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ABSTRACT 
Light distributions in biological tissues are summarized 
in simple expressions for spherical, cylindrical and pla- 
nar geometries due to point sources, line sources and pla- 
nar sources. The goal is to provide workable tools for 
computing light distributions that govern the amount and 
distribution of photochemical reactions in experimental 
solutions, films and biological tissues. Diffusion theory 
expressions are compared with Monte Carlo simulations. 
Analytic expressions that mimic accurate Monte Carlo 
simulations are presented. Application to fluorescence 
measurements and prediction of necrotic zones in pho- 
todynamic therapy are outlined. 

INTRODUCTION 
Planning and interpretation of photochemical reactions often 
require understanding of the light distribution in the reaction 
medium, whether that is a solution, a film or a biological 
tissue. Light delivery systems can serve as an isotropic point 
source with spherically symmetric light fields, a line source 
with cylindrically symmetric light fields, and a plane source 
with one-dimensional variation in light fields. Simple expres- 
sions allow accomplishment of two common tasks: (1) esti- 
mating the spatial extent of photochemical reactions in a me- 
dium, for example in predicting the margins of treatment dur- 
ing photodynamic therapy and ( 2 )  predicting the amount of 
fluorescence (or other emission) that will escape from a turbid 
medium when such emission is used to evaluate the concen- 
tration of reagent or photoproduct, for example in assessing 
photosensitizer concentration during photodynamic therapy or 
in scoring a fluorescent product in a turbid solution or film. 

Profio and Doiron (1) presented a discussion of light do- 
simetry for photodynamic therapy in which they cited light 
transport in these three geometries. This paper revisits their 
topic with the goal of providing simple expressions in spher- 
ical, cylindrical and planar geometries with a justification for 
their use and specification of their errors based on compari- 
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sons with accurate Monte Carlo simulations. Section 1 briefly 
summarizes the optical properties and transport parameters 
used in the paper to describe light transport. Section 2 intro- 
duces the Monte Carlo simulations that are compared with the 
analytic expressions. Section 3 describes the light distributions 
in response in spherical, cylindrical and planar coordinates 
due to a diffusive point source, line source or plane source in 
an infinite medium. Section 4 describes the light distributions 
produced by an interstitial bare optical fiber. Section 5 dis- 
cusses an airkissue surface boundary and presents practical 
analytic expressions that mimic exact Monte Carlo simula- 
tions of light transport. Section 6 describes the transport of 
fluorescence to a point of collection in response to point, line 
and plane sources of excitation light. Section 7 considers how 
the treatment zone during photodynamic therapy depends on 
the treatment light distribution. 

1. OPTICAL PROPERTIES AND TRANSPORT 
PARAMETERS 
The steady-state fluence rate FS (W/cm*) is described as a 
function of distance r (cm) from a source and is related to 

~~~~~ 

?Abbreviations: A, area of collection; b, energy conversion factor, 
photons per J; p, conversion to fluorescence; C,,, efficiency of 
collection along collection vector; C,, concentration of fluoro- 
phore; D, optical diffusion length; 8,  I/e optical penetration depth; 
6,, l le penetration depth at excitation wavelength; 8,, I/e penetra- 
tion depth at fluorescence wavelength; E, collimated irradiance 
for excitation; ef, extinction coefficient of fluorophore; F, fluence 
rate; F,,,, fluorescence escaping a tissue; Ff, fluorescence fluence 
rate at observation point; fsF, far-from-source fluence rate; g, an- 
isotropy of scattering; k, increase in fluence rate due to backscat- 
ter; M,, measurement of fluorescence at observation point; pa, 
absorption coefficient; pat, absorption coefficient at excitation 
wavelength; put, absorption coefficient at fluorescence wave- 
length; )L~. scattering coefficient; ps’. reduced scattering coeffi- 
cient; nsF, near-source fluence rate; n, refractive index of tissue; 
a, solid angle of collection; ‘3, yield of oxidative radicals from 
reaction of oxygen with excited photosensitizer; P, yield of oxi- 
dative radicals; PDT, photodynamic therapy; @,, fluorescence 
quantum yield; R,, diffuse reflectance; ri, total internal reflectance; 
s, collection vector; S,, source; So,, diffuse excitation source pow- 
er; t, exposure time for PDT treatment light; T,, transport of ex- 
citation light from source to fluorophore; T,, transport of tluores- 
cence emission from fluorophore to observation point; T,,, trans- 
port function from excitation point to fluorescence observation 
point; Tfcsc. transport to and escape from tissue of fluorescence 
from fluorophore layer; x,,,, maximum depth of uniformly dis- 
tributed fluorophore; x,, depth of planar fluorophore source. 
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the concentration of photons C (photons/cm3) by F = cC/b, 
where c (cm/s) is the speed of light in the tissue and b 
(photons/J) is the number of photons per J of energy at a 
particular wavelength. The absorption coefficient is denoted 
pa (cm I), the scattering coefficient is p, (cm-I) and the an- 
isotropy of scattering, which equals the average cosine (cos 
8) of a single scattering deflection angle 8, is g (dimension- 
less). Diffusion theory uses the lumped parameter p,’ = p,( 1 
- g) which is called the reduced scattering coefficient. The 
diffusivity for light diffusion is cD (cm2/s) where D (cm) is 
the diffusion length equal to 1/(3[pa + p,’]). For steady-state 
light distributions, the diffusion length D is used. The l/e 
attenuation length for light is 6 (cm), which equals m, 
and its inverse is commonly called the effective attenuation 
coefficient perf (cm-I). Conversely, D equals pas2 and we 
shall use the latter factor throughout this paper to emphasize 
the two terms pa and 6. 

