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ABSTRACT 

The propagation of light through complex structures, such as biological tissue, is a poorly understood phenomenon. 
Typically the tissue is modeled as an effective medium, and Monte Carlo techniques are used to solve the radiative 
transport equation. In such an approach the medium is characterized in terms of a limited number of physical scatter and 
absorption parameters, but is otherwise considered homogeneous. For exploration of propagation phenomena such as 
spatial coherence, however, a physical model of the tissue medium that allows multiscale structure is required. We 
present a particularly simple means of establishing such a multiscale tissue characterization based on measurements 
using a differential interference contrast (DIC) microscope. This characterization is in terms of spatially resolved maps 
of the (polar and azimuthal) angular ray deviations. With such data, tissues can be characterized in terms of their first 
and second order scatter properties. We discuss a simple means of calibrating a DIC microscope, the measurement 
procedure and quantitative interpretation of the ensuing data. These characterizations are in terms of the scatter phase 
function and the spatial power spectral density  
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1. INTRODUCTION 

The propagation of light in complex, strongly-scattering random media is an important problem in diagnostic imaging 
and remote sensing [1-5]. Specific applications include laser communication through the atmosphere, imaging in 
biological media and underwater littoral regions, and imaging in extreme environments such as turbulent combustion. 
 Because of the complexity of the interaction in strongly scattering media (such as biological tissue), analytic 
physical optics methods of analysis are infeasible. In such cases, researchers have relied almost exclusively upon Monte 
Carlo (MC) methods based on radiative transfer theory [6-8]. Such methods employ an effective medium concept that 
views the medium as having certain scatter and absorption characteristics that are otherwise uniformly distributed. In 
other words, the medium is viewed as being homogeneous. Objects embedded within the medium (about which 
information may be desired) are viewed as having different scatter and absorption properties, but are otherwise assumed 
homogeneous as well. While this has been successful in mimicking empirical results, the method conveys no 
information about the actual light-matter interaction. 

 In a recent series of publications, we have introduced a copula-based algorithm for generating arbitrarily 
correlated field realizations [9]; introduced a Monte Carlo-based ray trace concept for describing propagation (including 
diffraction effects) in paraxial systems [10]; and a Greens function concept for propagation of coherence in high NA 
systems [11]. What remains is the development of structured stochastic models of the propagation medium [12]. This is 
the objective here. As a first step towards the development of a structured stochastic model, we discuss a means of 
characterizing the wavefront perturbation caused by thin tissue samples. Specifically, we discuss the use of a differential 
contrast interference (DIC) microscope for such a quantitative characterization 
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2. MEASUREMENT CONCEPT 

2.1 DIC imagery 

The image produced by a DIC microscope is generally of the form [13] 
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where  is a phase offset that can be adjusted by changing the bias setting on the second Wollaston prism, and by 
inclusion of the A and B terms we have assumed a possible amplitude effect. In this expression we have further assumed 
that the direction of shear is in the x-direction. For a small amount of shear one can write 
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If one can recover the phase gradient from the measurement, then the local ray deviation may be determined through the 
relationship 
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For this calculation, one needs to know the amount of shear. Microscope manufacturers, however, will not provide this 
information. To determine this shear, we chose an object with a known phase gradient. Before discussing the details of 
this procedure, however, we briefly recap a particular 4-step interferometric method for recovery of phase. 

2.2 Carré four-step method 

The model for the Carré method is [14] 
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If one chooses the phase steps 
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where  is generally unknown, but the phase steps are constant and evenly spaced, then  and the angle  can be 
recovered from the expressions 
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The beauty of the Carré method is that the phase step  may vary over the field. Once estimates of    , & ,x y x  y  

have been computed, can we recover estimates of    , & ,a x y b x y ? Equations 1 and 2 suggest we have four equations 

in two unknowns; 
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Multiplying both sides by the transpose of the “system” matrix, we get 
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Note that (with the exception of the scalar 4) each term in Eq 7 is a full M N  matrix. Least-squares solutions of this 
set of equations are provided by Cramer’s rule; 
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All of the above algebraic operations are performed point-by-point. 

 With this measurement procedure, we thus have demonstrated the ability to recover all phase and amplitude 
terms in the expression describing DIC imaging. What remains is a calibration procedure that produces an estimate of 
the amount of shear. 

