
Monte Carlo Modeling of Light Transport

in Multi-layered Tissues in Standard C

Lihong Wang, Ph. D.
Optical Imaging Laboratory, Biomedical Engineering Program

Texas A&M University, College Station, TX 77843-3120
Email: LWang@tamu.edu

URL: http://biomed.tamu.edu/~lw

Steven L. Jacques, Ph. D.
Oregon Medical Laser Center, Providence St. Vincent Hospital

9205 SW Barnes Rd., Portland, OR 97225
Email:sjacques@ece.ogi.edu
URL: http://ece.ogi.edu/omlc

Copyright © 1992 - 1998

The software package can be downloaded from:
http://biomed.tamu.edu/~lw or http://ece.ogi.edu/omlc

Monte Carlo Modeling of Light Transport

in Multi-layered Tissues in Standard C

Citation of the following references when reporting results computed with

this software package are appreciated:

1. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML - Monte Carlo

modeling of photon transport in multi-layered tissues," Computer

Methods and Programs in Biomedicine 47, 131-146 (1995).

2. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "CONV - Convolution

for responses to a finite diameter photon beam incident on multi-

layered tissues," Computer Methods and Programs in Biomedicine

54, 141-150 (1997).

Copyright © University of Texas M. D. Anderson Cancer Center 1992

First printed August, 1992

Reprinted with corrections January, 1993, November, 1995, &

January, 1998.

Abstract ii

 Abstract

A Monte Carlo model of steady-state light transport in multi-layered tissue (mcml)

and the corresponding convolution program (conv) have been coded in ANSI Standard C.

The programs can therefore be executed on a variety of computers. Dynamic data

allocation is used for mcml, hence the number of tissue layers and the number of grid

elements of the grid system can be varied by users at run time as long as the total amount of

memory does not exceed what the system allows. The principle and the implementation

details of the model, and the instructions for using mcml and conv are presented here. We

have verified some of the mcml and conv computation results with those of other theories

or other investigators.

Acknowledgement iii

 Acknowledgment

We would like to thank a group of people who have helped us with this package

directly or indirectly. Massoud Motamedi (University of Texas Medical Branch,

Galveston) has let us use his Sun SPARCstation 2. Scott A. Prahl (St. Vincent's Hospital,

Oregon) and Thomas J. Farrell (Hamilton Regional Cancer Center, Canada) have helped us

locate an insidious bug in the program. Craig M. Gardner (University of Texas, Austin)

provided us his Monte Carlo simulation and convolution results of a multi-layered medium,

which are compared with our results. We learned a lot from Marleen Keijzer and Steven L.

Jacques's Monte Carlo simulation program in PASCAL on Macintoshes. Liqiong Zheng

(University of Houston) has helped us greatly improve the speed of the convolution

program. They all deserve our thanks.

This work is supported by the Medical Free Electron Laser Program, the

Department of the Navy N00015-91-J-1354.

Table of Contents iv

 Table of Contents

ABSTRACT.. II

ACKNOWLEDGMENT.. III

Table of Contents ...iv

0. INTRODUCTION...1

PART I. DESCRIPTION OF MONTE CARLO SIMULATION. 4

1. THE PROBLEM AND COORDINATE SYSTEMS..4

2. SAMPLING RANDOM VARIABLES...7

3. RULES FOR PHOTON PROPAGATION ...10

3.1 Launching a photon packet..10

3.2 Photon's step size..11

3.3 Moving the photon packet ..13

3.4 Photon absorption...14

3.5 Photon scattering ..14

3.6 Reflection or transmission at boundary..16

3.7 Reflection or transmission at interface...18

3.8 Photon termination..19

4. SCORED PHYSICAL QUANTITIES..20

4.1 Reflectance and transmittance...20

4.2 Internal photon distribution...22

4.3 Issues regarding grid system ..25

5. PROGRAMMING MCML ..30

5.1 Programming rules and conventions..30

5.2 Several constants...31

5.3 Data structures and dynamic allocations ...32

5.4 Flowchart of photon tracing ..36

5.5 Flow of the program mcml ...39

5.6 Multiple simulations ...41

5.7 Timing profile of the program ...42

6. COMPUTATION RESULTS OF MCML AND VERIFICATION ..45

6.1 Total diffuse reflectance and total transmittance ...45

6.2 Angularly resolved diffuse reflectance and transmittance ..46

6.3 Radially resolved diffuse reflectance...47

6.4 Depth resolved internal fluence...48

Table of Contents v

6.5 Computation times vs optical properties..50

6.6 Scored Physical Quantities of Multi-layered Tissues...60

7. CONVOLUTION FOR PHOTON BEAMS OF FINITE SIZE...65

7.1 Principles of convolution..65

7.2 Convolution over Gaussian beams..69

7.3 Convolution over circularly flat beams..70

7.4 Numerical solution to the convolution ..71

7.5 Computation results of conv and verification..78

PART II. USER MANUAL .8 5

8. INSTALLING MCML AND CONV...85

8.1 Installing on Sun workstations ..85

8.2 Installing on IBM PC compatibles ...86

8.3 Installing on Macintoshes...86

8.4 Installing by Electronic Mail ...87

9. INSTRUCTIONS FOR MCML..89

9.1 File of input data...89

9.2 Execution ..91

9.3 File of output data...93

9.4 Subset of output data ...94

9.5 Bugs of mcml...95

10. INSTRUCTIONS FOR CONV...97

10.1 Start conv ...97

10.2 Main menu of conv...97

10.3 Command "i" of conv..98

10.4 Command "b" of conv...98

10.5 Command "r" of conv..99

10.6 Command "e" of conv ...99

10.7 Command "oo" of conv ... 100

10.8 Command "oc" of conv.. 101

10.9 Command "co" of conv.. 103

10.10 Command "cc" of conv ... 104

10.11 Command "so" of conv... 105

10.12 Command "sc" of conv ... 106

10.13 Command "q" of conv... 107

10.14 Bugs of conv... 107

Table of Contents vi

11. HOW TO MODIFY MCML ... 109

APPENDICES. 1 1 2

APPENDIX A. CFLOW OUTPUT OF THE PROGRAM MCML.. 112

APPENDIX B. SOURCE CODE OF THE PROGRAM MCML .. 116

B.1 mcml.h... 116

B.2 mcmlmain.c... 120

B.3 mcmlio.c... 124

B.4 mcmlgo.c .. 144

B.5 mcmlnr.c... 157

APPENDIX C. MAKEFILE FOR THE PROGRAM MCML.. 159

APPENDIX D. A TEMPLATE OF MCML INPUT DATA FILE... 160

APPENDIX E. A SAMPLE OUTPUT DATA FILE OF MCML ... 161

APPENDIX F. SEVERAL C SHELL SCRIPTS ... 163

F.1 conv.bat for batch processing conv... 163

F.2 p1 for pasting files of 1D arrays... 164

APPENDIX G. WHERE TO GET THE PROGRAMS MCML AND CONV... 166

APPENDIX H. FUTURE DEVELOPMENTS OF THE PACKAGE .. 167

REFERENCES. 1 6 9

INDEX. 1 7 2

Chapter 0 Introduction 1

 0. Introduction

Monte Carlo simulation has been used to solve a variety of physical problems.

However, there is no succinct well-established definition. We would like to adopt the

definition by Lux et al. (1991). In all applications of the Monte Carlo method, a stochastic

model is constructed in which the expected value of a certain random variable (or of a

combination of several variables) is equivalent to the value of a physical quantity to be

determined. This expected value is then estimated by the average of multiple independent

samples representing the random variable introduced above. For the construction of the

series of independent samples, random numbers following the distribution of the variable

to be estimated are used.

Monte Carlo simulations of photon propagation offer a flexible yet rigorous

approach toward photon transport in turbid tissues. The method describes local rules of

photon propagation that are expressed, in the simplest case, as probability distributions that

describe the step size of photon movement between sites of photon-tissue interaction, and

the angles of deflection in a photon's trajectory when a scattering event occurs. The

simulation can score multiple physical quantities simultaneously. However, the method is

statistical in nature and relies on calculating the propagation of a large number of photons

by the computer. As a result, this method requires a large amount of computation time.

The number of photons required depends largely on the question being asked, the

precision needed, and the spatial resolution desired. For example, to simply learn the total

diffuse reflectance from a tissue of specified optical properties, typically about 3,000

photons can yield a useful result. To map the spatial distribution of photons, φ(r, z), in a

cylindrically symmetric problem, at least 10,000 photons are usually required to yield an

acceptable answer. To map spatial distributions in a more complex three-dimensional

problem such as a finite diameter beam irradiating a tissue with a buried blood vessel, the

required photons may exceed 100,000. The point to be remembered in these introductory

remarks is that Monte Carlo simulations are rigorous, but necessarily statistical and

therefore require significant computation time to achieve precision and resolution.

Nevertheless, the flexibility of the method makes Monte Carlo modeling a powerful tool.

Another aspect of the Monte Carlo simulations presented in this paper deserves

emphasis. The simulations described here do not treat the photon as a wave phenomenon,

and ignore such features as phase and polarization. The motivation for these simulations is

Chapter 0 Introduction 2

to predict radiant energy transport in turbid tissues. The photons are multiply scattered by

most tissues, therefore phase and polarization are quickly randomized, and play little role in

energy transport. Although the Monte Carlo simulations may be capable of bookkeeping

phase and polarization and treating wave phenomena statistically, this manual will not

consider these issues.

The Monte Carlo simulations are based on macroscopic optical properties that are

assumed to extend uniformly over small units of tissue volume. Mean free paths between

photon-tissue interaction sites typically range from 10-1000 µm, and 100 µm is a very

typical value in the visible spectrum (Cheong et al., 1990). The simulations do not treat the

details of radiant energy distribution within cells, for example.

As a simple example of the Monte Carlo simulation. We would like to present a

typical trajectory of a single photon packet in Fig. 0.1. Each step between photon positions

(dots) is variable and equals –ln(ξ)/(µa + µs) where ξ is a random number and µa and µs

are the absorption and scattering coefficients, respectively (in this example, µa = 0.5 cm−1,

µs = 15 cm−1, g = 0.90). The value g is the anisotropy of scattering. The weight of the

photon is decreased from an initial value of 1 as it moves through the tissue, and equals an

after n steps, where a is the albedo (a = µs/(µa + µs)). When the photon strikes the surface,

a fraction of the photon weight escapes as reflectance and the remaining weight is internally

reflected and continues to propagate. Eventually, the photon weight drops below a

threshold level and the simulation for that photon is terminated. In this example,

termination occurred when the last significant fraction of remaining photon weight escaped

at the surface at the position indicated by the asterisk (*). Many photon trajectories (104 to

106) are typically calculated to yield a statistical description of photon distribution in the

medium.

This manual is roughly divided into two major parts. Part I describes the principles

of Monte Carlo simulations of photon transport in tissues, how to realize the simulation in

ANSI Standard C, and some computation results and verifications. Part II provides users

detailed instructions of using mcml and modifying mcml to suit special need, where mcml

stands for Monte Carlo simulations for multi-layered tissues. The appendices furnish the

flow graph and the whole source code of mcml, and some other useful information.

Chapter 0 Introduction 3

2000

1500

1000

500

0

-1500 -1000

de
pt

h
z

(µ
m

)

-500 0 500 1000 1500

*

position x (µm)

Figure 0 .1 . The movement of one photon through a homogenous

medium, as calculated by Monte Carlo simulation.

Chapter 1 The Problem and Coordinate Systems 4

 Part I. Description of Monte Carlo Simulation

 1. The Problem and Coordinate Systems

The Monte Carlo simulation described in this paper deals with the transport of an

infinitely narrow photon beam perpendicularly incident on a multi-layered tissue. Each

layer is infinitely wide, and is described by the following parameters: the thickness, the

refractive index, the absorption coefficient µa, the scattering coefficient µs, and the

anisotropy factor g. The refractive indices of the top ambient medium (e.g., air) and

bottom ambient medium (if exists) have to be given as well. Although the real tissue can

never be infinitely wide, it can be so treated if it is much larger than the spatial extent of the

photon distribution. The absorption coefficient µa is defined as the probability of photon

absorption per unit infinitesimal pathlength, and the scattering coefficient µs is defined as

the probability of photon scattering per unit infinitesimal pathlength. For the simplicity of

notation, the total interaction coefficient µt, which is the sum of the absorption coefficient

µa and the scattering coefficient µs, is sometimes used. Correspondingly, the interaction

coefficient means the probability of photon interaction per unit infinitesimal pathlength.

The anisotropy g is the average of the cosine value of the deflection angle (see Section 3.5).

Photon absorption, fluence, reflectance and transmittance are the physical quantities

to be simulated. The simulation propagates photons in three dimensions, records photon

deposition, A(x , y, z), (J/cm3 per J of delivered energy or cm−3) due to absorption in each

grid element of a spatial array, and finally calculates fluence, φ(x , y, z), (J/cm2 per J of

delivered energy or cm−2) by dividing deposition by the local absorption coefficient, µa in

cm−1: φ(x , y, z) = A(x , y, z)/µa. Since the photon absorption and the photon fluence can

be converted back and forth through the local absorption coefficient of the tissue, we only

report the photon absorption in mcml (see Section 4.2 and Section 9.3). The photon

fluence can be obtained by converting the photon absorption in another program conv. The

simulation also records the escape of photons at the top (and bottom) surface as local

reflectance (and transmittance) (cm–2sr–1) (see Section 4.1).

In this first version of mcml, we consider cylindrically symmetric tissue models.

Therefore, we chose to record photon deposition in a two-dimensional array, A(r, z)

although the photon propagation of this simulation is conducted in three-dimensions.

Three coordinate systems are used in the Monte Carlo simulation at the same time.

A Cartesian coordinate system is used to trace photon packets. The origin of the coordinate

Chapter 1 The Problem and Coordinate Systems 5

system is the photon incident point on the tissue surface, the z-axis is always the normal of

the surface pointing toward the inside of the tissue, and the xy-plane is therefore on the

tissue surface (Fig. 1.1). A cylindrical coordinate system is used to score internal photon

absorption A(r, z), where r and z are the radial and z axis coordinates of the cylindrical

coordinate system respectively. The Cartesian coordinate system and the cylindrical

coordinate system share the origin and the z axis. The r coordinate of the cylindrical

coordinate system is also used for the diffuse reflectance and total transmittance. They are

recorded on tissue surface in Rd(r, α) and Tt(r, α) respectively, where α is the angle

between the photon exiting direction and the normal (–z axis for reflectance and z axis for

transmittance) to the tissue surfaces. A moving spherical coordinate system, whose z axis

is aligned with the photon propagation direction dynamically, is used for sampling of the

propagation direction change of a photon packet. In this spherical coordinate system, the

deflection angle θ and the azimuthal angle ψ due to scattering are first sampled. Then, the

photon direction is updated in terms of the directional cosines in the Cartesian coordinate

system (see Section 3.5).

For photon absorption, a two-dimensional homogeneous grid system is setup in z

and r directions. The grid line separations are ∆z and ∆r in z and r directions respectively.

The total numbers of grid elements in z and r directions are Nz and Nr respectively. For

diffuse reflectance and transmittance, a two-dimensional homogeneous grid system is setup

in r and α directions. This grid system can share the r direction with the grid system for

photon absorption. Therefore, we only need to set up an extra one dimensional grid

system for the diffuse reflectance and transmittance in the α direction. In our simulation,

we always choose the range of α to be [0, π/2], i.e., 0 ≤ α ≤ π/2. The total number of

grid elements is Nα. Therefore the grid line separation is ∆α = π/(2 Nα).

This is an appropriate time to mention that we always use cm as the basic unit of

length throughout the simulation for consistency. For example, the thickness of each layer

and the grid line separations in r and z directions are in cm. The absorption coefficient and

scattering coefficient are in cm−1.

Chapter 1 The Problem and Coordinate Systems 6

y

z

x

Photon Beam

Layer 1

Layer N

Layer 2

Fig. 1.1. A schematic of the Cartesian coordinate system set up on multi-

layered tissues. The y-axis points outward.

In some of the discussions, the arrays will simply be referenced by the location of

the grid element, e.g., (r, z) or (r, α), rather than by the indices of the grid element,

although the indices are used in the program to reference array elements.

Chapter 2 Sampling Random Variables 7

 2. Sampling Random Variables

The Monte Carlo method, as its name implies ("throwing the dice"), relies on the

random sampling of variables from well-defined probability distributions. Several books

(Cashew et al., 1959; Lux et al., 1991; and Kalos et al., 1986) provide good references for

the principles of Monte Carlo modeling. Let us briefly review the method for sampling

random variables in a Monte Carlo simulation.

Consider a random variable χ , which is needed by the Monte Carlo simulation of

photon propagation in tissue. This variable may be the variable step size a photon will take

between photon-tissue interaction sites, or the angle of deflection a scattered photon may

experience due to a scattering event. There is a probability density function that defines the

distribution of χ over the interval (a, b). The probability density function is normalized

such that:

⌡⌠
a

b

 p(χ) dχ = 1 (2.1)

To simulate propagation, we wish to be able to choose a value for χ repeatedly and

randomly based on a pseudo-random number generator. The computer provides a random

variable, ξ , which is uniformly distributed over the interval (0, 1). The cumulative

distribution function of this uniformly distributed random variable is:

Fξ(ξ) =



 0 if ξ ≤ 0

 ξ i f 0 < ξ ≤ 1

 1 if ξ > 1

 (2.2)

To sample a generally non-uniformly distributed function p(χ), we assume there

exists a nondecreasing function χ = f(ξ) (Kalos et al., 1986), which maps ξ ∈ (0, 1) to χ
∈ (a, b) (Fig. 2.1). The variable χ and variable ξ then have a one-to-one mapping. This

subsequently leads to the following equality of probabilities:

P{f(0) < χ ≤ f(ξ1)} = P{0 < ξ ≤ ξ1} (2.3a)

or

P{a < χ ≤ χ1} = P{0 < ξ ≤ ξ1} (2.3b)

Chapter 2 Sampling Random Variables 8

According to the definition of cumulative distribution functions, Eq. 2.3b can be changed

to an equation of cumulative distribution functions:

Fχ(χ1) = Fξ(ξ1) (2.4)

Expanding the cumulative distribution function Fχ(χ1) in terms of the corresponding

probability density function for the left-hand side of Eq. 2.4 and employing Eq. 2.2 for the

right-hand side, we convert Eq. 2.4 into:

⌡⌠
a

χ1

 p(χ) dχ = ξ1 for ξ1 ∈ (0, 1) (2.5)

Eq. 2.5 is then used to solve for χ1 to get the function f(ξ1). If the function χ =

f(ξ) is assumed nonincreasing, a similar derivation will lead to the counterpart of Eq. 2.5

as:

⌡⌠
a

χ1

 p(χ) dχ = 1 – ξ1 for ξ1 ∈ (0, 1) (2.6)

However, since (1 − ξ1) and ξ1 have the same distribution, they can be interchanged.