In all figures of this paper, the optical properties used in 
calculations are ka = 1 cm-I ps = 100 cm-I, and g = 0.90 
which yields p,’ = 10 cm-’ and 6 = 0.174 cm. These prop- 
erties are typical of in vivo soft tissues in the midvisible 
spectrum where blood content contributes to the net pa- In 
the short visible and UV, the scale of all figures will de- 
crease in size and in the near infrared, the scale will expand. 
Roughly, the results of this paper will scale by maintaining 
r/6 constant, where r (cm) is the distance from the source to 
an observation point. 

2. MONTE CARL0 SIMULATIONS 
Monte Carlo simulations provide a gold standard of light 
transport against which various diffusion theory expressions 
can be compared. Monte Carlo simulations mimic the move- 
ment of photons through tissue based on the probability den- 
sity functions for step size between scattering events and for 
the angle of deflection at each scattering event. Many others 
have implemented the Monte Carlo technique, and Wang 
and coworkers (2,3) present a description of the method that 
is available via the Internet (4). 

For section 3, we used a simple Monte Carlo simulation 
of an isotropic point source within an infinite homogeneous 
medium with no boundaries. Three types of spatial bins were 
used to score the photon distributions: spherical, cylindrical 
and planar shells at position r and of thickness Ar = 150 
pm. Each shell collected some N photons after lo5 photons 
were propagated in the simulation. The fluence rate in each 
spherical shell was calculated, F(r) = N/( 1054m2Ar), which 
yielded the response to a unit point source of light So = 1 
W. The fluence rate in each cylindrical shell was calculated, 
F(r) = N/(1Os2~rAr), which yielded the response to a unit 
line source of light So = 1 W/cm. The fluence rate in each 
planar shell was calculated, F(x) = N/(1052Ax), the factor 2 
accounting for the symmetric spread of light in the +x di- 
rections, which yielded the response to a unit planar source 
of light So = 1 W/cm2. 

3. DIFFUSIVE SOURCES IN VARIOUS 
GEOMETRIES 
This section establishes the basic diffusion theory solutions 
for fluence rate as a function of distance from a diffusive 
light source imbedded in an infinite homogeneous medium 

Figure 1. Spherical, cylindrical and planar coordinates for point, 
line and plane sources, respectively. The vector r denotes an obser- 
vation point in spherical and cylindrical coordinates, and the position 
x denotes an observation point in planar coordinates. 

with no boundaries. The source may be either a point source 
that spreads spherically, a line source that spreads cylindri- 
cally or a plane source that spreads perpendicularly (Fig. 1). 

Figure 2 summarizes the results of the equations of section 
3 that predict the form of F(r) for the three source geome- 
tries. Figure 3 shows the residual errors in the Auence rate 
predicted by diffusion theory, FD,, relative to the prediction 
of Monte Carlo, FMc: error = (FDT - FMC)/FMc. For a plane 
source in Figs. 2 and 3 and the following paragraph, F(r) 
denotes F(x). 

One can consider the fluence rate in two regions: the near- 
source fluence rate (nsF) within the first 0.17 cm (r/6 < 1) 
and the far-from-source fluence rate (fsF) beyond 0.17 cm 
(r/6 > 1). In the nsF region, diffusion theory seriously un- 
derestimates the fluence rate. In the fsF region, diffusion 
theory is more accurate but still contains errors, and the ex- 
planation is given in the summary at the end of this section. 
The magnitude of nsF scales as spherical > cylindrical > 
planar. The rate of decline of fsF scales as spherical > cy- 
lindrical > planar. The spherical fluence rate initiates with 
the strongest magnitude but declines most rapidly, while the 
planar fluence rate intiates with the lowest magnitude but 
declines least rapidly. Hence, the magnitude of F initially 
scales as spherical > planar but crosses over at about 1 cm 
(r/6 = 5) to become planar > spherical. One can always 
adjust the power of a light source to modify the magnitude 
of F, but the spread of light depends on the tissue and source 
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Figure 2. Fluence rate distribution F(r) (W/cm2) in response to a dif- 
fusive source, either a point source So (W), a line source So (W/cm) or 
a plane source So (W/cm2) in an infinite medium with no boundaries. 
The y axis presents the fluence rate normalized by the source, F(r)/So. 
For plane source, F(r) denotes F(x). (Upper) Over 3 cm radial distance 
from source. (Lower) Over 3 mm distance. The dashed lines are dif- 
fusion theory and the solid lines are Monte Carlo. The optical properties 
in all figures of this paper are pa = 1 cm-', ks = 100 cm-' and g = 
0 such that pb' = 10 em- \  and 6 = 0.174 cm. 

geometry that motivates the use of the equations of this sec- 
tion. 

Any practical light delivery device will have a finite vol- 
ume and assert a boundary condition at the device/tissue 
interface that will dominate the nsF. For example, a spherical 
diffuser tip like that of Marijnissen and Star (5) or the cy- 
lindrical diffuser fibers commercially available for photo- 
dynamic therapy (PDT) may have a radius of 0.5-1 mm. 
