary conditions makes it useful for all
one-dimensional light transport problems. The tabulated reflection and trans-
mission may be used to evaluate the accuracy of other light transport models.
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