Therefore, Eq. 2.5 and Eq. 2.6 are equivalent. In the following chapter, Eq. 2.5 will be

repeatedly invoked for sampling propagation variables.

The whole sampling process can be understood from Fig. 2.1. The key to the

Monte Carlo selection of χ using ξ is to equate the probability that ξ is in the interval [0,

ξ1] with the probability that χ is in the interval [a, χ1]. In Fig. 2.1, we are equating the

shaded area depicting the integral of p(χ) over [0, χ1] with the shaded area depicting the

integral p(ξ) over [0, ξ1]. Keep in mind that the total areas under the curves p(χ) and p(ξ)

each equal unity, as is appropriate for probability density functions. The result is a one-to-

one mapping between the upper boundaries ξ1 and χ1 based on the equality of the shaded

areas in Fig. 2. In other words, we have equated Fχ(χ1) with Fξ(ξ1) (Eq. 2.4) which is

equivalent to Eq. 2.5. The transformation process χ1 = f(ξ1) is shown by the arrows. For

each ξ1, a χ1 is chosen such that the cumulative distribution functions for ξ1 and χ1 have

the same value. Correspondingly, the hatched areas are equal. It can also be seen in Fig.

2.1 that the monotonic function f(ξ) always exists because both cumulative distribution

functions of ξ and χ are monotonic.

Chapter 2 Sampling Random Variables 9

p(ξ)

F (ξ)

0
a b

p(χ)

0

1

a bχ

0

1

0 1

ξ

0

1

0 1ξ

ξ F (χ)χ

χ1ξ1

χf

Fig. 2.1. Sampling a random variable χ based on a uniformly distributed

random variable ξ.

For example, consider the sampling of the step size for photon movement, s, which

is to be discussed fully in Section 3.2. The probability density function is given:

p(s) = µt exp(–µts) (2.7)

where interaction coefficient µt equals µa + µs. Using this function in Eq. 2.5 yields an

expression for a sampled value, s1, based on the random number ξ:

ξ = ⌡⌠
0

s1

 p(s) ds = ⌡⌠
0

s1

 µtexp(–µts) ds = 1 – exp(µts1) (2.8)

Solving for the value s1:

s1 =
–ln(1 – ξ)

µt
 (2.9a)

As was explained in Eq. 2.6, the above expression is equivalent to:

s1 =
–ln(ξ)

µt
 (2.9b)

Chapter 3 Rules for Photon Propagation 10

 3. Rules for Photon Propagation

This chapter presents the rules that define photon propagation in the Monte Carlo

model as applied to tissues. The treatment is based upon Prahl et al. (1989) except that we

deal with a multi-layered tissue instead of a semi-infinite tissue.

 3.1 Launching a photon packet

A simple variance reduction technique, implicit photon capture, is used to improve

the efficiency of the Monte Carlo simulation. This technique allows one to equivalently

propagate many photons as a packet along a particular pathway simultaneously. Each

photon packet is initially assigned a weight, W, equal to unity. The photon is injected

orthogonally into the tissue at the origin, which corresponds to a collimated arbitrarily

narrow beam of photons.

The current position of the photon is specified by the Cartesian coordinates (x, y,

z). The current photon direction is specified by a unit vector, r, which can be equivalently

described by the directional cosines (µx, µy, µz):

µx = r • x

µy = r • y

µz = r • z
(3.1)

where x, y, and z are unit vectors along each axis. The photon position is initialized to (0,

0, 0,) and the directional cosines are set to (0, 0, 1). This description of photon position

and direction in a Cartesian coordinate system (Witt, 1977) turned out to be simpler than

the counterpart in a cylindrical coordinate system (Keijzer et al., 1989).

When the photon is launched, if there is a mismatched boundary at the tissue

surface, then some specular reflectance will occur. If the refractive indices of the outside

medium and tissue are n1 and n2, respectively, then the specular reflectance, Rsp, is

specified (Born et al., 1986; Hecht, 1987):

Rsp =
(n1 – n2)2

(n1 + n2)2
 (3.2a)

If the first layer is glass, which is on top of a layer of medium whose refractive index is n3,

multiple reflections and transmissions on the two boundaries of the glass layer are

considered. The specular reflectance is then computed by:

Chapter 3 Rules for Photon Propagation 11

Rsp = r1 +
(1–r1)2 r2
 1–r1 r2

 (3.2b)

where r1 and r2 are the Fresnel reflectances on the two boundaries of the glass layer:

r1 =
(n1 – n2)2

(n1 + n2)2
 (3.3)

r2 =
(n3 – n2)2

(n3 + n2)2
 (3.4)

Note that if the specular reflectance is defined as the probability of photons being

reflected without interactions with the tissue, then Eqs. 3.2a and 3.2b are not strictly

correct although they may be very good estimates of the real specular reflectance for thick

tissues. If we want to strictly distinguish the specular reflectance and the diffuse

reflectance, we can keep track of the number of interactions experienced by a photon

packet. When we score the reflectance, if the number of interactions is not zero, the

reflectance is diffuse reflectance. Otherwise, it is specular reflectance. The transmittances

can be distinguished similarly.

The photon weight is decremented by Rsp, and the specular reflectance Rsp will be

reported to the file of output data.

W = 1 – Rsp (3.5)

 3.2 Photon's step s ize

The step size of the photon packet is calculated based on a sampling of the

probability distribution for photon's free path s ∈ [0, ∞), which means 0 ≤ s < ∞ .

According to the definition of interaction coefficient µt, the probability of interaction per

unit pathlength in the interval (s', s' + ds') is:

µt =
– dP{s ≥ s '}

 P{s ≥ s ' } ds ' (3.6a)

or

d(ln(P{s ≥ s'})) = – µt ds' (3.6b)

Chapter 3 Rules for Photon Propagation 12

The above Eq. 3.6b can be integrated over s' in the range (0, s1), and lead to an

exponential distribution, where P{s ≥ 0} = 1 is used:

P{s ≥ s1} = exp(– µt s1) (3.7)

Eq. 3.7 can be rearranged to yield the cumulative distribution function of free path s:

P{s < s1} = 1 – exp(– µt s1) (3.8)

This cumulative distribution function can be assigned to the uniformly distributed random

number ξ as discussed in Chapter 2. The equation can be rearranged to provide a means of

choosing step size:

s1 =
–ln(1 –ξ)

µt
 (3.9a)

or substituting ξ for (1–ξ):

s1 =
–ln(ξ)

µt
 (3.9b)

Eq. 3.9b gives a mean free path between photon-tissue interaction sites of 1/µt because the

statistical average of –ln(ξ) is 1, i.e., <–ln (ξ)> = 1. There is another approach to obtain

Eq. 3.9b. Employing Eq. 3.8, the probability density function of free path s is:

 p(s1) = dP{s < s1}/ds1 = µt exp(– µt s1) (3.10)

p(s1) can be substituted into Eq. 2.5 to yield Eq. 3.9b, where the integration in Eq. 2.5 will

be recovered to Eq. 3.8.

In multi-layered turbid media, the photon packet may experience free flights over

multiple layers of media before an interaction occurs. In this case, the counterpart of Eq.

3.7 becomes:

P{s ≥ ssum} = exp(– ∑
i

 µ ti si) (3.11)

where i is an index to a layer, the symbols µti is the interaction coefficient for the ith layer,

and si is the step size in the ith layer. The total step size ssum is:

Chapter 3 Rules for Photon Propagation 13

ssum = ∑
i

 s i (3.12)

The summation is over all the layers in which the photon packet has traveled. Eq. 3.11

does not take photon reflection and transmission at boundaries into account because they

are processed separately. The sampling equation is obtained by equating Eq. 3.11 to ξ:

∑
i

 µti si = – ln(ξ) (3.13)

As you may have seen, Eq. 3.9b is just a special case of Eq. 3.13. The sampling can be

interpreted as that the total dimensionless step size is –ln(ξ), where dimensionless step size

is defined as the product of the dimensional step size si and the interaction coefficient µti.

Since the absorption coefficient and the scattering coefficient of a glass layer are zeros, it

does not contribute to the left hand side of Eq. 3.13. The detailed process of Eq. 3.13 will

be discussed in Section 3.6 and 3.7. Although Eq. 3.13 looks complicated, it is the

theoretical ground for the process in Section 3.6 and 3.7 which looks simpler.

From now on, we will use step size s instead of s1 or ssum for simplicity. Note that

this sampling method involves computation of a logarithm function, which is time-

consuming. This is reflected in Section 5.7. Faster methods can be used to avoid the

logarithmic computation (Ahrens et al., 1972; Marsaglia, 1961; MacLaren et al., 1964).

 3.3 Moving the photon packet

Once the step size s is specified, the photon is ready to be moved in the tissue. The

position of the photon packet is updated by:

x ← x + µx s

y ← y + µy s

z ← z + µz s

(3.14)

The arrows indicate quantity substitutions. The variables on the left hand side have the

new values, and the variables on the right hand side have the old values. In an actual

program in C, an equal sign is used for this purpose. The simplicity of Eqs. 3.14 is a

major reason for using Cartesian coordinates.

Chapter 3 Rules for Photon Propagation 14

 3.4 Photon absorption

Once the photon has taken a step, some attenuation of the photon weight due to

absorption by the interaction site must be calculated. A fraction of the photon's current

weight, W, will be deposited in the local grid element. The amount of deposited photon

weight, ∆W, is calculated:

∆W = W
µa
µt

 (3.15)

The total accumulated photon weight A(r, z) deposited in that local grid element is

updated by adding ∆W:

A(r, z) ← A(r, z) + ∆W (3.16)

The photon weight has to be updated as well by:

W ← W – ∆W (3.17)

The photon packet with the new weight W will suffer scattering at the interaction

site (discussed later). Note that the whole photon packet experiences interaction at the end

of the step, either absorption or scattering.

 3.5 Photon scattering

Once the photon packet has been moved, and its weight decremented, the photon

packet is ready to be scattered. There will be a deflection angle, θ ∈ [0, π), and an

azimuthal angle, ψ ∈ [0, 2 π) to be sampled statistically. The probability distribution for

the cosine of the deflection angle, cosθ, is described by the scattering function 1) that

Henyey and Greenstein (1941) originally proposed for galactic scattering:

p(cosθ) =
1 – g2

 2 (1 + g2 – 2gcosθ)3 /2
 (3.18)

where the anisotropy, g, equals <cosθ> and has a value between –1 and 1. A value of 0

indicates isotropic scattering and a value near 1 indicates very forward directed scattering.

Jacques et al. (1987) determined experimentally that the Henyey-Greenstein function

1) Note that the scattering function we defined here is a probability density function of cosθ. It has a

difference of a constant 1/2 with the phase function defined by van de Hulst (1980).

Chapter 3 Rules for Photon Propagation 15

described single scattering in tissue very well. Values of g range between 0.3 and 0.98 for

tissues, but quite often g is ~0.9 in the visible spectrum. Applying Eq. 2.5, the choice for

cosθ can be expressed as a function of the random number, ξ:

cosθ =



 1

2g








1 + g 2 –






1 – g2

1 – g + 2g ξ

2

i f g ≠ 0

2 ξ – 1 i f g = 0

 (3.19)

Next, the azimuthal angle, ψ, which is uniformly distributed over the interval 0 to

2π, is sampled:

ψ = 2π ξ (3.20)

Once the deflection angle and azimuthal angle are chosen, the new direction of the

photon packet can be calculated:

µ'x =
sinθ

1 – µ2

z

 (µx µz cosψ – µy sinψ) + µx cosθ

µ'y =
sinθ

1 – µ2

z

 (µy µz cosψ + µx sinψ) + µy cosθ

µ'z = –sinθ cosψ

1 – µ2
z + µz cosθ

(3.21)

If the angle of the photon packet is too close to normal of the tissue surfaces(e.g., |µz| >

0.99999), then the following formulas should be used:

µ'x = sinθ cosψ

µ'y = sinθ sinψ

µ'z = SIGN(µz) cosθ

(3.22)

where SIGN(µz) returns 1 when µz is positive, and it returns –1 when µz is negative.

Finally, the current photon direction is updated: µx = µ'x, µy = µ'y, µz = µ'z.

Chapter 3 Rules for Photon Propagation 16

In the sampling of the two angles θ and ψ and the updating of the directional

cosines, trigonometric operations are involved. Because trigonometric operations are

computation-intensive, we should try to avoid them whenever possible. The detailed

process of the sampling can be found in the function Spin() written in the file "mcmlgo.c"

(See Appendix A and Appendix B.4).

 3.6 Reflection or transmission at boundary

During a step, the photon packet may hit a boundary of the tissue, which is between

the tissue and the ambient medium, where the step size s is computed by Eq. 3.9b. For

example, the photon packet may attempt to escape the tissue at the air/tissue interface. If

this is the case, then the photon packet may either escape as observed reflectance (or

transmittance if a rear boundary is also included) or be internally reflected by the boundary.

There are different methods of dealing with this problem when the step size is large enough

to hit the boundary. Let us present one of the two approaches used in the program mcml

first.

First, a foreshortened step size s1 is computed:

s1 =


 (z – z0)/(–µz) if µz < 0
 (z1 – z)/µz i f µz > 0 (3.23)

where z0 and z1 are the z coordinates of the upper and lower boundaries of the current layer

(See Fig. 1.1 for the Cartesian coordinate system). The foreshortened step size s1 is the

distance between the current photon location and the boundary in the direction of the

photon propagation. Since the photon direction is parallel with the boundary when µz is

zero, the photon will not hit the boundary. Therefore, Eq. 3.23 does not include the case

when µz is zero. We move the photon packet s1 to the boundary with a flight free of

interactions with the tissue (see Section 3.3 for moving photon packet). The remaining

step size to be taken in the next step is updated to s ← s – s1. The photon packet will travel

the remaining step size if being internally reflected.

Second, we compute the probability of a photon packet being internally reflected,

which depends on the angle of incidence, α i, onto the boundary, where α i = 0 means

orthogonal incidence. The value of αi is calculated:

αi = cos–1(|µz|) (3.24)

Chapter 3 Rules for Photon Propagation 17

Snell's law indicates the relationship between the angle of incidence, α i, the angle

of transmission, αt, and the refractive indices of the media that the photon is incident from,

ni, and transmitted to, nt:

ni sinα i = nt sinα t (3.25)

The internal reflectance, R(α i), is calculated by Fresnel's formulas (Born et al., 1986;

Hecht, 1987):

R(αi) =
1
2







sin2(α i –α t)

sin2(α i +α t)
 +

tan2(α i –α t)

tan2(α i +α t)
 (3.26)

which is an average of the reflectances for the two orthogonal polarization directions.

Third, we determine whether the photon is internally reflected by generating a

random number, ξ, and comparing the random number with the internal reflectance, i.e.:

If ξ ≤ R(αi), then photon is internally reflected;

If ξ > R(αi), then photon escapes the tissue
(3.27)

If the photon is internally reflected, then the photon packet stays on the surface and

its directional cosines (µx, µy, µz) must be updated by reversing the z component:

(µx, µy, µz) ← (µx, µy, –µz) (3.28)

At this point, the remaining step size has to been checked again. If it is large

enough to hit the other boundary, we should repeat the above process. If it hits a

tissue/tissue interface, we will have to process it according to the following section.

Otherwise, if the step size is small enough to fit in this layer of tissue, the photon packet

will move with the small step size. At the end of this small step, the absorption and

scattering are processed correspondingly.

On the other hand, if the photon packet escapes the tissue, the reflectance or

transmittance at the particular grid element (r, α t) must be incremented. The reflectance,

Rd(r, αt), or transmittance, Tt(r, αt), is updated by the amount of escaped photon weight,

W:

Rd(r, αt) ← Rd(r, αt) + W if z = 0

Tt(r, αt) ← Tt(r, αt) + W if z = the bottom of the tissue.
(3.29)

Chapter 3 Rules for Photon Propagation 18

Since the photon has completely escaped, the tracing of this photon packet ends here. A

new photon may be launched into the tissue and traced thereafter. Note that in our

simulation, both unscattered transmittance, if any, and diffuse transmittance are scored into

Tt(r, α t) without distinction although they could be distinguished as we discussed in

Section 3.1.

An alternative approach toward modeling internal reflectance deserves mention.

Rather than making the internal reflection of the photon packet an all-or-none event, a

partial reflection approach can be used each time a photon packet strikes the surface

boundary. A fraction 1 – R(αi) of the current photon weight successfully escapes the

tissue, and increments the local reflectance or transmittance array, e.g., Rd(r, α t) ← Rd(r,

α t) + W (1–R(α i)). All the rest of the photon weight will be reflected, and the photon

weight is updated as W ← W R(αi).