Such devices, when placed interstitially in tissue, will seri- 
ously perturb the predicted nsF, slightly perturb the fsF close 
to the device and not significantly affect the fsF distant from 
the device. Hence, the equations of this section are of prac- 
tical value in predicting tissue penetration by light delivered 
with common devices; however, they do not provide accu- 
rate descriptions of the fluence rate very close to a device. 
Profio and Doiron (1) considered the size of a device in their 
expressions for F(r). 

Spherical geometry 

When the diffusion equation is expressed in spherical co- 
ordinates, the solution is the spherical point spread function 
F(r) that includes the term exp(-r/6). To specify F(r) fully 
we can invoke conservation of energy. Consider a point 
source So (W). The total amount of energy deposition equals 
the integral over all space of the product paF(r), and this 

-0. 4 i  I N  ' ' plane source 
line source 
point source 
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Figure 3. Residual error in diffusion theory based on calculated 
fluence rate using diffusion theory (FDT) and Monte Carlo (FMc). 
The error is defined as (FDT - FM&FMc.  Diffusion theory seriously 
underestimates fluence rate near the source. Errors are less at posi- 
tions distant from the source. (Upper) Within 2 cm radial distance 
from source. (Lower) Within 3 mm distance. 

total energy deposition must match the source energy. Con- 
servation of energy in spherical coordinates requires that 

~ompaF(r)4nrzdr = So 

where 4m2dr is the incremental volume (cm3) associated 
with an incremental spherical shell at r. If F(r) includes the 
term exp(-r/6), then the solution for F(r) that conserves en- 
ergy is 

S,exp( -r/6) 
4.srp,,S2r 

F(r) = 

Note that to conserve energy in spherical coordinates a factor 
1 / (4~p ,6~r )  was required. Equation 2 was used to generate 
the curves for a point source in Figs. 2 and 3. 

Not shown but important to note is that Monte Carlo sim- 
ulations were conducted twice, once with the g = 0 denoting 
isotropic scattering and again with g equal to 0.90 denoting 
forward-directed scattering typical of tissues. The wS' was 
held constant at 10 cm-I in both cases. The two curves are 
indistinguishable in the graph, illustrating the concept of the 
similarity relation which holds that the choice ps', rather 
than the choices of ps and g, specifies F(r). The similarity 
relation holds when the ratio ps'/pa exceeds 10 such that 
many scattering events occur before a photon is likely to be 
absorbed. In the region near the source, the similarity rela- 
tion also requires that g is high such that Ups << Ups'. 
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Cylindrical geometry 

When the diffusion equation is expressed in cylindrical co- 
ordinates, the solutions are Bessel functions. The particular 
Bessel function that yields the appropriate real (not mathe- 
matically imaginary) solution is the function K, called the 
modified Bessel function of the first kind. The function 
can be ap roximated by the proportionality Ko(u) - 
= r/6 for the diffusion problem. Star (eq. 6.113, p. 178 in 
chapter 6 of Welch and van Gemert (7)) specified the con- 
stant of proportionality to be 3(pa + pS')/27r such that the 
asymptotic form of F(r) at large r is 

exp(-u) .,re d 2 u  for large u (p. 397 in Butkov (6)), where u 

Let us derive our own formula by following the same 
energy conservation logic applied above to the spherical ge- 
ometry. Conservation of energy in cylindrical coordinates 
requires that 

8' kL,F(r)2rr dr = So (4) 

where 27rr dr is the incremental volume per unit length (cm3/ 
cm) associated with an incremental cylindrical shell at r. If 
the form of F[r) is &[r/6), then the solution for F(r) that 
conserves energy is 

A line source is equivalent to a line of point sources. For 
comparison, let us compute a numerical solution to the cy- 
lindrical problem based on the spherical point spread func- 
tion, Eq. 2, here denoted as Fsph(r), Consider an infinite line 
source So (W/cm) that extends along the z axis (see Fig. 1). 
The r axis is perpendicular to the z axis. An observation 
point (z = 0, r) is located at a distance R = from 
an incremental portion of the line source at position (2, r = 
0). Integrating the contributions from all incremental por- 
tions of the line source to the particular observation point 
yields: 

(6) 

The integration was accomplished numerically using Math- 
ematicam and the result is identical to the result in Eq. 5 
that was used to generate the curves for a line source in 
Figs. 2 and 3. 

The asymptotic expression, Eq. 3, is simple and conve- 
nient, whereas Eq. 5 requires access to a subroutine to im- 
plement &, often available but not on every calculator or 
spread sheet. Figure 4 plots the residual error of the asymp- 
totic expression relative to the predictions of Monte Carlo: 
error = (Fa,, - FMc)/FMc. For comparison, the error of Eq. 
5 is again shown. The asymptotic expression has more error 
near the source than Eq. 5 but they share similar error at 
larger r. At large r, the asymptotic expression is a useful 
tool. 
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Figure 4. Residual error in the asymptotic diffusion theory expres- 
sion for fluence rate due to a line source, Eq. 3 by Star (7). Error 
expressed as (Fasy - F M c ) / F M c .  For comparison, the residual error 
for the expression using the Bessel function KO, Eq. 5 ,  is also shown. 
The asymptotic expression is a more simple and convenient expres- 
sion than Eq. 5 and is appropriate at larger r. 