2.3 Calibration concept 

As discussed previously, to estimate the amount of shear produced by the microscope, we introduce an object with a 
known phase gradient. Towards that end, consider an optical wedge, i.e., prism that is commonly used to effect a small 
beam deviation (see Fig. 1).  

 From Fig. 1 we see that the phase difference 
between the two rays separated a distance s (the image 
shear) is given by 
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Now recall that the deflection angle d  and the wedge angle 

 are related through the expression 

  sin sin .dn      (11) 

We used a purported 10 wedge, i.e., a wedge that produced 
a 10 ray deviation. Measurement of the actual deflection at 
633nm yielded an angle of 9.79. Under the assumption that 
the glass was BK-7,  1.5151@ 633nmn    we arrived 

at a wedge angle of 17.8 
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Fig. 1 Phases of rays deflected by a prism 

 . For this condition, cos 1d   so that to a good approximation, Eq. 10 above can be 

written as 
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Now consider Fig. 2 that illustrates the orientation of the wedge angle 
with respect to that of the shear. With this angle defined as  , it’s 
straightforward to see that the thicknesses of the wedge at the two points 

, are related according to 1 and oh
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It follows that the complete expression for the phase difference is 
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where   is the angle between the direction of the wedge and the shear. 

This suggests a procedure for establishing the amount and direction of 
shear; acquire a series of images of a known wedge for various 
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Fig. 2 Effect of wedge orientation 



orientations (values of ) and fit a model of the form shown in Eq. 1. We describe that procedure next. 

2.4 Calibration procedure 

We chose a series of wedge orientation angles (0, 30, 60, 90, 120, 150, 180), and for each orientation captured 
images (at a fixed gain setting) for bias knob settings in a number of turns (0, 1, 2, 3, 4). A total of 35 measurements 
were made. For each orientation angle, we chose the sets of bias settings (0, 1, 2, 3) and (1, 2, 3, 4) in the Carré 
algorithm to calculate two estimates of the recovered phase gradient. We thus had 14 gradient estimates that were then 
fit to the model 

   0 01 cos cos A a        cN B  (15) 

where N is the number of turns of the bias knob on the upper Wollaston prism. Figures 3 and 4 show typical results of 
this procedure for a 10 wedge at 0 orientation. 
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Fig. 3 Map of phase increment, . Calculated from Eq. 6 (left); fit to valid data points (right). 
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Fig. 4 Recovered phase (left) and its PDF (right). 



Note that the phase shown in Fig. 4 is actually the 
DIC phase difference for the wedge in this 
orientation. This phase distribution corresponds to 
an approximate 6  variation in flatness, which is 

consistent with the tolerance on the wedge. Figure 
5 displays the results of fitting the data to the 
model shown in Eq. 15. 

 The fitting procedure then yields all the 
calibration parameters for the DIC microscope. For 
example, the numerical value of parameter a gives 
the shear (see Eq. 14); the parameter 0  yields the 

orientation of the shear axis; and the parameter c 
gives phase change per revolution of the bias knob. 

2.5 Measurement procedure 

Subsequent to the calibration procedure discussed 
previously, measurements on tissue sections can be 
performed. The phase recovered from the Carré 

procedure is related to the phase gradient as 
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Fig. 5 Data and fit model 

  ,x x y s
x


 


 (16) 

and the local ray deflection is estimated via the expression 
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Other azimuthal variations in the polar scatter angle are derived in a similar fashion with other sample orientations with 
respect to the shear axis. Alternatives, phase gradients may be extracted in two orthogonal directions, 
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and the method of Fried [15] used to estimate the wavefront rather than the ray deflection. 

3. DISCUSSION AND CONCLUSIONS 

We have demonstrated a technique whereby a DIC microscope can be used to provide quantitative estimates of the local 
ray deflection and wavefront of a field that has propagated through a thin tissue sample. The measurement concept relies 
upon a prior calibration that we have described in detail. The essential feature of this calibration process is the use of an 
optical wedge placed at a series of known azimuthal orientations so as to provide a range of known phase gradients. 
Subsequent to the calibration of the microscope, we detailed a method of performing phase-stepping measurements to 
quantitatively assess thin tissue samples. The results that we have shown are preliminary, and there are other issues to be 
explored, such as the birefringence artifact. Our results, however, suggest that DIC microscopy can provide more 
quantitative information than is commonly assumed. 
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