Both approaches are available in the program mcml, and the users have the option

to use either approach depending on the physical quantities that they want to score. A flag

in the program can be changed to switch between these two approaches (see Section 5.2).

The all-or-none approach is faster, but the partial reflection approach should be able to

reduce the variance of the reflectance or transmittance. It is uninvestigated how much

variance can be reduced by using the partial reflection approach.

Similar to Section 3.5, the number of trigonometric operations in Eqs. 3.24-3.26

should be minimized for the sake of computation speed. The detailed process of these

computations can be found in the function RFresnel() written in the file "mcmlgo.c" (See

Appendix A and Appendix B.4).

 3.7 Reflection or transmission at interface

If a photon step size is large enough to hit a tissue/tissue interface, this step may

cross several layers of tissue. Consider a photon packet that attempts to make a step of size

s within tissue 1 with µa1, µs1, n1, but hits an interface with tissue 2 with µa2, µs2, n2 after

a foreshortened step s1. Similar to the discussion in the last section, the photon packet is

first moved to the interface without interactions, and the remaining photon step size to be

taken in the next step is updated to s ← s – s1. Then, we have to determine statistically

whether the photon packet should be reflected or transmitted according to the Fresnel's

formulas. If the photon packet is reflected, it is processed the same way as in the last

section. However, if the photon packet is transmitted to the next layer of tissue, it has to

Chapter 3 Rules for Photon Propagation 19

continue propagation instead of being terminated. Based on Eq. 3.13, the remaining step

size has to be converted for the new tissue according to its optical properties:

s ←
s µt1
µt2

 (3.30)

where µt1 and µt2 are the interaction coefficients for tissue 1 and tissue 2 correspondingly.

The current step size s is again checked for another boundary or interface crossing. The

above process is repeated until the step size is small enough to fit in one layer of tissue. At

the end of this small step, the absorption and scattering are processed correspondingly.

If the photon packet is in a layer of glass, the photons are moved to the boundary of

the glass layer without updating the remaining photon step size because the path length in

the glass layer does not contribute to the left hand side of Eq. 3.13. It is important to

understand that if a photon packet traverses several layers of tissues, the use of Eq. 3.9b

for the step size and the repetitive uses of Eq. 3.30 are based on Eq. 3.13.

 3.8 Photon termination

After a photon packet is launched, it can be terminated naturally by reflection or

transmission out of the tissue. For a photon packet that is still propagating inside the

tissue, if the photon weight, W, has been sufficiently decremented after many steps of

interaction such that it falls below a threshold value (e.g., Wth = 0.0001), then further

propagation of the photon yields little information unless you are interested in the very late

stage of the photon propagation. However, proper termination must be executed to ensure

conservation of energy (or number of photons) without skewing the distribution of photon

deposition. A technique called roulette is used to terminate the photon packet when W ≤
Wth. The roulette technique gives the photon packet one chance in m (e.g., m = 10) of

surviving with a weight of mW. If the photon packet does not survive the roulette, the

photon weight is reduced to zero and the photon is terminated.

W ←


 mW if ξ ≤ 1/m

0 if ξ > 1/m
 (3.31)

where ξ is the uniformly distributed pseudo-random number (see Chapter 2). This method

conserves energy yet terminates photons in an unbiased manner. The combination of

photon roulette and splitting that is contrary to roulette, may be properly used to reduce

variance (Hendricks et al., 1985).

Chapter 4 Scored Physical Quantities 20

 4. Scored Physical Quantities

As we mentioned earlier, we record the photon reflectance, transmittance, and

absorption during the Monte Carlo simulation. In this chapter, we will discuss the process

of these physical quantities in detail. The dimensions of some of the quantities are shown

in square brackets at the end of their formulas.

The last cells in z and r directions require special attention. Because photons can

propagate beyond the grid system, when the photon weight is recorded into the diffuse

reflectance or transmittance array, or absorption array, the physical location may not fit into

the grid system. In this case, the last cell in the direction of the overflow is used to collect

the photon weight. Therefore, the last cell in the z and r directions do not give the real

value at the corresponding locations. However, the angle α is always within the bound we

choose for it, i.e., 0 ≤ α ≤ π/2, hence does not cause a problem in the scoring of diffuse

reflectance and transmittance.

 4.1 Reflectance and transmittance

When a photon packet is launched, the specular reflectance is computed

immediately. The photon weight after the specular reflection is transmitted into the tissue.

During the simulation, some photon packets may exit the media and their weights are

accordingly scored into the diffuse reflectance array or the transmittance array depending on

where the photon packet exits. After tracing multiple photon packets (N), we have two

scored arrays Rd(r, α) and Tt(r, α) for diffuse reflectance and transmittance respectively.

They are internally represented by Rd-rα[ir, iα] and Tt-rα[ir, iα] respectively in the program.

The coordinates of the center of a grid element are computed by:

r = (ir + 0.5) ∆r [cm] (4.1)

α = (iα + 0.5) ∆α [rad] (4.2)

where ir and iα are the indices for r and α . The raw data give the total photon weight in

each grid element in the two-dimensional grid system. To get the total photon weight in the

grid elements in each direction of the two-dimensional grid system, we sum the 2D arrays

in the other dimension:

Chapter 4 Scored Physical Quantities 21

Rd-r[ir] = ∑
iα=0

 Nα– 1
 Rd-rα [ir, iα] (4.3)

Rd-α[iα] = ∑
ir=0

 Nr–1
 Rd-rα [ir, iα] (4.4)

Tt-r[ir] = ∑
iα=0

 Nα– 1
 Tt-rα [ir, iα] (4.5)

Tt-α[iα] = ∑
ir=0

 Nr–1
 Tt-rα [ir, iα] (4.6)

To get the total diffuse reflectance and transmittance, we sum the 1D arrays again:

Rd = ∑
ir=0

 Nr–1
 Rd-r [ir] (4.7)

Tt = ∑
ir=0

 Nr–1
 Tt-r [ir] (4.8)

All these arrays give the total photon weight per grid element, based on N initial

photon packets with weight unity. To convert Rd-rα[ir, iα] and Tt-rα[ir, iα] into photon

probability per unit area perpendicular to the photon direction per solid angle, they are

divided by the projection of the annular area onto a plane perpendicular to the photon

exiting direction (∆a cosα), the solid angle (∆Ω) spanned by a grid line separation in the α
direction around an annular ring, and the total number of photon packets (N):

Rd-rα[ir, iα] ← Rd-rα[ir, iα] / (∆a cosα ∆Ω N) [cm–2 sr–1] (4.9)

Tt-rα[ir, iα] ← Tt-rα[ir, iα] / (∆a cosα ∆Ω N) [cm–2 sr–1] (4.10)

Chapter 4 Scored Physical Quantities 22

where

∆a = 2 π r ∆r = 2 π (ir + 0.5) (∆r)2 [cm2] (4.11)

∆Ω = 4 π sinα sin(∆α/2) = 4 π sin[(iα + 0.5) ∆α] sin(∆α/2) [sr] (4.12)

where r and α are computed from Eq. 4.1 and Eq. 4.2 respectively. The radially resolved

diffuse reflectance Rd-r[ir] and total transmittance Tt-r[ir] are divided by the area of the

annular ring (∆a) and the total number of photon packets (N) to convert them into photon

probability per unit area:

Rd-r[ir] ← Rd-r[ir] / (∆a N) [cm–2] (4.13)

Tt-r[ir] ← Tt-r[ir] / (∆a N) [cm–2] (4.14)

The angularly resolved diffuse reflectance Rd-α[iα] and total transmittance Tt-α[iα] are

divided by the solid angle (∆Ω) and the total number of photon packets (N) to convert them

into photon probability per unit solid angle:

Rd-α[iα] ← Rd-α[iα] / (∆Ω N) [sr–1] (4.15)

Tt-α[iα] ← Tt-α[iα] / (∆Ω N) [sr–1] (4.16)

The total diffuse reflectance and transmittance are divided by the total number of photon

packets (N) to get the probabilities:

Rd ← Rd / N [–] (4.17)

Tt ← Tt / N [–] (4.18)

where [–] means dimensionless units.

 4.2 Internal photon distribution

During the simulation, the absorbed photon weight is scored into the absorption

array A(r, z). A(r, z) is internally represented by a 2D array Arz[ir, iz], where ir and iz are

the indices for grid elements in r and z directions. The coordinates of the center of a grid

element can be computed by Eq. 4.1 and the following:

Chapter 4 Scored Physical Quantities 23

z = (iz + 0.5) ∆z (4.19)

The raw data Arz[ir, iz] give the total photon weight in each grid element in the two-

dimensional grid system. To get the total photon weight in each grid element in the z

direction, we sum the 2D array in the r direction:

Az[iz] = ∑
ir=0

 Nr–1
 Arz [ir, iz] (4.20)

The total photon weight absorbed in each layer Al[layer] and the total photon weight

absorbed in the tissue A can be computed from Az[iz]:

Al[layer] = ∑
iz in layer

 Az [iz] (4.21)

A = ∑
iz=0

 Nz–1
 Az [iz] (4.22)

where the summation range "iz in layer" includes all iz's that lead to a z coordinate in the

layer. Then, these quantities are scaled properly to get the densities:

Arz[ir, iz] ← Arz[ir, iz] / (∆a ∆z N) [cm–3] (4.23)

Az[iz] ← Az[iz] / (∆z N) [cm–1] (4.24)

Al[layer] ← Al[layer] / N [–] (4.25)

A ← A / N [–] (4.26)

The quantity A gives the photon probability of absorption by the tissue. The 1D array

Al[layer] gives the photon probability of absorption in each layer. At this point, Arz[ir, iz]

gives the absorbed photon probability density (cm−3), and can be converted into photon

fluence, φrz, (cm−2) by dividing it by the absorption coefficient µa (cm−1) of the layer

where the current location resides:

Chapter 4 Scored Physical Quantities 24

φrz[ir, iz] = Arz[ir, iz] / µa [cm–2] (4.27)

The 1D array Az[iz] gives the photon probability per unit length in the z direction (cm−1). It

can also be divided by the absorption coefficient µa (cm−1) to yield a dimensionless

quantity φz[iz]:

φz[iz] = Az[iz] / µa [–] (4.28)

This quantity may seem hard to understand or redundant at first glance. However, the

summation of the raw data in Eq. 4.20 is equivalent to the convolution for an infinitely

wide flat beam in Eq. 7.15 to be discussed in Chapter 7. The equivalence can be shown as

follows. According to Eqs. 4.20, 4.23 and 4.24, the final converted Az[iz] and Arz[ir, iz]

have the following relation:

Az[iz] = ∑
ir=0

 Nr–1
 Arz [ir, iz] ∆a(ir) (4.29)

where ∆a(ir) is computed in Eq. 4.11, but we stress that it is a function of ir in Eq. 4.29.

Employing Eqs. 4.27 and 4.28, Eq. 4.29 can be converted to:

φz[iz] = ∑
ir=0

 Nr–1
 φrz [ir, iz] ∆a(ir) (4.30)

This is a numerical solution of the following integral:

φz(z) = ⌡⌠
 0

 ∞
 φrz(r, z) 2 π r dr (4.31)

Eq. 4.31 is essentially Eq. 7.15 for an infinitely wide flat beam with a difference of

constant S, where S is the power density of the infinitely wide flat beam. The equivalence

between Eq. 4.31 and Eq. 7.15 can be seen after substituting φz(z) for F(r, z), φrz(r, z) for

G(r'', z), and r for r''. Therefore, φz[iz] gives the fluence for an infinitely wide flat beam

with a difference of a constant which is the power density S.

The program mcml will only report Arz[ir, iz] and Az[iz] instead of φrz[ir, iz] and

φz[iz]. The program conv will be set up to convert Arz[ir, iz] and Az[iz] into φrz[ir, iz] and

φz[iz].

Chapter 4 Scored Physical Quantities 25

 4.3 Issues regarding grid system

In our Monte Carlo simulation, we always set up a grid system. The computation

results will be limited by the finite grid size. This section will discuss what is the best that

one can do.

 Position of average value for each grid element

The simulation provides the average value of the scored physical quantities in each

grid element. Now, the question is at what position should that averaged value be

assigned? One can argue that there is no best point because the exact answer to the physical

quantities is unknown. However, under linear approximations of the physical quantities in

each grid element, we can find the best point for each grid point. The linear

approximations can be justified for small grid size in most cases because the higher order

terms are considerably less than the linear term. Some special occasions will be discussed

subsequently.

Let us discuss the grid system in the r direction first because r is the variable over

which the convolution for photon beams of finite size will be implemented (see Chapter 7).

The grid system in the r direction uses ∆r as the grid separation with a total of N grid

elements. The index to each grid element is denoted by n. The center of each grid element

is denoted by rn:

rn = (n + 0.5) ∆r (4.32)

As we have mentioned, the Monte Carlo simulation actually approximates the

average of the physical quantity Y(r) in each grid element, where Y(r) can be the diffuse

reflectance, diffuse transmittance, and internal fluence Arz(r, z) for a particualr z value.

<Y(r)> =
1

 2 π rn ∆ r
 ⌡


⌠

rn – ∆r/2

rn + ∆r/2

 Y(r) 2 π r dr (4.33)

where 2 π rn ∆r is the area of the ring or the circle when n = 0.

If Y(r) in each grid element is approximated linearly, we can prove that there exists

a best point rb to satisfy:

Chapter 4 Scored Physical Quantities 26

<Y(r)> = Y(rb) (4.34)

where

 rb = rn +
∆r

 12 rn
 ∆r (4.35)

Proof: Y(r) is approximated by a Taylor series about rb expanded to the first order:

Y(r) = Y(rb) + (r – rb) Y'(rb) (4.36)

Substituting Eq. 4.36 into Eq. 4.33 yields:

<Y(r)> =
1

 2 π rn ∆ r
 ⌡


⌠

rn – ∆r/2

rn + ∆r/2

 [Y(rb) + (r – rb) Y'(rb)] 2 π r dr

=
Y(rb)

 2 π rn ∆ r
 ⌡


⌠

rn – ∆r/2

rn + ∆r/2

 2 π r dr +

Y'(rb)

 2 π rn ∆ r
 ⌡


⌠

rn – ∆r/2

rn + ∆r/2

 (r – rb) 2 π r dr

=
Y(rb)

 2 π rn ∆ r
 [π r2]

rn + ∆r/2

rn – ∆r/2
 +

Y'(rb)

 2 π rn ∆ r
 (π/3) [2 r3 – 3 rb r2]

rn + ∆r/2

rn – ∆r/2

=
Y(rb)

 2 π rn ∆ r
 [2 π rn ∆r] +

Y'(rb)

 2 π rn ∆ r
 (π/3) [2 ∆r (3 rn2 +

(∆r)2

4 – 3 rb rn)]

= Y(rb) + Y'(rb) [rn +
(∆r)2

 12 rn
 – rb]

Chapter 4 Scored Physical Quantities 27

or

<Y(r)> = Y(rb) + Y'(rb) [rn +
(∆r)2

 12 rn
 – rb] (4.37)

If we set the term in the square bracket in Eq. 4.37 to zero, and solve for rb, we obtain:

 rb = rn +
(∆r)2

 12 rn
 (4.38a)

and Eq. 4.37 becomes:

<Y(r)> = Y(rb) (4.39)

Eq. 4.38a can be reformulated:

rb = rn +
∆r

 12 rn
 ∆r (4.38b)

Q.E.D.

We can substitute Eq. 4.32 into the second term of Eq. 4.38b:

 rb = [(n + 0.5) +
1

12 (n + 0.5)] ∆r (4.38c)

When n = 0, rb = [0.5 +
1
6] ∆r =

2
3 ∆r

When n = 1, rb = [1.5 +
1
18] ∆r ≈ 1.556 ∆r

When n = 2, rb = [2.5 +
1
30] ∆r ≈ 2.533 ∆r

When n = 3, rb = [3.5 +
1
42] ∆r ≈ 3.524 ∆r

When n = 4, rb = [4.5 +
1
54] ∆r ≈ 4.519 ∆r

. . .

It is observed that the best point deviates from the center of each grid element, and

the smaller the index to the grid box, the larger the deviation. As the index n becomes

large, the best point approaches the center of the grid element. This behavior is due to the

Chapter 4 Scored Physical Quantities 28

2 π r factor in Eq. 4.33. A similar factor does not exist for the z direction, and the best

points for the z direction should be the centers of each grid element.

The computation results of a Monte Carlo simulation with a selected grid system

always have finite precision which is fundamentally limited by the finite grid size. The

above theorem only gives the points where the function values are best represented by the

simulated results.

 Effects of the first photon-tissue interaction

The above theorem assumed differentiability of Y(r), where Y(r) can represent the

diffuse reflectance Rd(r), the diffuse transmittance Td(r), and the internal fluence φrz(r, z) at

a particular z value. This assumption should hold for the diffuse reflectance and the diffuse

transmittance. However, for the internal fluence, the on-z-axis fluence is a delta function

for an impulse response (responses to an infinitely narrow photon beam). Therefore, you

cannot assume the differentiability of the function φrz(r, z) at r equal zero, i.e., φrz(r=0, z).

The best solution to this problem has been provided by Gardner et al. (1992b). They keep

track of the first photon interactions with the medium, which are always on the z-axis,

separately from the rest of the interactions. Therefore, the function φrz(r, z) will not include

the first photon-tissue interaction which yield a delta function. This approach ensures a

differentiable φrz(r, z) at r equal zero besides its better accuracy.

In the current version (version 1.0) of mcml, Gardner et al.'s approach is not yet

implemented although we intend to add this in the later version. However, the result from

mcml will still be correct within the spatial resolution of the grid size in the r direction.

Although nobody will use Monte Carlo to simulate the responses in an absorption-only

semi-infinite medium, let us use this simple example to illustrate what we mean. In this

case, Gardner et al.'s approach will yield an exponentially decaying response on the z axis

which is a delta function of r. The version 1.0 of mcml will yield the same exponentially

decaying response in the first grid elements which is not a delta function because of the

finite volume of the grid elements. However, as the grid separation ∆r is made sufficiently

small, the result approaches Gardner et al.'s.