Planar geometry 

When the diffusion equation is expressed in planar coordi- 
nates, the solution F(x) has the form exp( -r/S). Conservation 
of energy in planar coordinates in response to an infinitely 
broad planar source So (W/cm2) requires that 

Jl I*aF(X) dx so (7) 

where dx is the incremental volume per unit area (cm3/cm2) 
associated with an incremental planar layer at x. If the form 
of F(x) is exp(-x/8), then the solution for F(x) that con- 
serves energy is 

Soexp( ~ x/6) F(x) = 
2FaS . 

It should be emphasized that Eqs. 7 and 8 refer to an ideal 
diffusive planar source that propagates in the Itx directions. 
A typical example is a thin planar layer of fluorophore with- 
in a turbid medium that radiates fluorescent emission when 
uniformly excited. 

A plane source is equivalent to a plane of point sources. For 
comparison, let us compute a numerical solution to the planar 
problem based on the spherical point spread function, Eq. 2, 
here denoted as Fsph(r). Consider an infinite line source S ,  
(W/cm2) that extends in the y-z plane. An observation point 
(x, y = 0, z = 0) is located at a distance R = d x 2  + y2 + z2 
from an incremental area on the plane source at position (x = 
0, y, z). Integrating the contributions from all incremental areas 
on the plane source to the particular observation point yields: 

F(x) = I: Fsph(R) dy dz (9) 

The integration was accomplished numerically using Math- 
ematica. The numerical result exactly matches the energy 
conserving F(x), Eq. 8. 

Summary 

The diffusion theory expressions for fluence rate as a func- 
tion of distance from a point source, line source and plane 
source in an infinite homogeneous medium are given by Eqs. 
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5. BOUNDARY CONDITIONS: AN AIIUTISSUE 
SURFACE 
When there is an air/tissue surface boundary two compli- 
cations arise: (1) significant total internal reflection of light 
at the boundary affects the light distribution, and (2) the 
escape of light at the boundary is significant. This section 
considers practical and accurate descriptions of light distri- 
butions in the presence of a surface boundary. 

Figure 5. Bare fiber placed interstitially within tissue launches light 
forward, then diffusion appears to be centered from a position 1 
mfp’ = l/(bd + JL,’) or about 1 mm in front of fiber. 

2, 5 and 8, respectively. Far from a line source, the asymp- 
totic expression Eq. 3 is as accurate and more convenient 
than Eq. 5. 

Diffusion theory fails near sources where the gradients of 
fluence rate are changing so quickly that they are not linear 
within a region of a few diffusion lengths in size. Just be- 
cause a diffusion theory expression for F(r) conserves energy 
does not mean that it is the correct F(r). The errors near the 
source are incorporated in the integration to conserve energy 
and hence the above expressions are necessarily wrong. The 
error that occurs near the source forces an error distant from 
the source, and indeed Fig. 3 shows residual errors far from 
the source. Diffusion theory can predict the general shape 
of F(r) but its prediction of the absolute value of F(r) is 
suspect due to the above error. With this caveat, diffusion 
theory is a useful tool in planning light distributions for pho- 
tochemical reactions far from a source. 

4. INTERSTITIAL BARE FIBER 
A special case of interest is a bare optical fiber placed in- 
terstially in a tissue. The photons exit the fiber in one direc- 
tion and hence the fiber is not an isotropic source. However, 
the “center of mass” of photons that are launched forward 
by a fiber appears to be located at a position, which is one 
transport mean free path, mfp’ = l/(pa + p,’), from the tip 
of the fiber, as illustrated in Fig. 5. Patterson et al. (8) used 
a point source placed one mfp’ below the aidtissue surface 
to simulate a narrow collimated beam of light orthogonally 
irradiating a tissue surface. Wang and coworkers (9,lO) have 
utilized this phenomenon for measuring optical properties by 
comparing the shift of the center of mass of photons 
launched by oblique versus orthogonal irradiation of a tissue 
surface by a narrow laser beam or optical fiber. 

For our example of pa = 1 cm-’ and IJ.,‘ = 10 cm-I, the 
mfp’ equals 0.091 cm, about 1 mm. In the region near the 
fiber and near the center of mass, one uses Monte Carlo 
simulations to accurately predict the nsF. More commonly 
one is interested in the fsF where diffusion theory can rea- 
sonably predict the zone of treatment in PDT or the volume 
of some other photochemical reaction. By setting the origin 
(r = O j  at one mfp‘ in front of the fiber, the spherical dif- 
fusion theory of Eq. 2 can be used to predict the light dis- 
tribution fsF. 

Surface boundary causes image source 

An airkissue surface will cause roughly 50% of the light 
flux reaching the surface to be returned into the tissue by 
total internal reflection. When a photon attempts to exit a 
tissue or liquid medium into the air at too oblique an angle, 
the photon is reflected back into the medium. About half of 
diffusely reflected light is sufficiently oblique in approaching 
the surface to be internally reflected. 

It is common in engineering to treat a reflective boundary 
by the method of images. One treats the semi-infinite tissue 
problem, with an airkissue surface and an imbedded source 
within the tissue, as an infinite tissue problem with both the 
original source and an additional image source located sym- 
metrically opposite the original source relative to the surface 
plane. The image source is assigned a negative value equal 
to the original positive source of light within the tissue. The 
gradient between these positive and negative sources in an 
infinite tissue problem mimics the flux of light from the orig- 
inal source out into the air in the semi-infinite tissue prob- 
lem. Let the aidtissue surface reside in the y-z plane at x = 
0. The method of images for an isotropic point source of 
strength So at a depth x, within a tissue, i.e. at position (xF, 
y = 0, z = 0),  is summarized: 

where 

r = Vx2 + y2 + z2 

r ,  = V(x - xs>2 + y2 + z* 

r2 = d ( x  + xs)2 + y2 + z* 

where r l  is the distance from the original source to an ob- 
servation point at (x, y. z) and r, is the distance from the 
image source to the observation point. The negative term in 
the brackets is the contribution from the image source. The 
above Eq. 10 illustrates the method of images for an isotro- 
pic point source, but one can also use the method of images 
to treat imbedded cylindrical and planar sources near an air/ 
tissue surface boundary. Equation 10 is a very simple form 
of the method of images and provides a first approximation 
to the effects of an aidtissue surface boundary. Others have 
considered more exact treatments of the surface boundary 
condition. Farrel et al. (1 1) have outlined the method of 
images for the case of a collimated light source, a laser beam 
or optical fiber, orthogonally irradiating a tissue surface and 
show that the plane of symmetry is best placed slightly out- 
side the true tissue surface in this case. Haskell et al. (12) 
discuss boundary conditions in detail citing references to 
previous work. 
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Table 1. 
nmrdium/nnr. at the surface boundary* 

Empirical expression for how the six parameters of Eqs. 14 and 20 depend on diffuse reflectance R, for two refractive mismatches, 

Parameter ntlssur/nalr = 1.38 nwatcJnatr = 1.33 

3.09 + 5.44Rd - 2.12 exp(-21.5Rd) 

2.09 - 1.45Rd - 2.09 exp(-21.5Rd) 
1.53 exp(3.4Rd) 
0.28 + 0.78Rd - 0.14 exp(-10.7Rd) 
1 - 0.3 exp(-6.12Rd) 

1 - 0.423 eXp(-20.1Rd) 
3.04 + 4.09Rd - 2.06 exp(-21.1Rd) 
1 - 0.423 exp(- 1 8.9Rd) 
2.04 - 1.33Rd - 2.04 exp(-21.1Rd) 
1.49 exp(3.36Rd) 
0.32 + 0.72Rd - 0.16 exp(-9.11Rd) 
1 - 0.30 exp(-6.12Rd) 

Erratum: The expression for Cz for n = 1.38 corrects an error in Gardner ef al. (17). 

Surface boundary effects in planar geometry 

Devices used interstitially such as a bare fiber, an isotropic 
point source or a cylindrical diffuser fiber usually have an 
aidtissue boundary very distant from the source. However, 
topical irradiance of a tissue with a broad beam of light is 
a common situation and involves an airitissue boundary ex- 
actly at the plane source of light. For the planar case with a 
collimated light source irradiating an aidtissue surface, sim- 
ple exponential expressions can correct diffusion theory (Eq. 
8) to match Monte Carlo simulations. 

Jacques (13) described planar light transport in simple 
terms: 

(1 1) 

where k is a constant that depends on the amount of total 
diffuse reflectance, R,, from the tissue and on the refractive 
mismatch at the air/tissue surface: 

F(x) = S& exp(-x/6) 

k = 3 + 5.1Rd - 2 exp(-9.7Rd) (12) 
which was based on Monte Carlo simulations using a broad 
range of optical properties to yield a range of & values. The 
value of R, depends on both the optical properties and the 
refractive mismatch at the tissue surface boundary. Jacques 
(14) used the accurate predictions of the adding4oubling 
method of Prahl (15,16) to develop an approximation for Rd: 

R, = exp(-7.86pa) = exp(-7.8/v1 + ps'/pa) (13) 

7 : : : : : : : : : : : : : :  
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Figure 6. Planar light distribution in response to a broad collimated 
source orthogonally irradiating an aidtissue surface. The fluence 
rate, F(x) (W/cm*), is normalized by the collimated irradiance, So 
(W/cm*), to yield F(x)/S, (dimensionless), and is plotted versus 
depth in the tissue, x (cm). The upper curve is Eq. 11, k exp(-x/6), 
which predicts deep light penetration but overestimates the fluence 
rate at the surface. The lower curve is Eq. 14 that mimics Monte 
Carlo simulations. (F,  = 0.1 cm-I). 

which is essentially a statement of Beer's Law for transmis- 
sion through an apparent average photon pathlength of 7.86. 
The second expression on the far right illustrates that R, 
depends on the ratio pL,'/pa. The value 7.8 is appropriate for 
a refractive mismatch of tissue/air equal to 1.37 that is typ- 
ical for a tissue with -80% water content. The above ex- 
pression is reasonably accurate (error& < 5 % )  for 0.10 5 
R, 5 0.60 and is independent of the scattering anisotropy, 
g, in the range 0.90 5 g 5 0.98. Outside these ranges of Rd 
and g, and for other refractive index mismatches, the factor 
7.8 is not optimally accurate and should be adjusted. 

Gardner et al. (17) included an additional exponential 
term to match not only the deeply penetrating light but also 
the superficial light distribution near the surface. The follow- 
ing analytic expression mimics the behavior specified by 
Monte Carlo simulations: 

F(x) = So[Clexp(-k,x/6) - C,exp(-k2x/6)] (14) 

where the factors C,,  C2, k , ,  k2 are listed in Table 1 for 
refractive index mismatches of 1.38 (tissue with -70% wa- 
ter content) and 1.33 (water). 