So far the discussion has nothing to do with convolution for photon beams of finite

size which will be discussed in Chapter 7. According to Gardner et al. (1992b), the error

in the convolution caused by not scoring the first interactions separately will be small for

Gaussian beams whose radius is at least three times larger than the grid separation ∆r. As

Chapter 4 Scored Physical Quantities 29

we will discuss in Section 7.4, our extended trapezoidal integration, instead of integrating

over the original grid points, in the convolution program conv should further decrease the

error. Of course, when the on-z-axis interactions are considered separately, our

convolution program conv is not subject to this limitation on the radius of the Gaussian

beam. In contrast, if the integration is approximated by computing the integrand over the

original grid points, the radius of the photon beam should still be large enough to yield

reasonable integration accuracy.

Since this theorem is a late development, it has not been implemented in the

programs (mcml and conv) yet. We plan to implement it in the next release (see Appendix

H).

Chapter 5 Programming mcml 30

 5. Programming mcml

The simulation is written in ANSI Standard C (Plauger et al., 1989, Kelley et al.,

1990), which makes it possible to execute the program on any computers that support

ANSI Standard C. So far, the program has been successfully tested on Macintosh, IBM

PC compatibles, Sun SPARCstation 2, IBM RISC/6000 POWERstation 320, and Silicon

Graphics IRIS workstation. This chapter mainly describes several rules, the important

constants and the data structures used in the program, the algorithm to trace photon

packets, flow of the program, and the timing profile of the program. Prior knowledge of C

is assumed to fully understand this chapter. The flow of the program is listed in detail in

Appendix A. The complete source code is listed in Appendix B file by file. In Appendix

C, we have provided a make file used by make utilities on UNIX machines. Appendix D

and E are a template of input data file and a sample output data file respectively. Appendix

F gives several C Shell scripts for UNIX users. The information needed to obtain the

program is detailed in Appendix G.

 5.1 Programming rules and conventions

When we write this program, we have followed the following rules and

conventions:

1. Conform to ANSI Standard C so that the program can be executed on a variety of

computers.

2. Avoid global variables whenever possible. This program has not defined any

global variables so far.

3. Avoid hard limits on the program. For example, we removed the limits on the

number of array elements by dynamic allocation at run time. This means that the

program can accept any number of layers or gridlines as long as the memory

permits.

4. Preprocessor names are all capital letters, e.g.,

#define PREPROCESSORS

5. For global variables, function names, or data types, first letter of each word is

capital, and words are connected without underscores, e.g.,

Chapter 5 Programming mcml 31

short GlobalVar;

6. For dummy variables, first letter of each word is capital, and words are connected

by underscores, e.g.,

void NiceFunction(char Dummy_Var);

7. Local variables are all lower cases, and words are connected by underscores, e.g.,

short local_var;

 5.2 Several constants

There are several important constants defined in the header file mcml.h or the

source files mcmlmain.c and mcmlgo.c. They are listed in Table 5.1, and may be altered

according to your special need.

The constant STRLEN is used in the program to define string length. WEIGHT is the

threshold photon weight, below which the photon packet will go through a roulette. This

photon packet with small weight W has a chance of CHANCE to survive with a new weight

of W/CHANCE. COSZERO and COS90D are used for the computation of reflection with

Fresnel's formulas, and for the computation of new photon directional cosines. When

|cosα| > COSZERO, α is considered very close to 0 or 180o. When |cosα| < COS90D, α is

considered very close to 90o.

When THINKCPROFILER is 1, the profiler of THINK C compiler (Symantec, 1991)

on Macintosh can be used to monitor the timing profile of the program regarding each

function (see Section 5.7). When GNUCC is 1, the code can be compiled with GNU C

compiler (gcc) from the Free Software Foundation, which does not support several

functions such as difftime() although being claimed to conform to ANSI C standards.

Therefore, the timing modules in the program will not work when GNUCC is 1, although the

program will otherwise operate normally. When STANDARDTEST is 1, the random number

generator will generate a fixed sequence of random numbers after being fed a fixed seed.

This feature is used to debug the program. STANDARDTEST should be set to 0 normally,

which makes the random number generator use the current time as the seed. When

PARTIALREFLECTION is set to 0, the all-or-none simulation mechanism of photon internal

reflection at a boundary (e.g., air/tissue boundary) described in Section 3.6 is used, where

the photon packet is either totally reflected or totally transmitted determined by the

comparison of the Fresnel reflectance and a random number. Otherwise when

Chapter 5 Programming mcml 32

PARTIALREFLECTION is set to 1, the photon packet will be partially reflected and

transmitted. Normally we set PARTIALREFLECTION to 0 because the all-or-none simulation

is faster.

Table 5.1. Important constants in the program mcml.

 5.3 Data structures and dynamic allocations

Data structures are an important part of the program. Related parameters are

logically organized by structures such that the program is easier to write, read, maintain,

and modify. The parameters for a photon packet are grouped into a single structure defined

by:

typedef struct {
 double x, y, z; /* Cartesian coordinates.[cm] */
 double ux, uy, uz;/* directional cosines of a photon. */
 double w; /* weight. */
 Boolean dead; /* 1 if photon is terminated. */
 short layer; /* index to layer where the photon packet resides.*/
 double s; /* current step size. [cm]. */
 double sleft; /* step size left. dimensionless [-]. */
} PhotonStruct;

The location and the traveling direction of a photon packet are described by the Cartesian

coordinates x, y, z, and the directional cosines (ux, uy, uz) respectively. The current

weight of the photon packet is denoted by the structure member w. The member dead,

initialized to be 0 when the photon packet is launched, represents the status of a photon

Constants File Value Meaning

WEIGHT mcml.h 1×10 –4 threshold weight

CHANCE mcml.h 0.1 chance of surviving a roulette

STRLEN mcml.h 256 string length

COSZERO mcmlgo.c 1–1×10–12 cosine of ~ 0

COS90D mcmlgo.c 1×10–6 cosine of ~ 90o

THINKCPROFILER mcmlmain.c 1/0 switch for THINK C profiler on

Macintosh

GNUCC mcmlmain.c 1/0 switch for GNU C compiler

STANDARDTEST mcmlgo.c 1/0 switch for fixed sequence of random

numbers

PARTIAL-

REFLECTION

mcmlgo.c 1/0 switch for partial internal reflection

at boundary

Chapter 5 Programming mcml 33

packet. If the photon packet has exited the tissue or it has not survived a roulette when its

weight is below the threshold weight, then the member dead is set to 1. It is used to signal

the program to stop tracing the current photon packet. Note that the type Boolean is not an

internal data type in ANSI Standard C. It is defined to be type char in our header file

mcml.h. The member layer is the index to the layer where the photon packet resides.

Type short, whose value ranges between –32768 (215) and +32768 (Plauger et al.,

1989), is used for the member layer. It is defined for computation efficiency although the

layer can always be identified according to the Cartesian coordinates of the photon packet

and the geometric structure of the media. The member layer is updated only when the

photon packet crosses tissue/tissue interfaces. The member s is the step size in cm for the

current step. The member sleft is used to store the unfinished step size in dimensionless

units when a step size is large enough to hit a boundary or interface. For example, if a

selected step size s is long enough to hit a boundary of the current layer with interaction

coefficient µt as explained in Section 3.6, a foreshortened step size s1 is chosen as the

current step size, and the unfinished step size has to be stored. In the program, the

following assignments are implemented: the member s = s1 and the member sleft = (s –

s1) µt. Note that we store the unfinished step size in dimensionless unit, therefore, we

only need to know the interaction coefficient of the current layer to convert the step size

back in cm when the photon packet crosses layers.

The parameters that are needed to describe a layer of tissue are grouped into one

structure:

typedef struct {
 double z0, z1; /* z coordinates of a layer. [cm] */
 double n; /* refractive index of a layer. */
 double mua; /* absorption coefficient. [1/cm] */
 double mus; /* scattering coefficient. [1/cm] */
 double g; /* anisotropy. */

 double cos_crit0, cos_crit1;
} LayerStruct;

The Cartesian coordinates of the top and bottom boundaries are denoted by z0 and z1

respectively. The refractive index, absorption coefficient, scattering coefficient, and

anisotropy factor of a layer of medium are represented by the members n, mua, mus, and g

respectively. The cosines of the critical angles are denoted by the members cos_crit0 and

cos_crit1 respectively. They are computed with the relative refractive index of this layer

with respect to the two neighbor layers.

Chapter 5 Programming mcml 34

All the input parameters are defined in the following structure. Most of the

members of the structure are provided by the user before the simulation.

typedef struct {
 char out_fname[STRLEN]; /* output filename. */
 char out_fformat; /* output file format. */
 /* 'A' for ASCII, */
 /* 'B' for binary. */
 long num_photons; /* to be traced. */
 double Wth; /* play roulette if photon */
 /* weight < Wth.*/

 double dz; /* z grid separation.[cm] */
 double dr; /* r grid separation.[cm] */
 double da; /* alpha grid separation. */
 /* [radian] */
 short nz; /* array range 0..nz-1. */
 short nr; /* array range 0..nr-1. */
 short na; /* array range 0..na-1. */

 short num_layers; /* number of layers. */
 LayerStruct * layerspecs; /* layer parameters. */
} InputStruct;

The filename for data output is out_fname, and its format (out_fformat) can be A for

ASCII or B for binary. Currently, only ASCII format is supported. The number of

photon packets to be simulated is denoted by the member num_photons. Since larger

number of photon packets may be simulated, type long int, whose value ranges between

–2,147,483,648 (231) and +2,147,483,648 (Plauger et al, 1989), is used for the member

num_photons. The threshold weight is denoted by the member Wth. The photon packet

with weight less than Wth will experience a roulette. The grid line separations ∆z, ∆r, and

∆α are represented by members dz, dr, and da respectively. The numbers of grid

elements Nz, Nr, and Nα are represented by nz, nr, and na respectively. The total

number of layers is represented by the member num_layers. The member layerspecs is

a pointer to the structure LayerStruct. This pointer can be dynamically allocated with an

array of structures, in which each structure represents a layer, or the top ambient medium,

or the bottom ambient medium (e.g., air). Therefore, there are (num_photons + 2)

elements in the array, where the element 0 and element (num_photons + 1) store the

refractive indices for the top ambient medium and bottom ambient medium respectively.

The dynamic allocation will be discussed subsequently.

All the output data are organized into one structure too:

typedef struct {
 double Rsp; /* specular reflectance. [-] */
 double ** Rd_ra; /* 2D distribution of diffuse */
 /* reflectance. [1/(cm2 sr)] */

Chapter 5 Programming mcml 35

 double * Rd_r; /* 1D radial distribution of diffuse */
 /* reflectance. [1/cm2] */
 double * Rd_a; /* 1D angular distribution of diffuse */
 /* reflectance. [1/sr] */
 double Rd; /* total diffuse reflectance. [-] */

 double ** A_rz; /* 2D probability density in turbid */
 /* media over r & z. [1/cm3] */
 double * A_z; /* 1D probability density over z. */
 /* [1/cm] */
 double * A_l; /* each layer's absorption */
 /* probability. [-] */
 double A; /* total absorption probability. [-] */

 double ** Tt_ra; /* 2D distribution of total */
 /* transmittance. [1/(cm2 sr)] */
 double * Tt_r; /* 1D radial distribution of */
 /* transmittance. [1/cm2] */
 double * Tt_a; /* 1D angular distribution of */
 /* transmittance. [1/sr] */
 double Tt; /* total transmittance. [-] */
} OutStruct;

The member Rsp is the specular reflectance. The pointer Rd_ra will be allocated

dynamically, and used equivalently as if it is a 2D array over r and α. Rd_ra is the internal

representation of diffuse reflectance Rd(r, α) discussed in Section 4.1. The members Rd_r

and Rd_a are the 1D diffuse reflectance distributions over r and α respectively. The

member Rd is the total diffuse reflectance Rd. The member A_rz is the representation of the

2D internal photon distribution A(r, z) (see Section 4.2). The members A_z and A_l are

the corresponding 1D internal photon distributions with respect to z and layers respectively.

The member A is the probability of photon absorption by the whole tissue. The members

for transmittance are analogous to these for reflectance except that there is no distinction

between unscattered transmittance and diffuse transmittance. All the transmitted photon

weight is scored into the arrays.

In the above defined structures, pointers are used to denote the 2D or 1D arrays.

These pointers are dynamically allocated at run time according to user's specifications.

Therefore, the user can use different numbers of layers or numbers of grid elements

without changing the source code of the program. This provides the flexibility of the

program and the efficiency of memory utilization. The dynamic allocation procedures are

modified from Press (1988). Only 1D array allocation will be presented here, and the

matrix allocation can be found in Appendix B.5 -- "mcmlnr.c".

double *AllocVector(short nl, short nh)
{
 double *v;
 short i;

Chapter 5 Programming mcml 36

 v=(double *)malloc((unsigned) (nh-nl+1)*sizeof(double));
 if (!v) nrerror("allocation failure in vector()");

 v -= nl;
 for(i=nl;i<=nh;i++) v[i] = 0.0; /* init. */
 return v;
}

This function returns a pointer, which points to an array of elements. Each element is a

double precision floating point number. The index range of the array is from nl to nh

inclusive. In our simulation, nl is always 0, which is the default value in C. This function

also initializes all the elements equal to zero.

 5.4 Flowchart of photon tracing

Fig. 5.1 indicates the basic flowchart for the photon tracing part of the Monte Carlo

calculation as described in Chapter 3. Many boxes in the flowchart are direct

implementations of the discussions in Chapter 3. This chart also includes the situation

where the photon packet is in a glass, in which absorption and scattering do not exist. In

this case, the photon packet will be moved to the boundary of the glass layer in the current

photon direction. Then, we have to determine statistically whether the photon packet will

cross the boundary or be reflected according to the Fresnel's formulas.

The box "Launch photon" initializes the photon packet position, direction, weight,

and several other structure members including ds and dsleft in PhotonStruct. The flow

control box "Photon in glass?" determines whether the current layer is a glass layer or

tissue layer.

Chapter 5 Programming mcml 37

Fig. 5.1. Flowchart for Monte Carlo simulation of multi-layered tissue.

When the photon packet is in glass layers, which have no absorption or scattering,

the box "Set step size s" chooses the distance between the current photon position and the

boundary in the direction of the photon movement as the step size. The box "Move to

Y

Photon in glass?

Hit boundary?

Move s

Absorb

Scatter

Y

N

N

Launch photon

N

Photon weight small?

Survive roulette?

Last photon?

Y

N

Y

End

N

Y

Set step size sSet step size s

Move to boundary

Transmit or reflect

Store unfinished sMove to boundary

Transmit or reflect

Chapter 5 Programming mcml 38

boundary" updates the position of the photon packet. Now, as the photon packet is on the

boundary, two approaches of processing photon transmission and reflection are supported

in the box "Transmit or reflect" as discussed in Section 3.6. If the constant

PARTIALREFLECTION is zero, the box determines whether the photon packet should cross

the boundary or be reflected according to the Fresnel reflectance in an all-or-none fashion.

If the photon packet is reflected, the propagation direction should be updated. Otherwise,

if the photon packet crosses the interface into another layer of tissue, the propagation

direction and the index to the layer are updated. If the photon packet crosses the boundary

and moves out of the medium, the photon packet is terminated and the photon weight is

scored into the array for reflectance or transmittance depending on where the photon packet

exits. If the constant PARTIALREFLECTION is one, the box "Transmit or reflect" deals with

ambient medium/tissue interface differently. Part of the photon weight is transmitted to the

ambient medium as reflectance or transmittance, and the rest of the weight will be reflected

and continue propagation. Normally we set PARTIALREFLECTION to 0 because the all-or-

none simulation is faster (see Section 3.6).

In tissue layers, the box "Set step size s" sets the step size to the unfinished step

size according to the structure member sleft if sleft is not zero. Otherwise, it sets the

step size according to the interaction coefficient of the medium. With the chosen step size

s, the box "Hit boundary?" identifies whether the step size is long enough to hit the

boundary of the current layer.

If the step does not hit the boundary, then the box "Move s" will update the position

of the photon packet. Then, the box "Absorb" will deposit a portion of the photon packet

weight in the local grid element, and the box "Scatter" will determine the new traveling

direction for the rest of the photon packet after absorption.

If the step hits the boundary, then the step size s is foreshortened. The

foreshortened step size is the distance between the photon position and the boundary in the

direction of the photon movement, and the unfinished step size is stored by the box "Store

unfinished s". The stored unfinished step size in dimensionless units will be used by the

box "Set step size s" for tissue layers to generate the next step size. The next two boxes

"Move to boundary" and "Transmit or reflect" function the same as for the glass layer.

At this point, the photon weight and the structure member dead are checked in the

box "Photon weight small?". If the photon packet is dead, it will jump to the box "Last

photon?" (transition not shown in the flowchart). If the photon packet is still alive and its

Chapter 5 Programming mcml 39

weight exceeds Wth, it will start the next step of propagation. If the photon packet is still

alive and its weight is lower than Wth, it has to experience a roulette in the box "Survive

roulette?". If the photon packet survives the roulette, it will start the next step of

propagation. Otherwise, the photon packet is terminated and the box "Last photon?"

determines whether to end the simulation or to start tracing a new photon packet.

 5.5 Flow of the program mcml

A flow graph of the mcml source code has been generated using the UNIX

command cflow under SunOS. Each line of output begins with a reference number, i.e., a

line number, followed by a suitable number of tabs indicating the level, then the name of

the global (normally only a function not defined as an external or beginning with an

underscore), a colon, and its definition. The definition consists of an abstract type

declaration (for example, char *), and delimited by angle brackets, the name of the source

file and the line number where the definition was found.