Figure 6 shows the behavior of Eqs. 11 and 14. In this 
figure, the absorption coefficient is 0.1 cm-I. The value of 
k in Eq. 11 would be 6.25 for a tissue with 1.37 refractive 
index, but to compare with Gardner's expression for a tissue 
with 1.38 refractive index, the value k has been adjusted to 
6.57. Gardner's expression also accounts for the specular 
reflectance at that airkissue surface that slightly diminishes 
the incident light that enters the tissue. The deep light pen- 
etration behaves as a simple decaying exponential with an 
apparent surface plane source of 6.57S0. The delivered ir- 
radiance, So, is augmented by a factor of 6.57 due to the 
diffusely backscattered light that reaches the surface and the 
total internal reflection of light at the aidtissue interface. The 
Gardner prediction, Eq. 14, mimics accurate Monte Carlo 
simulations and illustrates how escaping reflectance causes 
a depletion of fluence rate near the surface. 

6. FLUORESCENCE 
A measurement of fluorescence involves a source of exci- 
tation, So,, the transport of the excitation light from the 
source at r = 0 to fluorophores at r', T,(O + r'), the con- 
version to fluorescence at r', p(r'), and the transport of flu- 
orescence to some point of observation a distance r = (0 -+ 
r) from the source at position r, Tf(r' + r). Figure 7 illus- 
trates the geometry of fluorescence excitation and observa- 
tion. The bold 0, r and r' are positions denoted as vectors 
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excitation f I uorescence 
source at 0 collection at r 

0 r = (O-+r) r 
1 b 

r ’  
fluorophore at r’ 

Figure 7. Observing fluorescence at position r due to a fluorophore 
at r’ in response to an excitation source at the origin 0. The distance 
from source to observation point is r = (0 + r). The distance from 
source to fluorophore is (0 -+ r’). The distance from fluorophore to 
observation point is (r’ + r). 

and 0 -+ r’ and r’ -+ r denote distances between positions. 
Regardless of the geometry, the fluorescence fluence rate at 
a distance r from a source, FXr) (W/cm2), can be generically 
expressed: 

FAr) = S,, I, T,(O -+ r‘)p(r’)T,(r’ -+ r) dV (15) 

which is a volume integral over the tissue volume in which 
light penetrates and fluorophore resides. The term dV de- 
notes the incremental volume at position r’ (dV = 47~r’~dr’ 
[cm3] in spherical coordinates, 2m’dr’ [cm2] in cylindrical 
coordinates and dr’ [cm] in planar coordinates). In general, 
the transport factor T equals F/S, and therefore has units of 
cm-? in spherical, cm-I in cylindrical, and dimensionless in 
planar coordinates. The transport factor T can be expressed 
as T, for transport of the excitation source and T, for trans- 
port of fluorescence emission. The conversion factor p 
equals the product qC@, where Ef is the fluorophore extinc- 
tion coefficient (cm-’[mol ~ m - ~ ] - l ) ,  C, is the fluorophore 
concentration (mol cm-’) and @, is the fluorescence quantum 
yield with units W fluorescence emission per W absorbed 
excitation or dimensionless. Therefore, p has units of cm-’ 
and in general P(r’) can vary with location. The above treat- 
ment of fluorescence generation and transport in tissues has 
been presented by others, for example, for the steady-state 
by Keijzer et al. (1 S), in the time and frequency domains by 
Patterson and Pogue (19) and Hutchinson et al. (20). 

The details of how a collection device samples the local 
fluence rate F,(r) (W/cm2) depend on how incremental flux 
dJ (W/cm2) enters the device through some incremental area 
of collection, dA (cm?), and incremental solid angle of col- 
lection, dQ (sr), driven by the local fluence gradient, VF 
(W/cm’)), along a unit collection vector s (dimensionless) 
that is centrally aligned with dfl, which is denoted VF.s. 
Usually a collection device, e.g.  an optical fiber or a detector 
viewing a small aperture, will have a collection efficiency, 
C,&) (sr I )  that varies with the direction of collection. A 
measurement, Mf (W), of fluorescence can be described by 
the integral: 

(16) Mf = f,J, -DfVF.sC,,,(s) dQ dA 

where Df (cm) is the diffusion length for the wavelength of 
fluoresence and VF.s is a function of the position of dA, r. 
The negative sign indicates that flux moves down the fluence 
gradient. Beyond the generic Eq. 16, we will not discuss the 
details of collection by particular devices. 

For the special case of a homogenous tissue with uniform- 
ly distributed fluorophore, p is a constant and Eq. 15 can be 
simplified: 

F, = S,,P f, T,(O -+ r’)TXr’ -+ r) dV = S0,pT,, (17) 

where T,, equals the volume integral of the product (pene- 
tration of the excitation source)(escape of the fluorescence). 
Tef has units of cm-2 in spherical coordinates, cm-I in cy- 
lindrical coordinates, and dimensionless in planar coordi- 
nates. In other words, all the information regarding tissue 
optics is incorporated in the single parameter TeF All the 
information regarding the fluorophore is in the parameter p. 

Spherical geometry 

Consider a point source of excitation at the origin 0 in an 
infinite homogeneous tissue with uniformly distributed fluo- 
rophore and a collection point r for observing fluorescence 
at a distance r = (0 -+ r) from the source. In spherical co- 
ordinates, the expression for Tef(r) was derived (S.L. 
Jacques, J.-M. Tualle and S. Avrillier, Univ. of Paris, XIII, 
personal communication): 

exp[-(0 -+ r’)/S,]exp[-(r’ r)/Sf] 
4np,,S:(O -+ r’) 41~p,,6f(r‘ + r) 

d’r’ Tedr) = 

where pa, and par are the absorption coefficients and 6, and 
€+ are the l/e penetration depths at the wavelengths for ex- 
citation and fluorescence as denoted by the subscripts e and 
f. This expression can be used with Eq. 17 to interpret mea- 
surements of fluorescence using interstitially placed excita- 
tion and collection fibers. If the fibers are sufficiently sepa- 
rated (p >> S,, p >> Sf), the expression is reasonably ac- 
curate. 

Cylindrical geometry 

Consider an infinite line source of excitation in an infinite 
homogeneous tissue with uniform fluorophore and the trans- 
port of fluorescence to an observation point at a distance r 
from the line source. A line source of excitation is equivalent 
to a line of excitation point sources. Analogous to how Eq. 
6 used Eq. 2 to yield Eq. 5, Eq. 6 uses Eq. 18 to calculate 
the integration of the spherical T,, along an infinite line 
source that yields the cylindrical Tef: 

A common example is the observation of photosensitizer 
fluorescence by a point collector in response to excitation 
by the PDT treatment light delivered by a cylindrical dif- 
fusive optical fiber. The point collector can be an isotropic 
optical fiber collector like that of Marijnissen and Star (5) 
or a bare fiber collecting from a position one mfp’ in front 
of the fiber. The point collector should be located near the 
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middle of the cylindrical fiber so that the fiber appears in- 
finite in length from the perspective of the collector. 

Planar geometry 

Consider an infinite plane source of excitation in an infinite 
homogeneous tissue with uniform fluorophore and the trans- 
port of fluorescence to an observation point at a distance x 
from the plane source. A plane source of excitation is equiv- 
alent to a plane of excitation point sources. Analogous to 
how Eq. 9 used Eq. 2 to yield Eq. 8, Eq. 9 uses Eq. 18 to 
calculate the integration of the spherical Tef over an infinite 
plane source that yields the planar Tef: 

A common example for this planar geometry in an infinite 
scattering medium is not obvious. The situation would in- 
volve a diffusive plane source of excitation at x = 0 and 
observation of fluorescence by a point collector a distance x 
from the plane source. 

Planar collimated excitation at aidtissue surface 

A broad uniform beam of collimated excitation light irradi- 
ating an air/tissue surface to excite fluorescence in a ho- 
mogeneous medium is a common problem. First, let us con- 
sider how to adapt diffusion theory to treat this problem. 
Then, we shall compare the results with the Gardner equa- 
tions that mimic Monte Carlo simulations. 

First, consider the penetration of excitation light. The dif- 
fusion theory expression Eq. 8 has the proper exponential 
form but not the correct absolute value. However, Eq. 12 
based on Monte Carlo simulations specifies the factor k 
which enables Eq. 11 to accurately describe the deep pene- 
tration of excitation light to a planar layer of fluorophore at 
a depth x, in response to a collimated excitation irradiance 
E (W/cm’): 

F, = Ekexp(-xs/S,) (21) 

The transport of excitation is T, = F, / E which equals: 

T, = kexp( -x,/S,) (22) 

Second, consider the transport of fluorescence to the tissue 
surface and its escape from the tissue for observation. Equa- 
tion 8 can directly describe the transport of fluorescence 
from x, to the surface. To account for the influence of the 
surface boundary, consider a simple two-flux model sche- 
matically shown in Fig. 8. The outward flux of flourescence 
along the x axis is called J. Total internal reflectance creates 
an inward flux I = r,J where r, = 0.668 + 0.0636n + 0.710/n 
- 1 .440/n2. The measurable escaping flux of fluorescence is 
F,,, = (1 - rJJ. The total fluence rate within the tissue at 
the surface is Ff = 2(1 + J), where the factor 2 accounts for 
the average zig-zag path L of diffuse photons as flux moves 
in the t x  directions such that AL/Ax = 2. Substituting for I 
and J using I = J/r, and J = F,,J(l - rJ yields Ff = 2F,,,(1 
+ r,)/(l - rJ. Therefore, F,,, = FX1 - r,)/[2(1 + rJ]. The 
transport of fluorescence to the surface including its escape 
out of the tissue for observation is expressed Tfesc = Ffe,,/Sof 
(dimensionless), which equals: 

air 

~~ 

f I u o roph o re -I a y & 
Figure 8. Schematic of two-flux model for how air/tissue surface 
affects fluorescence near surface. Diffuse flux toward surface (J) 
from deep fluorescent layer is reflected by total internal reflectance 
(r,) to yield diffuse flux from surface (I). Escaping fluorescence (FCJ 
is observable by measurement. On average, diffuse photons move a 
pathlength AL that is twice the net movement Ax along the x axis 
to or from the surface: AL = 2Ax. 