Once a definition of a name has been printed, subsequent references to that name

contain only the reference number of the line where the definition may be found. For

undefined references, only <> is printed.

The list in Fig. 5.2 is generated by command: cflow -d2 mcml*.c. The option "-

d2" limits the nesting depth to 2. The command output with all the nesting levels is shown

in Appendix A.

Chapter 5 Programming mcml 40

1 main: char(), <mcmlmain.c 198>
2 ShowVersion: void*(), <mcmlio.c 49>
3 CenterStr: char*(), <mcmlio.c 28>
4 puts: <>
5 GetFnameFromArgv: void*(), <mcmlmain.c 150>
6 strcpy: <>
7 GetFile: struct*(), <mcmlio.c 94>
8 printf: <>
9 scanf: <>
10 strlen: <>
11 exit: <>
12 fopen: <>
13 CheckParm: void*(), <mcmlio.c 514>
14 ReadNumRuns: short(), <mcmlio.c 205>
15 printf: 8
16 ReadParm: void*(), <mcmlio.c 425>
17 FnameTaken: char(), <mcmlio.c 487>
18 sprintf: <>
19 free: <>
20 nrerror: void*(), <mcmlnr.c 19>
21 FreeFnameList: void*(), <mcmlio.c 500>
22 rewind: <>
23 ReadNumRuns: 14
24 ReadParm: 16
25 DoOneRun: void*(), <mcmlmain.c 163>
26 InitOutputData: void*(), <mcmlio.c 546>
27 Rspecular: double(), <mcmlgo.c 117>
28 PunchTime: long(), <mcmlmain.c 60>
29 ReportStatus: void*(), <mcmlmain.c 122>
30 LaunchPhoton: void*(), <mcmlgo.c 143>
31 HopDropSpin: void*(), <mcmlgo.c 726>
32 ReportResult: void*(), <mcmlmain.c 133>
33 FreeData: void*(), <mcmlio.c 581>
34 fclose: <>

Fig. 5.2. Flow of mcml.

The names of most functions well describe what they do. The function

ShowVersion() prints the name of the program, the names and address of the authors of

the program, and the version of the program. The function GetFnameFromArgv() get an

input data filename from the command line input for UNIX users or DOS users.

Macintosh OS does not allow command line input. The function GetFile() is used to get

the pointer to the file stream for the input data file. The function CheckParm() checks the

input parameters. If the CheckParm() detects an error, it will exit the program.

Otherwise, if all the input parameters pass the error check by the function CheckParm(),

independent simulation runs will be implemented one by one. For each independent run,

the function ReadParm() obtains the input parameters, and the function DoOneRun() does

the simulation and reports the results to the output data file.

Chapter 5 Programming mcml 41

After all the input parameters are checked by CheckParm(), the file pointer is

rewound to the beginning of the file stream so that the input parameters can be read again

by the functions ReadNumRuns() and ReadParm(). The function ReadNumRuns() gets

how many independent simulations are to be specified in this input data file. The function

ReadParm() only reads the input parameters for one independent run.

Under the function DoOneRun(), the function PunchTime() provides the user time

and the real time used so far by the current simulation run. The function ReportStatus()

fetches the real time and predicts when the current simulation run will finish. However,

these timing functions will not work if the source code is compiled by a GNU C compiler.

The function LaunchPhoton() initializes a photon packet. The function HopDropSpin()

moves the photon packet, deposits some photon packet weight, scatters the packet, and

deals with the boundary. After the given number of photon packets are traced, the results

are properly processed (see Chapter 4) and then written to an output file by the function

ReportResult().

 5.6 Multiple simulations

The program can do any number of independent simulations sequentially without

being subject to memory limit. It checks the parameters of one simulation after another

before starting the simulation. If it detects an error in the input data file, the program stops

the execution. Otherwise, it reads in the parameters of one independent simulation at a time

and starts the simulation. At the end of the simulation, it writes the results to the output

data file whose name is specified by the input data file. The next independent run will be

processed thereafter. The users should try to make sure not to use the same output

filenames for different simulations, although the program checks against duplicated output

filenames.

To check against duplicated filenames specified in an input data file, we set up a

linear linked list to store the filenames specified in the input data file. Each new filename is

compared with every node of the filename list. If the name is already taken, the program

notifies the user of the name, and exits to the system. Otherwise, if no filename is

duplicated, the program deletes the filename list to release the memory, and continues

execution.

Chapter 5 Programming mcml 42

 5.7 Timing profile of the program

The timing profile of the program mcml indicates how to improve the efficiency of

the program by logging how much time the program spends on each function. Profilers are

available in a few compilers including C compilers of UNIX operating systems, and

THINK C compiler on Macintosh. We used the THINK C 5.0.1 profiler here (Symantec,

1991). To log the timings, we turn on the flag THINKCPROFILER to 1 in mcmlmain.c, and

check the "Generate profiler calls" check box in the Debugging page of the "Options..."

dialog box in the THINK C compiler.

The following input file is used (see Section 9.1 for how to name the input file) to

test the profile, where only 100 photon packets are traced. The optical parameters of the

tissue are: refractive index n = 1.37, absorption coefficient µa = 1 cm−1, scattering

coefficient µs = 100 cm−1, anisotropy factor g = 0.9, and thickness d = 0.1 cm.

1.0 # file version
1 # number of runs

prof.mco A # output filename, ASCII/Binary
100 # No. of photons
1E-2 1E-2 # dz, dr
100 100 1 # No. of dz, dr & da.

1 # No. of layers
n mua mus g d # One line for each layer
1.0 # n for medium above.
1.37 1 100 0.90 0.1 # layer 1
1.0 # n for medium below.

The profiler output is listed in Table 5.2. The heading "Function" gives the name

of a function. The headings "Minimum", "Maximum" and "Average" give the minimum,

maximum and average time spent in a routine respectively. The unit of time here is a unit

of the VIA 1 timer. Each unit is 1.2766 µsec (approximately 780,000 in a second). The

heading "%" is the percentage of profiling period spent in the routine, where the profiling

period is the accumulated time spent in routines that were compiled with the "Generate

profiler calls" options on. The heading "Entries" is the number of times the routine was

called.

Chapter 5 Programming mcml 43

Table 5.2. Timing profile of the program mcml.

Function Minimum Maximum Average % Entries

AllocMatrix 2507 134153 46662 0 3

AllocVector 65 319 169 0 6

CrossDnOrNot 53 670 145 0 95

CrossOrNot 40 631 66 0 175

CrossUpOrNot 53 635 144 0 80

Drop 166 887 245 5 3554

HitBoundary 38 622 62 1 3729

Hop 40 595 59 1 3729

HopDropSpin 52 711 74 1 3729

HopDropSpinInTissue 111 815 242 5 3729

InitOutputData 314 314 314 0 1

LaunchPhoton 35 123 59 0 100

PredictDoneTime 56472 61201 58638 3 9

PunchTime 76 116 104 0 10

RFresnel 300 905 411 0 105

RandomNum 37 735 67 4 10937

RecordR 1099 2293 1690 0 46

RecordT 1363 2396 1761 0 54

ReportStatus 19 790 90 0 100

Rspecular 58 58 58 0 1

Spin 914 2157 1412 3 3 3554

SpinTheta 72 665 102 2 3554

StepSizeInTissue 36 2094 1378 3 3 3729

ran3 27 1187 44 3 10938

From the percentage column, we observe that the functions Spin() and

StepSizeInTissue() take most of the computation time. They are the primary places to

modify if we need to improve the efficiency. The function StepSizeinTissue() takes a

long time because of the logarithmic operation. The function PredictDoneTime()

apparently takes much computation time too. This is because we simulated only 100

photon packets. This function will be called for a fixed number of times (10 times) for a

Chapter 5 Programming mcml 44

simulation no matter how many photon packets are simulated. Therefore, its percentage

will decrease linearly with the number of photon packets to be simulated. Note that we

made the profiler include only the main part of the simulation (See file mcmlmain.c in

Appendix B). Therefore, the functions for input or output of data are not included since

they do not scale up as the number of photon packets to be simulated increases.

Chapter 6 Computation Results of mcml and Verification 45

 6. Computation Results of mcml and Verification

Some computation results are described in this chapter as examples, and some of

them are compared with the results from other theory or with the Monte Carlo simulation

results from other investigators to verify the program.

 6.1 Total diffuse reflectance and total transmittance

We computed the total diffuse reflectance and total transmittance of a slab of turbid

medium with the following optical properties: relative refractive index n = 1, absorption

coefficient µa = 10 cm−1, scattering coefficient µs = 90 cm−1, anisotropy factor g = 0.75,

and thickness d = 0.02 cm. Ten Monte Carlo simulations of 50,000 photon packets each

are completed. Then, the averages and the standard errors of the total diffuse reflectance

and total transmittance are computed (Table 6.1). The table also lists the results from van

de Hulst's table (van de Hulst, 1980) and from Monte Carlo simulations by Prahl et al.

(1989). All results agree with each other.

Table 6 .1 . Verification of the total diffuse reflectance and the total

transmittance in a slab with a matched boundary.

The columns "Rd Average" and "Rd Error" are the average and the standard error of the

total diffuse reflectance respectively, while the columns "Tt Average" and "Tt Error" are the

average and the standard error of the total transmittance.

For a semi-infinite turbid medium that has mismatched refractive index with the

ambient medium, the average and the standard error of the total diffuse reflectance are

computed similarly, and compared in Table 6.2 with Giovanelli's (1955) results and Monte

Carlo simulation results by Prahl et al. (1989). The medium has the following optical

properties: relative refractive index n = 1.5, µa = 10 cm−1, µs = 90 cm−1, g = 0 (isotropic

scattering). Ten Monte Carlo simulations of 5,000 photon packets each are completed to

compute the average and the standard error of the total diffuse reflectance.

Source Rd Average Rd Error Tt Average Tt Error

van de Hulst, 1980 0.09739 0.66096

mcml 0.09734 0.00035 0.66096 0.00020

Prahl et al., 1989 0.09711 0.00033 0.66159 0.00049

Chapter 6 Computation Results of mcml and Verification 46

Table 6 .2 . Verification of the total diffuse reflectance in a semi-infinite

medium with a mismatched boundary.

Source Rd Average Rd Error

Giovanelli, 1955 0.2600

mcml 0.25907 0.00170

Prahl et al., 1989 0.26079 0.00079

 6.2 Angularly resolved diffuse reflectance and transmittance

We used mcml to compute the angularly resolved diffuse reflectance and

transmittance of a slab of turbid medium with the following optical properties: relative

refractive index n = 1, absorption coefficient µa = 10 cm−1, scattering coefficient µs = 90

cm−1, anisotropy factor g = 0.75, and thickness d = 0.02 cm. In the simulation, 500,000

photon packets are used, and the number of angular grid elements is 30. The results are

compared with the data from van de Hulst's table (van de Hulst, 1980) as shown in Figs.

6.2a and b.

Since mcml also scores the unscattered transmittance into the transmittance array,

we have to subtract it from the first element of the array to obtain the diffuse transmittance.

In this case, the unscattered transmittance is exp(–(µa+µs) d) = exp(–2) ≈ 0.13534, which

is only scored into the first grid element in the α direction. The solid angle spanned by the

first grid element is ∆Ω ≈ 2 π sin(∆α /2) ∆α , where ∆α = π/(2×30). Therefore, the

contribution of the unscattered transmittance to the first element of the array Tt(α) is exp(–

2)/∆Ω ≈ 15.68. After the subtraction, we get the adjusted first element of transmittance

array being 0.765 sr−1, which is the diffuse transmittance. Note that the variance in Fig.

6.2a for diffuse reflectance is larger than that in Fig. 6.2b for diffuse transmittance. This is

because the total diffuse reflectance is much less than the total diffuse transmittance

(0.09739 vs 0.66096–0.13534 = 0.52562, as shown in Table 6.1).

Since van de Hulst used a different definition of reflectance and transmittance, and a

normalization to incident flux π, we multiplied van de Hulst's data by the cosine of the

exiting angle from the normal to the surface, then divided by π.

Chapter 6 Computation Results of mcml and Verification 47

0

0.005

0.01

0.015

0.02

0.025

R
d(α

)
[s

r-1
]

0π 0.1π 0.2π 0.3π 0.4π 0.5π

R
d
(α) van de Hulst

R
d
(α) mcml

(a)

0

0.2

0.4

0.6

0.8

0π

T
d
(α

)
[s

r-1
]

0.1π 0.2π 0.3π 0.4π 0.5π

(b)

T
d
(α) van de Hulst

T
d
(α) mcml

α [rad]

Fig. 6.2. Angularly resolved (a) diffuse reflectance Rd(α) and (b) diffuse

transmittance Td(α) vs the angle between the photon exiting direction and

the normal to the medium surface α. Solid circles are from van de Hulst's

table, and the open square boxes are from mcml simulation. The optical

parameters are: relative refractive index n = 1.0, µa = 10 cm−1, µs = 90

cm−1, g = 0, thickness d = 0.02 cm.

 6.3 Radially resolved diffuse reflectance

As an example of the simulation of radially resolved diffuse reflectance, we

compare the diffuse reflectances of two semi-infinite media whose optical properties are

Chapter 6 Computation Results of mcml and Verification 48

governed by similarity relations (Wyman et al., 1989a and 1989b). The two sets of optical

parameters share the same absorption coefficient µa and transport scattering coefficient

µs(1–g). These two media should give approximately the same diffuse reflectances if the

similarity relations are valid. The results (Fig. 6.3) confirmed that the similarity relations

do not apply for photon sources near the media boundary as Wyman et al. expected. The

relative difference between two diffuse reflectances is very large when the radius r is small,

and becomes smaller when r becomes larger. We have also confirmed that the similarity

relations work very well when the photon source is deep inside the media using a modified

mcml (see Chapter 11).

In Fig. 6.3., The

optical properties for curve

A are: µa = 0.1 cm−1, µs =

100 cm−1, g = 0.9, nrel = 1,

and the optical properties for

curve B are: µa = 0.1 cm−1,

µs = 10 cm−1, g = 0, nrel =

1. The two curves A and B

are results from pure Monte

Carlo simulations of 1

million photon packets. The

grid line separation in the r

direction is 0.005 cm, and

number of grid elements is

200.

 6.4 Depth resolved

 internal fluence

As an example of

simulation of the depth

resolved internal fluence,

we show the results for two

semi-infinite media with

matched and mismatched

boundaries respectively

0.01

1

100

0 0.2

R
d

(c
m

-2
)

0.4 0.6 0.8 1

A: g=0.9

B: g=0

(a)

-0.5

0

0.5

1

1.5

2

R
el

at
iv

e
E

rr
or

0 0.2 0.4 0.6 0.8 1
r (cm)

(b)

(B-A) / A

Fig. 6.3. (a) Comparison and (b) the relative

difference of diffuse reflectances as a function

of radius r for two semi-infinite media whose

optical properties are "equivalent" according to

similarity relations.

Chapter 6 Computation Results of mcml and Verification 49

(Fig. 6.4). The dimensionless internal fluence as a function of depth z, φz[iz] in Section

4.2, is computed from the response to an infinitely narrow photon beam normally incident

on a semi-infinite medium. However, it can be equivalently considered as the response of

an infinitely wide photon beam perpendicularly incident on a semi-infinite medium with a

difference of a constant S (see Section 4.2), where S is the power density. Since the

direction output of the program mcml gives Az[iz] instead of φz[iz], we divided Az[iz] by the

absorption coefficient of the semi-infinite medium to get φz[iz]. Although the response of

an infinitely narrow photon beam is dimensionless (Fig. 6.4), if the input photon beam is

measured in W/cm2 or J/cm2 as the power density of energy density, the unit of fluence is

also in the unit of W/cm2 or J/cm2 correspondingly. Since we only consider steady-state

responses, we can discuss either energy density or power density because they can be

converted back and forth.

Note that the fluence near the surface is larger than 1 because the back scattered

light augments the fluence. Furthermore, the internal fluence for the medium with a

mismatched boundary is higher than that for the medium with a matched boundary. This is

due to the internal reflection by the mismatched boundary, therefore the photons that would

escape from the boundary of the boundary-matched medium may be reflected back into the

medium by the mismatched boundary and hence have a greater chance to be absorbed.

Also note that when z is sufficiently deep, the two curves are parallel. This confirms the

valid range of diffusion theory. For z larger than the penetration depth δ, diffusion theory

predicts that the internal fluence distribution should be (Wilson et al., 1990):

φ(z) = φ0 k exp(–z/δ) (6.1)

where k is a scalar that depends on the amount of back scattered reflectance, and φ0 is the

incident irradiance, which is 1 in our mcml simulation. The scalar k is obviously a function

of the relative index of refraction. Therefore, the matched boundary and the mismatched

boundary will have different k. The penetration depth δ is computed:

δ = 1/ 3 µa (µs + µs (1–g)) = 1/ 3(0.1)(0.1+100(1–0.9)) ≈ 0.57 cm(6.2)

which is independent of relative index of refraction. Therefore, the two curves in Fig. 6.4

should be off just by a factor due to different k values when z > δ, which means the curves

are parallel in log-linear scale when z > δ. The two curves shown here are parallel even

when z > 1 mfp' = 1/(µs + µs (1–g)) ≈ 0.1 cm, where mfp' is the transport mean free

path. One mfp' may be a better criterion for valid application of diffusion theory than the

Chapter 6 Computation Results of mcml and Verification 50

penetration depth. Further supporting evidence can be found in Chapter 11 and Wang et al.

(1992).

1

10

0 0.2

F
lu

en
ce

 [
-]

0.4 0.6 0.8 1

nrel = 1
nrel = 1.37

z (cm)

µa = 0.1 cm-1

µs = 100 cm-1

g = 0.9
N = 1,000,000

1 mfp'

Fig. 6.4. Comparison of internal fluences as a function of depth z for two

semi-infinite media with a matched boundary and a mismatched boundary

respectively. The results are from Monte Carlo simulations with 1 million

photon packets each using mcml. The grid line separation in the z direction

is 0.005 cm, and number of grid elements is 200.