In summary, the observable flux of escaping fluence, F,,, 
(W/cm2), from a fluorophore layer at x, in response to an 
excitation irradiance E (W/cm2) is approximately: 

(24) 
Now consider the equations that Gardner et al. (17,21) 

used to mimic accurate Monte Carlo simulations of T, and 
TfeSc. The transport of excitation, T,, is described by Eq. 14 
appropriately using pae and 6,. This equation already consid- 
ers the effects of specular reflectance and total internal re- 
flectance. The transport and escape of fluorescence, Tfe,,, 
from a planar source at depth x, was modeled by Monte 
Carlo simulations and mimicked by a simple exponential 
expression by Gardner et al.: 

where C3 and k3 are specified in Table 1. This expression 
describes the fluorescence that successfully escapes the tis- 
sue for observation and therefore includes the effects of total 
internal reflectance at the aidtissue boundary. 

In Fig. 9, the factors T,, Tfesc and the product TeTfesc are 
plotted versus the depth x, where the incremental fluoro- 
phore layer resides. Near the surface, diffusion theory 
(dashed lines) and the Gardner equations (solid lines) that 
mimic Monte Carlo disagree for T,, agree for Tfesc and dis- 
agree for TeTfesc. Diffusion theory overestimates the amount 
of observable fluorescence expected from a superficial fluo- 
rophore layer. The error derives from the error in T, because 
a diffuse source poorly models the collimated excitation. The 
lack of error in Tfesc suggests that the simple two-flux treat- 
ment of the boundary condition is adequate for a deep dif- 
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Figure 9. Planar transport of excitation (T,) to a fluorophore layer 
at depth x,, transport of fluorescence (TfeJ from the fluorophore 
layer to the surface including its escape from the tissue and the 
product T,Tr,,,, as functions of x, (cm). Dashed lines are diffusion 
theory (Eqs. 22, 23) and solid lines are equations that mimic Monte 
Carlo simulations (Eqs. 14, 25, Table 1 for n = 1.38). 

fuse source. Diffusion theory begins to overestimate Tfesc as 
p,, decreases below 1 cm-I. For deeper x, beyond 1 mm, 
diffusion theory and the Gardner equations agree. The con- 
clusion is that diffusion theory accurately predicts the es- 
caping fluorescence due to an isolated deep fluorophore layer 
but yields significant error when applied to superficial fluo- 
rophore layers. Measurement of uniformly distributed fluo- 
rophores will be dominated by the errors due to superficial 
fluorophores. Optical properties are the same for excitation 
and fluorescence wavelengths, the same as in Fig. 2. 

To predict the fluorescence from a tissue with uniformly 
distributed fluorophore, let us return to the Gardner equa- 
tions that mimic Monte Carlo simulations. One calculates 
T,, by substituting Eqs. 14 and 25 into Eq. 17: 

where fluorophore is uniformly distributed from the surface 
to a depth xmaX. When x,,, is so deep that negligible fluo- 
rescence escapes from that depth, x,,,, may be assigned the 
value infinity and the above expression simplifies: 

The above equation accurately describes the total escaping 
fluorescence from a homogeneous tissue with uniform fluo- 
rophore that is irradiated with collimated excitation at its 
surface. Tissue surface roughness may cause the observed 
fluorescence to deviate slightly from this prediction. 

7. PHOTODYNAMIC THERAPY 
A practical use of diffusion theory is to predict the extent of 
treatment during PDT (22). Consider a planar irradiance and 
the simple Eq. 1 1  to describe planar light transport. The 
yield of oxidative radicals as a function of depth, P(x) (mol- 
eculeslcm'), is described: 

P(x) = S,tbeC@kexp( -x/6) (28) 

where So is the irradiance, t is the exposure time (s), E and 
C are the extinction coefficient and concentration of the pho- 
tosensitizer and the product EC has units of cm-I, b is the 
energy conversion factor (photons per J) at a given wave- 
length, @ is the yield of oxidative radicals from the reaction 
of oxygen with excited photosensitizer (dimensionless) (ox- 
ygen dependence has been lumped into this parameter for 
simplicity) and kexp( -XIS) is the light penetration of Eq. 1 1. 
A light exposure induces a necrotic zone that extends to a 
depth z,,,,,,,, where a threshold toxic amount of oxidative 
radicals has been produced, Pth. Substituting xnecrorlc for x and 
Pth for P ( X , , , ~ ~ ~ ~ , ~ ) ,  one can solve for the depth of necrosis: 

The above equation illustrates that the necrotic zone is di- 
rectly proportional to the optical penetration S but propor- 
tional to the natural logarithm of all other parameters. To 
double xnecmsis, one need only double 6 but must increase any 
other parameter (or decrease Pth) by a factor of 7.4. 

CONCLUSION 
In conclusion, this paper has presented simple expressions 
for steady-state light transport due to point, line and plane 
sources and illustrated how they pertain to fluorescence mea- 
surements and PDT. The analysis can be extended to the 
time-dependent case expressed either in the time domain or 
the frequency domain. This paper has not addressed how to 
measure optical properties in order to use the equations of 
this paper. 

A major conclusion of this paper is that the shape of the 
fluence rate distributions due to point, line, and plane sources 
are accurately described by the cited diffusion theory equa- 
tions, however the absolute values of the fluence rates are 
poorly predicted. The use of Monte Carlo simulations to pro- 
vide accurate correction factors to the diffusion theory ex- 
pressions is reported for a planar source and future work 
should document the corrections for point and line sources 
as well. 
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