We fit the parallel part of the two curves with exponential functions. The damping

constants for the curves are approximately 1.73 cm−1 for the matched boundary and 1.74

cm−1 for the mismatched boundary respectively. The reciprocals of the damping constants

are 0.578 cm for the matched boundary and 0.575 cm for the mismatched boundary

respectively. They are very close to the penetration depth (0.57 cm, Eq. 6.2) predicted

from diffusion theory.

 6.5 Computation times vs optical properties

We completed multiple Monte Carlo simulations with mcml for semi-infinite media

with various optical properties, and fitted the user times as a function of the ratio between

scattering coefficient and absorption coefficient µs/µa and anisotropy g. The situations for

media with matched boundaries (relative refractive index is 1) and mismatched boundaries

(relative refractive index is not 1) will be presented separately. Note that the user time is

Chapter 6 Computation Results of mcml and Verification 51

whatever the system allocates to the running of the program, as opposed to the real time

which is wall-clock time. In a time-shared system, they need not be the same, and the real

time of the same run may not be reproduced depending on the status of the system. In

mcml, the user time is reported to the output data file, and the real time is used to predict

when the simulation finishes during the simulation.

Before starting multiple mcml simulations for various optical properties, we know

that the time required to finish tracing a photon packet is proportional to the number of

steps that a photon packet takes until being terminated. According to the rules for photon

propagation described in Chapter 3, this number of steps should not be dependent on the

absolute values of scattering coefficient µs and absorption coefficient µa, but their ratio.

Therefore, we keep one of the two parameters constant (e.g., µs = 100 cm−1), and vary the

other one (e.g., µa).

 Matched boundary

For media with matched boundaries (relative refractive index nrel is 1), we finished

multiple mcml simulations of 10,000 photon packets each for various absorption

coefficients µa and anisotropy factors while keeping the scattering coefficient µs fixed to

100 cm−1. The results are listed in Table 6.3, where the ratios between the scattering

coefficient and the absorption coefficient are tabulated, instead of the two coefficients

themselves separately, and the user

Chapter 6 Computation Results of mcml and Verification 52

Table. 6 .3 . Computation times for various media with matched

boundaries. The column "Predicted User Time" is the computed values

using Eqs. 6.1-6.3 presented later. The column "Error" is equal to

(Predicted User Time – User Time)/(User Time)*100.

µ s/µa g User Time
(sec . /1000
photons)

Predicted User Time
(sec./1000 photons)

Error
(%)

0.2 0 0.43 0.36 –16.15
1 0 0.78 0.81 3.58
2 0 1.10 1.15 4.42
10 0 2.59 2.56 –0.99
20 0 3.66 3.62 –0.97
100 0 8.46 8.10 –4.23
200 0 12.27 11.46 –6.64
1000 0 29.61 25.61 –13.49

0.2 0.1 0.40 0.38 –5.04
1 0.1 0.80 0.86 7.19
2 0.1 1.10 1.22 10.70
10 0.1 2.80 2.75 –1.82
20 0.1 3.90 3.90 0.10
100 0.1 9.80 8.81 –10.07
200 0.1 13.20 12.52 –5.19
1000 0.1 28.60 28.25 –1.21

0.2 0.5 0.50 0.45 –9.54
1 0.5 1.00 1.08 7.71
2 0.5 1.40 1.57 11.80
10 0.5 3.50 3.73 6.49
20 0.5 5.30 5.42 2.19
100 0.5 12.10 12.90 6.60
200 0.5 17.90 18.74 4.71
1000 0.5 40.60 44.63 9.93

0.2 0.9 0.50 0.49 –1.83
1 0.9 1.20 1.35 12.74
2 0.9 1.90 2.09 10.20
10 0.9 6.30 5.77 –8.39
20 0.9 9.80 8.93 –8.86
100 0.9 25.80 24.62 –4.58
200 0.9 38.10 38.10 0.00
1000 0.9 95.30 105.02 10.20

0.2 0.99 0.50 0.42 –16.18
1 0.99 1.20 1.42 18.68
2 0.99 2.10 2.41 14.85
10 0.99 8.80 8.20 –6.87
20 0.99 16.50 13.88 –15.89
100 0.99 60.60 47.16 – 2 2 . 1 8
200 0.99 97.20 79.86 –17.84
1000 0.99 248.80 271.37 9.07

Chapter 6 Computation Results of mcml and Verification 53

times are converted to seconds per 1000, instead of 10,000, photon packets. The columns

"Predicted User Time" and "Error" will be discussed subsequently

We plotted the user times as a function of the ratio between the scattering coefficient

and the absorption coefficient for each anisotropy factor g in a log-log scale (Fig. 6.5). For

each anisotropy factor g, the higher the ratio between the scattering coefficient and the

absorption coefficient, the longer the user time. This is because the photon packets in

media of higher ratio µs/µa, compared with media of lower ratio, can jump more steps

before reaching the threshold weight and hence having a chance to be terminated.

Therefore, the Monte Carlo simulation of low absorbing medium is very slow. If the

diffuse reflectance as a function of r in a low absorption semi-infinite turbid medium is the

only physical quantity to be computed, a hybrid model of pure Monte Carlo simulation and

diffusion theory (Wang et al., 1992) is a much faster model than pure Monte Carlo

simulations. The speed of the hybrid model is not so sensitive to the ratio between the

scattering coefficient and the absorption coefficient.

For the same ratio between the scattering coefficient and the absorption coefficient,

the larger the anisotropy factor g, the longer the user time. This is because that the photon

packets in media of larger anisotropy factors g have less chance to be reflected out of the

media because the scatterings are more forward directed, and hence to be terminated.

For each anisotropy factor g, the data points are well aligned in the log-log plot.

This means that we can fit the data points for each anisotropy factor g with a power

function. The fitted lines are presented in Fig. 6.5.

The two fitting coefficients C1(g) and C2(g) are dependent on the anisotropy factor

g. The fitting coefficients C1(g) are plotted against the anisotropy factor g in a log-linear

scale (Fig. 6.6a), and can be fitted with an exponential function. Similarly, the fitting

coefficients C2(g) are plotted against (1 – g) in a linear-log scale (Fig. 6.6b), and can be

fitted with a logarithmic function. These three fittings are summarized as the following

empirical formulas:

Chapter 6 Computation Results of mcml and Verification 54

0.1

1

10

100

U
se

r
T

im
e

[s
ec

./1
00

0
ph

ot
on

s]
1000

0.1 1 10 100
µs/µa

1000

g=0
g=0.5
g=0.9
g=0.99

t = C1(g) (µs/µa)
C2(g)

nrel = 1

Fig. 6.5. The user times vs the ratio between the scattering coefficient µs

and the absorption coefficient µa for different anisotropy factors g of media

with matched boundaries.

C1(g) = 0.81 exp(0.57 g) (6.3)

C2(g) = 0.50 – 0.13 log(1–g) (6.4)

t = C1(g) (µs/µa) C2(g) [sec./1000 photons] (6.5)

where t is the user time in seconds per 1000 photon packets for semi-infinite media with

matched boundaries.

Chapter 6 Computation Results of mcml and Verification 55

1

0

C
1

0.2 0.4 0.6 0.8 1

C1(g) = 0.81 exp(0.57 g)

g

(a)

0.4

0.5

0.6C
2

0.7

0.8

0.01 0.1

C2(g) = 0.50 - 0.13 log(1-g)

1-g
1

(b)

Fig. 6 .6 . The fitting coefficients (a) C1(g) and (b) C2(g) vs the

anisotropy factor g of media with matched boundaries.

To test how good Eqs. 6.3-6.5 are, we use them to compute the user times for the

optical properties given in Table 6.3, and presented the computed user times in Table 6.3 as

the column "Predicted User Time". The relative errors are within 20% as shown in the

column "Error" in Table 6.3 for all rows in the table except one of them (in bold face).

The Eqs. 6.3-6.5 can be used generally to predict user time of a medium with a

matched boundary. However, several limitations and notes have to be mentioned. First,

Chapter 6 Computation Results of mcml and Verification 56

the anisotropy factor g is limited to less than 0.99, and the accuracy is unknown for g >

0.99 because the fitting coefficient C2(g) approaches infinity when g approaches 1.

Second, these equations are based on mcml simulations on a Sun SPARCstation 2.

Therefore, we expect a scale factor for Eq. 6.5 or the values in Table 6.3 on a different

computer system. This scale factor can be determined by simulating one or several media

with optical properties in Table 6.3 using mcml running on your computer system and

taking the ratio between the user time on your machine and the user time in Table 6.3.

Third, the speed of mcml is related to the threshold weight in the program mcml (WEIGHT in

Table 5.1), which is normally 1×10 –4 (See Table 5.1), and the chance of surviving a

roulette (CHANCE in Table 5.1), which is normally 0.1 (See Table 5.1). If these two

parameters are changed, Eqs. 6.3-6.5 are no longer valid. It is unexplored yet how these

two parameters will affect the user times.

 Mismatched boundary

We repeat the above process to media with mismatched boundaries (relative

refractive index nrel ≠ 1). We finished multiple mcml simulations of 1,000 (instead of

10,000 for matched boundaries) photon packets each for various absorption coefficients

and anisotropy factors while keeping the scattering coefficient fixed to 100 cm−1 and the

relative refractive index to 1.37, which is typical for human tissues in visible or infrared

wavelength. The results are listed in Table 6.4.

We plotted the user times as a function of the ratio between the scattering coefficient

and the absorption coefficient for each anisotropy factor g in a log-log scale (Fig. 6.7).

Then, the fitting coefficients C1(g) and C2(g) are plotted with respect to g and (1–g)

respectively (Fig. 6.8a and b), and fitted with an exponential function and a logarithmic

function correspondingly. The fittings give the following empirical formulas:

Chapter 6 Computation Results of mcml and Verification 57

Table 6 .4 . Computation times for various media with mismatched

boundaries. The column "Predicted User Time" is the computed values

using Eqs. 6.4-6.6 presented later. The column "Error" is equal to

(Predicted User Time – User Time)/(User Time)*100.

µ s/µa g User Time
(sec . /1000
photons)

Predicted User Time
(sec./1000 photons)

Error
(%)

0.2 0 0.48 0.43 –9.74
1 0 0.98 1.05 7.14
2 0 1.42 1.54 8.26
10 0 3.67 3.73 1.51
20 0 5.47 5.45 –0.28
100 0 13.43 13.22 –1.57
200 0 18.67 19.35 3.66
1000 0 50.50 46.90 –7.13

0.2 0.1 0.50 0.44 –11.03
1 0.1 1.00 1.09 8.85
2 0.1 1.50 1.60 6.68
10 0.1 3.83 3.92 2.23
20 0.1 5.90 5.76 –2.44
100 0.1 15.95 14.08 –11.70
200 0.1 22.55 20.71 –8.18
1000 0.1 42.38 50.66 19.54

0.2 0.5 0.53 0.49 –8.10
1 0.5 1.13 1.26 11.25
2 0.5 1.73 1.89 9.31
10 0.5 4.87 4.88 0.22
20 0.5 7.63 7.34 –3.77
100 0.5 19.53 18.95 –2.97
200 0.5 27.08 28.51 5.28
1000 0.5 77.96 73.58 –5.62

0.2 0.9 0.55 0.49 –11.64
1 0.9 1.27 1.45 14.31
2 0.9 2.03 2.33 14.58
10 0.9 7.28 6.95 –4.55
20 0.9 12.10 11.13 –7.99
100 0.9 35.98 33.26 –7.56
200 0.9 55.05 53.28 –3.21
1000 0.9 133.06 159.18 19.63

0.2 0.99 0.55 0.41 – 2 5 . 9 6
1 0.99 1.28 1.50 17.16
2 0.99 2.10 2.63 2 5 . 1 9
10 0.99 8.82 9.68 9.77
20 0.99 16.82 16.97 0.92
100 0.99 69.55 62.51 –10.12
200 0.99 120.56 109.60 –9.09
1000 0.99 366.45 403.62 10.14

Chapter 6 Computation Results of mcml and Verification 58

C1(g) = 1.05 exp(0.36 g) (6.6)

C2(g) = 0.55 – 0.13 log(1–g) (6.7)

t = C1(g) (µs/µa) C2(g) [sec./1000 photons] (6.8)

where t is the user time in seconds per 1000 photon packets for semi-infinite media with

mismatched boundaries (nrel = 1.37).

0.1

1

10

100

1000

0.1 1

U
se

r
T

im
e

[s
ec

./1
00

0
ph

ot
on

s]

10 100 1000

g=0
g=0.5
g=0.9
g=0.99

µs/µa

C2(g)

nrel = 1.37

t = C1(g) (µs/µa)

Fig. 6.7. The user times vs the ratio between the scattering coefficient µs

and the absorption coefficient µa for different anisotropy factors g in media

with relative refractive index 1.37.

Chapter 6 Computation Results of mcml and Verification 59

1

1.1

C
1

1.2

1.3

1.4

1.5

1.6

0
g

C1 = 1.05 exp(0.36 g)

0.2 0.4 0.6 0.8 1

(a)

0.5

0.6

0.7

0.8

0.9

0.01

C2 = 0.55 - 0.13 log(1-g)

C
2

0.1 1

(b)

1-g

Fig. 6.8. The fitting coefficients (a) C1 and (b) C2 vs the anisotropy

factor g of media with relative refractive index 1.37.

To test how good Eqs. 6.6-6.8 are, we use them to compute the user times for the

optical properties in Table 6.4, and presented the computed user times in Table 6.4 in the

column "Predicted User Time". For all rows in the table except two of them (in bold

face), the relative errors are within 20%. The cautions made for media with matched

boundaries apply here as well.

Chapter 6 Computation Results of mcml and Verification 60

To summarize the empirical formulas for both matched and mismatched boundaries,

we list the formulas in Table 6.5.

Table 6.5. Empirical formulas of user times for matched and mismatched

boundaries.

Items Matched (nrel = 1) Mismatched (nrel =

1 . 3 7)

C1(g) 0.81 exp(0.57 g) 1.05 exp(0.36 g)

C2(g) 0.50 – 0.13 log(1–g) 0.55 – 0.13 log(1–g)

t [sec./1000 photons] C1(g) (µs/µa) C2(g) C1(g) (µs/µa) C2(g)

 6.6 Scored Physical Quantities of Multi-layered Tissues

For multi-layered tissues, we have not found computation results based on other

theories to compare with our computation. However, thanks to Gardner's cooperation

(Gardner et al., 1992), we compared our Monte Carlo simulation results of multi-layered

tissues with their results of an independently written Monte Carlo simulation. The

comparison includes the diffuse reflectance versus radius, Rd(r), where the radius r is the

distance between the photon incident point and the observation point, the transmittance

versus radius, Tt(r), and the internal fluence versus z, φz(z), and the internal fluence versus

r and z, φrz(r, z). This comparison can at least greatly reduce the chance of programming

errors.

We chose a three-layer tissue for the simulation. The optical properties of each

layer are shown in Table 6.6.

Table 6.6. The optical properties of the three-layer tissue.

Layer Refractiv
e Index n

Absorption
Coeff. (cm–

1)

Scattering
Coeff. (cm–

1)

Anisotropy
Factor g

Thicknes
s (cm)

1 1.37 1 100 0.9 0.1

2 1.37 1 10 0 0.1

3 1.37 2 10 0.7 0.2

The refractive indices of the top and bottom ambient media are both set to 1.0. The

grid separations in z and r directions are both 0.01 cm. The number of grid elements in z

Chapter 6 Computation Results of mcml and Verification 61

and r directions are 40 and 50 respectively. We do not want to resolve the exiting angles of

reflected or transmitted photons, therefore we set the number of grid elements in the angle

α direction to 1. The number of photon packets traced is 1,000,000. The actual input file

for the program mcml is as follows.

1.0 # file version
1 # number of runs

Specify data
comp.mco A # output filename, ASCII/Binary
1000000 # No. of photons
.01 .01 # dz, dr
40 50 1 # No. of dz, dr & da.

3 # No. of layers
n mua mus g d # One line for each layer
1.0 # n for medium above.
1.37 1 100 0.90 0.1 # layer 1
1.37 1 10 0 0.1 # layer 2
1.37 2 10 0.70 0.2 # layer 3
1.0 # n for medium below.

Craig Gardner set up the same run for his simulation code except he used only

100,000 photons (Gardner et al., 1992). The total diffuse reflectance and transmittance

from the two simulations are compared in Table 6.7.

Table 6.7. Comparison of total diffuse reflectances and transmittances.

Source Diffuse Reflectance Rd Transmittance
Tt

Gardner et al., 1992 0.2381 0.0974

mcml 0.2375 0.0965

The comparison between the diffuse reflectances and transmittances are shown in

Figs. 6.9 and 6.10 respectively. The comparison between fluences φrz(r, z), as an impulse

response, as a function of radius r for several given z coordinates is shown in Fig. 6.11.

The comparison between fluences φz(z) as a function of z as described in Section 4.2 is

subsequently given in Fig. 6.12. All of the comparisons have shown agreement between

the two independent simulations.

Chapter 6 Computation Results of mcml and Verification 62

10-2

10-1

100

101

102

R
d

[c
m

-2
]

0 0.1 0.2 0.3 0.4 0.5
r [cm]

Gardner et al.

mcml

Impulse responses

Fig. 6.9. Comparison between diffuse reflectances as a function of radius

based on Gardner's computation (Gardner et al., 1992) and mcml

simulation.

10-2

10-1

100

0 0.1

T
t [

cm
-2
]

0.2 0.3 0.4 0.5

Gardner et al.

mcml

r [cm]

Impulse responses

Fig. 6 .10. Comparison between transmittances as a function of radius

based on Gardner's computation (Gardner et al., 1992) and mcml

simulation.

Chapter 6 Computation Results of mcml and Verification 63

10-1

100

101

102

103

104

F
lu

en
ce

 [
cm

-2
]

0 0.1 0.2 0.3 0.4 0.5
r [cm]

mcml z=0.005 cm
mcml z=0.205
mcml z=0.395
Gardner et al. z=0.005
Gardner et al. z=0.205
Gardner et al. z=0.395

Impulse Responses

Fig. 6 .11. Comparison between fluences as a function of radius r for

several z coordinates based on Gardner's computation (Gardner et al.,

1992) and mcml simulation.

0

0.5

1

1.5

2

F
lu

en
ce

 [
-]

2.5

3

0 0.1 0.2 0.3
z [cm]

0.4

Gardner et al.

Responses to
infinitely wide beam

mcml

Fig. 6 .12. Comparison between fluences as a function of z based on

Gardner's computation (Gardner et al., 1992) and mcml simulation.

Chapter 6 Computation Results of mcml and Verification 64

For 2D arrays such as the fluence as a function of r and z, conv has the ability to

output the data in contour format (see Sections 10.9 and 10.10). The fluence as a function

of r and z of the impulse response is shown in contour lines in Fig. 6.13.

0.25

0.2

0.15

0.1

0.05

0
z

[c
m

]

0 0.05 0.1 0.15 0.2 0.25
r [cm]

1000
100
5 0
1 0

Fig. 6.13. Contour plot of the fluence as a function of r and z of impulse

response based on mcml simulation.

Chapter 7 Convolution for Photon Beams of Finite Size 65

 7. Convolution for Photon Beams of Finite Size

This chapter will discuss the principles and implementation of convolving Monte

Carlo simulation results for an infinitely narrow photon beam to yield the responses to

photon beams of finite size. Gaussian beams and circularly flat beams are considered as

special cases.

 7.1 Principles of convolution

So far we have only dealt with the response to an infinitely narrow photon beam

normally incident on the surface of a multi-layered tissue. This response is also called the

impulse response. However, all photon beams have finite size in reality. Theoretically, we

can use the Monte Carlo simulation to compute the response to a finite size photon beam

directly by distributing the initial positions of the launched photon packets. The only

problem is that it requires a larger number of photon packets to be traced to get acceptable

variance than simulating the responses of an infinitely narrow photon beam. Therefore,

this method is not efficient although sometimes it might be the only approach for some

types of tissue configurations which can not be convolved, such as a tissue with an

irregular buried object.

Fortunately, the system we are dealing with is linear and invariant. The linearity

means that if the input intensity of the infinitely narrow photon beam is multiplied by a

factor, the responses will be multiplied by the same factor. It also means that the response

to two photon beams is the sum of the responses to each photon beam. The invariance

means that when the infinitely narrow photon beam is shifted horizontally by a distance in

a certain direction, the responses will be shifted also horizontally by the same distance in

the same direction. Therefore, if we assume the photon beam of finite size is collimated,

the response of an infinitely narrow photon beam will be a Green's function of the tissue

system, and the response of the finite size photon beam can be computed from the

convolution of the Green's function according to the profile of the finite size photon beam.

Note that the responses mentioned above can be the internal absorption distribution,

or the reflectance or transmittance distributions. We denote the responses generally as C(x,

y, z) although it may not be a three-variable function of all three coordinates. Such

degeneracy due to the symmetry will be discussed subsequently. We denote the Green's

function corresponding to the type of response under consideration as G(x, y, z). Since

Chapter 7 Convolution for Photon Beams of Finite Size 66

the photon beam is normally incident on the tissue surface, the function G(x, y, z)

possesses cylindrical symmetry. If the collimated photon beam as the source has the

intensity profile S(x, y), the responses can be obtained through convolution (Prahl, 1988;

Prahl et al., 1989):

C(x, y, z) = ⌡⌠
–∞

 ∞
 ⌡⌠

–∞

 ∞
 G(x–x', y–y', z) S(x', y') dx' dy' (7.1a)

or through variable transformation with x'' = x – x' and y'' = y – y':

C(x, y, z) = ⌡⌠
–∞

 ∞
 ⌡⌠

–∞

 ∞
 G(x' ' , y' ' , z) S(x–x'', y–y' ') dx' ' dy' ' (7.1b)

In Eq. 7.1a the Green's function is a function of the distance between the source

point (x', y') and the observation point (x, y), where the distance is:

d' = (x–x')2 + (y–y')2 (7.2)

If the intensity profile S(x', y') of the source also has cylindrical symmetry, S(x', y') is

only a function of the radius of the source point (x', y') with respect to the origin point of

the coordinate system, where the radius is:

r' = x'2 + y'2 (7.3)

Therefore, Eq. 7.1a can be reformulated considering these symmetries:

C(x, y, z) = ⌡⌠
–∞

 ∞
 ⌡⌠

–∞

 ∞

 G ((x–x')2 + (y–y')2 , z) S(x'2 + y'2) dx' dy' (7.4a)

Similarly, Eq. 7.1b can also be reformulated with these symmetries:

C(x, y, z) = ⌡⌠
–∞

 ∞
 ⌡⌠
–∞

 ∞

 G (x ' '2 + y ' ' 2 , z) S ((x–x'')2 + (y–y'')2) dx'' dy'' (7.4b)

Since the response C(x, y, z) will have the same cylindrical symmetry, the problem

can be more easily handled in a cylindrical coordinate system, where Eqs. 7.4a and 7.4b

can be written:

Chapter 7 Convolution for Photon Beams of Finite Size 67

C(r, z) =
⌡

⌠

0

 ∞

 S(r ') r '








⌡⌠
 0

 2 π

 G  r2 + r '2 – 2rr 'cosθ ' , z dθ ' dr' (7.5a)

C(r, z) =
⌡

⌠

0

 ∞

 G(r ' ' , z) r ' '








⌡⌠
 0

 2 π

 S  r2 + r' '2 – 2rr ' 'cosθ ' ' d θ ' ' dr'' (7.5b)

Eq. 7.5b is more advantageous than Eq. 7.5a in computation because the integration over

θ'' is independent of z. This integration hence need only be computed once for all depths

z. In some cases as presented subsequently, the integral over θ '' can be expressed

analytically, therefore the two-dimensional integral is converted into a one dimensional

integral.

The transformation of variables is illustrated in Fig. 7.1. The first coordinate

system (r', θ', z) has its origin at the center of the source, as in Fig. 7.1A and Eq. 7.5a.

The point of observation is at (r, 0). An incremental region of source is located at (r', θ ')

and has a value S(r'). The distance between the source point and the observation point is

d' equal

r2 + r'2 – 2rr'cosθ ' .

The second coordinate system (r", θ", z) has its origin at the center of the point of

observation, as in Fig. 7.1B and Eq. 7.5b. The source is centered at (r, 0). The

incremental region of source is located at (r", θ") and has a value S(d"), where d" equals

r2 + r"2 – 2rr"cosθ" . The distance between the source point and the observation

point is r".

In the following sections, we will consider a Gaussian beam and a circularly flat

beam as examples of cylindrical symmetry to further simplify Eq. 7.5b.

Chapter 7 Convolution for Photon Beams of Finite Size 68

Fig. 7 .1 . Illustration of the transform between two coordinate systems.

The stippled circle is the laser source and P is the point of observation. The

circular lines schematically represent the integration of Eq. 7.5a (A) and Eq.

7.5b (B).

(A)

r

(r, 0)

θ"(r", θ") r"

d"

(Β)

d'

r'

r

(r,

θ'(r', θ')

d'' =

r2 + r ' '2 - 2 r r ' ' c o sθ''

d' =

r2 + r '2 - 2 r r ' c o s θ'

P

P

Chapter 7 Convolution for Photon Beams of Finite Size 69

 7.2 Convolution over Gaussian beams

In the case of a Gaussian beam, if the divergence is ignored, the above convolution

can be applied. If the 1/e2 radius of the Gaussian beam is denoted by R, the beam intensity

profile is:

S(r') = S0 exp(–2 (r'/R)2) (7.6)

where the intensity in the center (r=0), S0, is related to the total power P by:

S0 = 2 P / (π R2) (7.7)

Substituting Eq. 7.6 into Eq. 7.5b, the convolution becomes:

C(r, z) = S(r)
⌡


⌠

 0

 ∞

 G(r'', z)exp(–2 (r''/R)2)










⌡⌠
 0

 2 π
 exp(4rr''cosθ''/R2) dθ' ' r''dr'' (7.8)

The integration in the square brackets resembles the integral representation of the modified

Bessel function (Spiegel, 1968):

I0(x) =
1

 2 π ⌡⌠
 0

 2 π
 exp(x sinθ) dθ (7.9a)

which can be reformatted to be:

I0(x) =
1

 2 π ⌡⌠
 0

 2 π
 exp(x cosθ) dθ (7.9b)

Eq. 7.8 can be written by substituting Eq. 7.9b into it:

C(r, z) = S(r) ⌡⌠
 0

 ∞
 G(r' ' , z) exp(–2 (r' '/R)2) I0(4rr' '/R2) 2 π r'' dr'' (7.10)

where I0 is the zero order modified Bessel function.

Chapter 7 Convolution for Photon Beams of Finite Size 70

 7.3 Convolution over circularly flat beams

If the photon beam is homogeneous within a radius R and collimated, the source

function becomes:

S(r') =


 P/(π R2) i f r ' ≤ R
 0 i f r ' > R

 (7.11)

where P is the total power of the beam. Substituting Eq. 7.11 into Eq. 7.5b, the

convolution becomes:

C(r, z) = P/(π R2) ⌡⌠
 0

 ∞
 G(r ' ' , z) Iθ (r, r' ') 2 π r' ' dr'' (7.12)

where the function Iθ(r, r'') is:

Iθ(r, r'') =



 1 i f R ≥ r + r ' '

1
π cos–1((r2 + r''2 – R2)/(2rr'')) i f | r – r ' ' | ≤ R < r + r ' '

 0 i f R < | r – r ' ' |

 (7.13)

From Eq. 7.13 and Fig. 7.1B, the limits of integration in Eq. 7.12 can be changed to a

finite region:

C(r, z) = P/(π R2) ⌡⌠
 a

 r + R

 G(r ' ' , z) Iθ (r, r' ') 2 π r' ' dr'' (7.14a)

where

a = Max(0, r – R) (7.14b)

where the function Max takes the larger of the two arguments.

The circular lines in Fig. 7.1B illustrated the second case in Eq. 7.13 when the

observation point P is outside of the source. When the point P is outside the source, the

first case of Eq. 7.13 is never satisfied. Readers can similarly draw the pictures for the

case where the point P is inside the source. Note that much of the region of integration lies

outside the source and therefore the value of S in the integrand is zero.

As a special case of a circularly flat beam, we let the radius R approach infinity,

which represents an infinitely wide flat beam. In this case the total power P also

Chapter 7 Convolution for Photon Beams of Finite Size 71

approaches infinity, but we can use the power density to describe the intensity of the beam.

The convolution for this case can be accomplished by simply letting R → ∞ and P/(π R2)

→ S, where S is the power density or irradiance (W/cm2), in Eq. 7.14. Iθ(r, r'') will be 1

constantly. Eq. 7.14 becomes:

C(r, z) = S ⌡⌠
 0

 ∞
 G(r' ' , z) 2 π r ' ' dr' ' (7.15)

 7.4 Numerical solution to the convolution

In these two special cases of photon beams, the two-dimensional integrations are

converted into one-dimensional integrations, which are significantly faster in numerical

computation. Since the Monte Carlo simulation scores physical quantities to discrete grid

points, the best choice of integration algorithm is the extended trapezoidal rule, which is

written in C called qtrap() by Press et al. (1988). "Increased sophistication will usually

translate into a higher order method whose efficiency will greater only for sufficiently

smooth integrands. qtrap is the method of choice, e.g., for an integrand which is a

function of a variable that is linearly interpolated between measured data points." Press et

al. (1988) state.

The simplest choice of the integration is the summation of the integrand values at

the original grid points multiplied by the grid separation. However, this approach does not

have any control over the integration accuracy. For a given accuracy, sometimes this

approach gives more accuracy than required, which is a waste of computation time, and

sometimes it gives less accuracy, which does not meet the expectation. For example, the

number of original grid elements in the r direction is 50, and we want to convolve the

responses over a circularly flat beam with a radius of R which is about 5 ∆ r, where ∆r is

the grid separation in the r direction. To compute C(0, z) in Eq. 7.14a, the integral range,

from 0 and R, only covers 5 ∆ r. This means only 5 function evaluations will be

completed, which may yield unacceptable answer. On the contrary, the extended

trapezoidal rule does the right amount of computation until it reaches the user specified

accuracy.

We have slightly modified the original function qtrap() so that it takes the required

degree of accuracy as an argument. Therefore, the users of the program conv can change

the allowed error at run time (the program conv is to be discussed in the next section).

Chapter 7 Convolution for Photon Beams of Finite Size 72

The sequence of integrand evaluations used in the extended trapezoidal integration

is shown in Fig. 7.2. (Press et al., 1988) If we are integrating f(x) over [a, b], we evaluate

f(a) and f(b) in the first step as noted by 1 and 2 in Fig. 7.2. This step will not give

sufficient accuracy unless the function if linear. To refine the grid, we evaluate f((a+b)/2)

in the second step as noted by 3. We continue this process until the integration evaluation

reaches the specified accuracy.

Note that the sequence of integrand evaluation after the third evaluation in Fig. 7.2

resembles a perfectly balanced binary tree. If we want to store the evaluated function

values, it is natural to store them in a binary tree for speed retrieval (to be discussed

subsequently).

1 2

3

4 5

6 7 8 9

N = 1

2

3

4

(total after N = 4)

Fig. 7 .2 . Illustration of integrand evaluation sequence in trapzd() called

by qtrap(). "Sequential calls to the routine trapzd() incorporate the

information from previous calls and evaluate the integrand only at those new

points necessary to refine the grid. The bottom line shows the totality of

function evaluations after the fourth call." (Press et al., 1988) The sequence

of integrand evaluation after the third evaluation resembles a perfectly

balanced binary tree.

 Interpolation and extrapolation of physical quantities

Chapter 7 Convolution for Photon Beams of Finite Size 73

As shown in Fig. 7.2, the function qtrap() will need to evaluate the integrand,

hence the physical quantities, at points which may not be the original grid points. Linear

interpolations are used for those points that fall between two original grid points. Linear

Original data points
Interpolation
Extrapolation

Nr = 8

G
(r

, z
)

0 1 2 3 4 5 6

r/∆r
7 8 9

Nr - 0.5

1 2

1

2

3

4

(total after
N = 4)

N

3

4 5

6 7 8 9

a b

Fig. 7 .3 . Illustration of the interpolation and

extrapolation of the physical quantities. As an

example, the number of grid elements in the r

direction Nr is set to 8. ∆r is the grid separation in

the r direction. The integral limits are a and b (see

Eqs. 7.21 & 7.22). The arrows point to the places

where the integrand is evaluated.

Chapter 7 Convolution for Photon Beams of Finite Size 74

extrapolations are used for those points that fall beyond the original grid system. The

interpolation and extrapolation are illustrated in Fig. 7.3. The solid circles represent the

original score values at the grid points. The solid lines and the dashed lines represent the

interpolation and extrapolation respectively. For a given number of grid elements in the r

direction (e.g., Nr = 8 in this picture), the extrapolation is only computed up to (Nr - 0.5)

because the linear extrapolation can be unreliable for points beyond (Nr - 0.5). Therefore,

the physical quantity is set to zero beyond (Nr - 0.5). Sometimes, the data may be so

noisy that the function at the last point is even higher than the function at the second to the

last point. In this case, the extrapolation is not used. Instead, we simply set the function

values to zero. Note that as we mentioned in the beginning of Chapter 4, the last cells in

the r direction are used to collect the photons that do not fit into the grid system. Therefore,

the values in the last cell are usually much higher than the values in the second to the last

cells, and hence are not used in the convolution process. In a word, the physical quantities

are non-zero in the interval [0, rmax], where rmax is:

rmax = (Nr – 0.5) ∆r (7.16)

where ∆r is the grid separation in the r direction.

 Integrand evaluation for Gaussian beams

As shown in Eq. 7.10, the evaluation of the physical quantities is only part of the

integrand evaluation for convolution over the Gaussian beam. Although the integration has

to converge due to physical reasons, the form of Eq. 7.10 may not be directly computed

numerically because the modified Bessel function increases rapidly as the argument

increases, and it can exceed the limit which the computer can hold (e.g., 10+38 for some

computers). Therefore, a proper reformulation is required to compute Eq. 7.10. We note

that the modified Bessel function in the region where the argument is large has the

following approximation:

I0(x) ≈ exp(x) / 2 π x for large x (7.17)

Therefore, if we extract the exponential term from I0(), we can make sure the modified

Bessel function decreases as the argument increases. We define the following new

function based on I0():

I0e(x) = I0(x) exp(–x) (7.18a)

or

Chapter 7 Convolution for Photon Beams of Finite Size 75

I0(x) = I0e(x) exp(x) (7.18b)

I0e() should always be bounded. Note that Eq. 7.17 is presented just to show the

asymptotic behavior of the function I0(). Eq. 7.18a by no means carries any

approximations. Substituting Eqs. 7.6, 7.7 and 7.18b into Eq. 7.10, it becomes:

C(r, z) =
4 P
R2 ⌡

⌠

 0

 ∞

 G(r' ' , z) exp[–2 (
r ' '– r
 R)2] I0e(

4rr''
R2

) r'' dr'' (7.19)

Since both the exponential term and the I0e() term decrease, the integrand can be computed

without being out of bound.

Up to now, we have just solved the problem of how to compute the convolution

without overflow. However, the computation speed is another issue. We found that the

evaluation of the exp() I0e() in Eq. 7.19 is a major part of the computation for each

integration, which can be up to 90% depending on the specific problem being solved. For

multi-variant physical quantities (e.g., A(r, z)), the convolution may repeatedly evaluate the

exp() I0e() in Eq. 7.19 at the same point as the integration is computed for different z

coordinates.

Therefore, if we can save the function evaluations, i.e. the computations of

exp() I0e() in Eq. 7.19, for one z coordinate, then we can save a lot computation time.

However, the integration is executed iteratively until a given precision is reached. Hence,

the number of function evaluations is unknown in advance. We can only save the function

evaluations with dynamic data allocation. Furthermore, since the evaluation sequence of

the trapezoidal integration qtrap() resembles a binary tree as in Fig. 7.2., a well-balanced

binary tree can be used to store the function evaluations for searching speed.

 Integral Limits for Gaussian beams

Since the integral limits in Eq. 7.14a for circularly flat beams are finite, the

integration can be computed directly using the function qtrap(). In contrast, the upper

integral limit in Eq. 7.19 for Gaussian beams is infinity. This problem can be solved using

variable transformation and the integration can be computed by the routine midexp()

(Press et al., 1988). However, we found this approach is not computationally efficient.

Chapter 7 Convolution for Photon Beams of Finite Size 76

We can reduce the upper limit to a finite value by properly truncating the exponential term

in Eq. 7.19. When

|r" – r| ≤ K R (7.20a)

or

r – K R ≤ r" ≤ r + K R (7.20b)

where K is a constant which can be set in the convolution program conv, we compute the

integrand, otherwise we think the integrand negligible. For example, if we choose K equal

to 4 (which is actually used in the program), the exponential term in Eq. 7.19 is about

1x10–14 whose order of magnitude is considerable larger than the dynamic range of the

order of magnitude of the scored physical quantities.

As we discussed in the beginning of this section, we only compute the physical

quantities in the interval [0, rmax], where rmax is given by Eq. 7.16. Combining this limit

and Eq. 7.20b, Eq. 7.19 becomes:

C(r, z) =
4 P
R2 ⌡

⌠

 a

 b

 G(r' ' , z) exp[–2 (
r ' '– r
 R)2] I0e(

4rr''
R2

) r'' dr'' (7.21a)

a = Max(0, r – K R) (7.21b)

b = Min(rmax, r + K R) (7.21c)

where the functions Max() and Min() take the greater and the lesser of the two arguments

respectively.

 Integrand evaluation for circularly flat beams

The integrand evaluation for circularly flat beams is much simpler than that for

Gaussian beams. However, the evaluation of Iθ() in Eq. 7.14a is time-consuming.

Similar to the integrand evaluation for Gaussian beams, a binary tree is used to store the

evaluated Iθ() to speed up the integration (see the discussion for Gaussian beams).

Chapter 7 Convolution for Photon Beams of Finite Size 77

 Integral Limits for circularly flat beams

Since the integral limits in Eq. 7.14a for circularly flat beams are finite, the

integration can be computed directly using the function qtrap(). As we discussed in the

beginning of this section, we only compute the physical quantities in the interval [0, rmax],

where rmax is given by Eq. 7.16. Considering this limit, Eq. 7.14a becomes:

C(r, z) = P/(π R2) ⌡⌠
 a

 b

 G(r ' ' , z) Iθ (r, r' ') 2 π r' ' dr'' (7.22a)

a = Max(0, r – R) (7.22b)

b = Min(rmax, r + R) (7.22c)

where the functions Max() and Min() take the greater and the lesser of the two arguments

respectively.

 Source of error in convolution

In Eqs. 7.21c and 7.22c, the upper limit of the integration may be limited by rmax

which is the grid limit in the r direction during the Monte Carlo simulation. The physical

quantities beyond the original grid limit in the r direction do not contribute to the

convolution, which leads an error.

Let us discuss the case for circularly flat beams first because it is easier. From Eq.

7.22c, we know that when

rmax ≥ r + R (7.23a)

or

r ≤ rmax – R (7.23b)

the limited grid in the r direction does not affect the convolution. Otherwise, the

convolution is truncated by the limited grid in the r direction. This effect can be see in the

next section. Therefore, we should not trust the convolution data for r ≥ rmax – R. In

other words, if you want to observe the physical quantity at r in response to a circularly flat

beam of radius R, the grid limit in the r direction should be large enough so that Eq. 7.23a

holds when you perform the Monte Carlo simulation with mcml.

Chapter 7 Convolution for Photon Beams of Finite Size 78

For Gaussian beams, there are no clean formulas like Eqs. 7.23 to describe the

valid range because the Gaussian beams theoretically extend to infinity in the r direction.

However, the convolution results of a Gaussian beam with a 1/e2 radius of R is so close to

those of a circularly flat beam with a radius of R for r >> R (shown in the next section).

Therefore, we can use the same criteria for circularly flat beams (Eqs. 7.23) for Gaussian

beams to certain precision.

The other source of error is due to the Monte Carlo simulation by mcml 1.0. This

version of mcml does not score the first interactions separately (see Section 4.3) as Gardner

et al. (1992b) did. This may make considerable error if the radius of the Gaussian beam is

less than three times the grid separation ∆r. In other words, the following equation should

be satisfied to get reliable convolution:

R ≥ 3 ∆r (7.24)

In summary, when Eqs. 7.23 and 7.24 hold, the convolution should be reliable.

 7.5 Computation results of conv and verification

The convolution process of the Monte Carlo simulation results from mcml is

implemented in another program called "conv". Like the program mcml, it is written in

ANSI Standard C, hence it can be executed on a variety of computers.

 Convolution results of Gaussian beams

We do not have any standard data to verify the convolution program. However,

Craig Gardner kindly provided some convolution results using his convolution program

(Gardner et al., 1992). The impulse responses are based on the simulation discussed in

Section 6.6 where we have used the same turbid media and grid system. He computed his

convolution on his Monte Carlo simulation results, and we did it on ours after we

compared the Monte Carlo simulation results in Section 6.6.

The incident photon beam is a Gaussian beam with total energy of 1 J and radius of

0.1 cm. The convolved diffuse reflectances and transmittance are compared in Figs. 7.4

and 7.5 respectively. The convolved fluences are compared in Fig. 7.6. Note that the

curves in Figs. 7.4-6 bend down faster near r equal 0.5 cm. This can be explained by the

integrations in Eqs. 7.21. Due to the spatially limited range of the grid system (50 radial

grids of 0.01 cm spacing, or rmax = 0.5 cm), the upper limit of the integration is cut by

Chapter 7 Convolution for Photon Beams of Finite Size 79

rmax more and more as the observation point r approaches rmax. Therefore, the integration

underestimates the true value.

10-2

10-1

100

101

0

R
d

[J
/c

m
2]

0.1 0.2 0.3 0.4 0.5

Gardner et al.

r [cm]

conv

Gaussian beam
 responses
Total energy: 1 J
1/e2 radius: 0.1 cm

Fig. 7 .4 . Comparison between diffuse reflectances as a function of r

based on conv and Gardner's computation (Gardner et al., 1992).

10-2

10-1

100

0 0.1

T
t [

J/
cm

2]

0.2 0.3 0.4 0.5

Gardner et al.
conv

r [cm]

Gaussian beam responses
Total energy: 1 J
1 /e2 radius: 0.1 cm

Fig. 7.5. Comparison between transmittances as a function of r based on

conv and Gardner's computation (Gardner et al., 1992).

Chapter 7 Convolution for Photon Beams of Finite Size 80

10-1

100

101

102

0

F
lu

en
ce

 [J
/c

m
2]

0.1 0.2 0.3 0.4 0.5

Gardner et al. z=0.005

r [cm]

Gardner et al. z=0.205
conv z=0.005 cm
conv z=0.205 cm

Gaussian beam
Total energy: 1 J
1/e2 radius: 0.1 cm

Fig. 7 .6 . Comparison between fluences as a function of r for given z

coordinates based on conv and Gardner's computation (Gardner et al.,

1992).

For 2D arrays such as the fluence as a function of r and z, conv has the ability to

output the data in contour format (see Sections 10.9 and 10.10). The fluence as a function

of r and z of the Gaussian beam is shown in contour lines in Fig. 7.7.

Chapter 7 Convolution for Photon Beams of Finite Size 81

0.4

0.3

0.2

0.1

0

0 0.1

z
[c

m
]

0.2 0.3 0.4

air: n = 1

layer 1: n = 1.37
µa = 1, µs = 100

g = 0.9

layer 2: n = 1.37
µa = 1, µs = 10

g = 0

r [cm]

layer 3: n = 1.37
µa = 2, µs = 10
g = 0.7

air: n = 1

50 25 10 5 2.5 1 0.5

Fig. 7 .7 . Contour plot of the fluence [J cm−2] as a function of r and z

based on conv for a Gaussian beam. The Gaussian beam has total energy

of 1 J and 1/e2 radius of 0.1 cm. The Monte Carlo simulation is for a three-

layer tissue of Table 6.6. The absorption coefficient µa and scattering

coefficient µs are in cm–1.

 Convolution results of circularly flat beams

For circularly flat photon beams, we do not have other results for comparison.

However, we would like to compare the results of circularly flat photon beams with that of

Gaussian beams. The results of Gaussian beams are taken from the above computations.

The circularly flat beam has 1 J of total energy and 0.1 cm of radius. The diffuse

reflectances, transmittances and fluences are compared respectively in Figs. 7.8, 7.9, and

7.10.

Chapter 7 Convolution for Photon Beams of Finite Size 82

10-2

10-1

100

101

0

R
d

[J
/c

m
2]

0.1 0.2 0.3 0.4 0.5

Flat

r [cm]

Gaussian

Total energy: 1 J
1/e2 radius: 0.1 cm
Computed by conv

Fig. 7 .8 . Comparison between diffuse reflectances as a function of r

convolved over a Gaussian beam and a flat beam using conv. Both beams

have total energy of 1 J and radii of 0.1 cm.

10-2

10-1

100

0 0.1

T
t [

J/
cm

2]

0.2 0.3 0.4 0.5

Flat
Gaussian

r [cm]

Total energy: 1 J
1/e2 radius: 0.1 cm
Computed by conv

Fig. 7 .9 . Comparison between transmittances as a function of r

convolved over a Gaussian beam and a flat beam using conv. Both beams

have total energy of 1 J and radii of 0.1 cm.

Chapter 7 Convolution for Photon Beams of Finite Size 83

10-1

100

101

102

0

F
lu

en
ce

 [J
/c

m
2]

0.1 0.2 0.3 0.4 0.5

Fla t

r [cm]

Gaussian

Computed by conv
z = 0.005 cm
Total energy: 1 J
Radius: 0.1 cm

Fig. 7 .10. Comparison between fluences as a function of r at z equal

0.005 cm convolved over a Gaussian beam and a flat beam using conv.

Both beams have total energy of 1 J and radii of 0.1 cm.

It is observed that the Gaussian beam and the flat beam give nearly the same results

when r is larger than about 2 R, where R is the radius of the beams. Furthermore, both

kinds of responses bend down when r approaches 0.5 cm which is the grid limit in the r

direction as discussed in last section.

 Convolution error

The convolution integration is computed iteratively. The iteration stops when the

difference between the new estimate and the old estimate of the integration is a small part of

the new estimate. This small ratio can be controlled by users using command "e". It

ranges between 0 to 1. Small values would give better precision but longer computation

time and vice versa. Normally, 0.001 to 0.1 is recommended. Sometimes, a high allowed

error can cause some discontinuity in the convolved results. If this happens, choose a

lower allowed convolution error and redo the convolution. For example, the convolution

over a Gaussian beam in Fig. 7.10 has been done with an allowed convolution error of

0.001. If we choose the allowed convolution error to be 0.01, we can see the discontinuity

in the fluence distribution (Fig. 7.11).

Chapter 7 Convolution for Photon Beams of Finite Size 84

10-1

100

101

102

0

F
lu

en
ce

 [J
/c

m
2]

0.1 0.2 0.3 0.4 0.5

Error = 0.1%

r [cm]

Error = 1%

discontinuity

Computed by conv
z = 0.005 cm
Gaussian beam
Total energy: 1 J
Radius: 0.1 cm

Fig. 7 .11. Comparison between fluences as a function of r at z equal

0.005 cm convolved over a Gaussian beam with different allowed

convolution errors using conv. The result with allowed error of 0.01 has

discontinuity around r = 0.15 cm. Using an allowed error of 0.001

eliminates the discontinuity. The Gaussian beams have total energy of 1 J

and 1/e2 radii of 0.1 cm.

Chapter 8 Installing mcml and conv 85

 Part II. User Manual

 8. Installing mcml and conv

This chapter provides the instructions on how to install the software. Since both

mcml and conv are written in ANSI Standard C, they in principle should be able to be

compiled on any computer systems that support ANSI C. Sxubject to the computer

systems available to this laboratory, we will only provide the executables for Sun

workstations, IBM PC compatibles, and Macintoshes. On Sun SPARCstations 2, we have

compiled the mcml and conv using the ANSI C (acc). On IBM PC compatibles, we used

Microsoft QuickC. And on Macintoshes, we used Symantec THINK C. We will provide

the source code, users can feel free to compile them on their computer systems. Consult

corresponding manuals for information on how to compile the code.

As Monte Carlo simulations are computationally intensive, we suggest that you use

workstations such as Sun SPARCstations on which you can submit background jobs and

which provide high speed computation. The convolution program is also more pleasant to

use if you have a fast computer, although it is not as computation-intensive as Monte Carlo

simulations.

 8.1 Installing on Sun workstations

The distribution disk is an IBM format double density 3 1/2" disk, which Sun

SPARCstation 2 should be able to read. All the files are packed into one file. Copy the file

mcR1_1.tar to a working directory using the command: mcopy a:mcR1_1.tar ., where

the period means the current directory, and then untar the file using the command: tar -

xvfo mcR1_1.tar.

The package includes three directories: mcmlcode, convcode, and Sun. The

directory mcmlcode includes all the source code of mcml and the makefile used for acc.

The directory convcode (not provided this time) includes all the source code of conv and

the corresponding makefile. You need to modify the makefiles for other compilers (See

Appendix C). The directory Sun includes all the executables, a template file of mcml input

(template.mci), a sample mcml output file (sample.mco), and a short manual

(mcmlconv.man) which is Chapter 8-10 of this manual.

Chapter 8 Installing mcml and conv 86

To install the executables, copy the executables to the sub directory ~/bin under

your home directory. Then, put the directory ~/bin under the search path in .cshrc or .login

if you are using C Shell. Consult manual if you are using other shells.

Having finished copying, you can eject the disk using the command eject. If your

Sun workstation does not have a floppy drive, you can transfer the files through a

networked IBM PC or a compatible. If you have an electronic mail address, we can also

send the package to you through mail.

 8.2 Installing on IBM PC compatibles

For IBM PC's or compatibles, the distribution disk is a double density 3 1/2" disk.

An alternative 5 1/4" disk can be sent upon request. All the files are packed into one file.

Copy the self-extracting file mcR1_1.exe to your working directory on your hard drive and

run the file to extract all packed files using the command: mcR1_1.exe -d, where the

option "-d" keeps the directory structure.

The package includes three directories: mcmlcode, convcode, and IBMPC. The

directory mcmlcode includes all the source code of mcml. The directory convcode (not

provided for now) includes all the source code of conv. The directory IBMPC includes all

the executables, a template file of mcml input (template.mci), a sample mcml output file

(sample.mco), and a short manual (mcmlconv.man) which is Chapter 8-10 of this manual.

The executables include mcml.exe and conv.exe. The code was compiled and linked using

Microsoft QuickC 2.5. The executables will be able to detect whether your computer has

math coprocessor, and take advantage of the math coprocessors if they are present.

If you want to be able to execute the programs under any directory, you should put

the directory IBMPC in the search path. The search path can be changed in the file

autoexec.bat.

 8.3 Installing on Macintoshes

For Macintoshes, the distribution disk is a double density 3 1/2" disk. All the files

are packed into one file. Copy the self-extracting file mcR1.1.sea to a working folder on

you hard drive, and double click on the icon to extract the files.

The package includes three folders: mcmlcode, convcode, and Mac. The folder

mcmlcode includes all the source code of mcml. The folder convcode includes all the

Chapter 8 Installing mcml and conv 87

source code of conv. The folder Mac includes all the executables, a template file of mcml

input (template.mci), a sample mcml output file (sample.mco), and a short manual

(mcmlconv.man) which is Chapter 8-10 of this manual. The executables include

mcml.fpu, conv.fpu, mcml.020, conv.020, mcml.000, and conv.000 for different types of

computers as discussed subsequently.

Before you install the executables, you need to know what kind of Macintosh you

are using. You can test the following conditions to decide which executables to use:

A. MC68040

B. MC68020 or MC68030

C. MC68881 or MC68882

If your Macintosh meets condition A, or conditions B and C, you should copy the

executables with extensions ".fpu". If your Macintosh meets condition B only, you should

keep the executables with extensions ".020". Otherwise, you should use the executables

with extensions ".000". We suggest that you remove the extensions of the executables on

your hard drive to keep consistency with the manual.

 8.4 Ins talling by Electronic Mail

For these users who have electronic mail access on UNIX machines, we can deliver

the software package through electronic mails. The package is archived using the

command tar, compressed using the command compress, then encoded using the command

uuencode before it is mailed out using the mail utilities. After you receive the mail, you

need to do the following.

1. Save the mail as a file, e.g., mc.mail.

2. Decode the file (mc.mail) to get a file named mc.tar.Z using

uudecode mc.mail

3. Uncompress the file mc.tar.Z to get the file mc.tar

uncompress mc.tar.Z

4. Unarchive the file mc.tar to get the package using:

Chapter 8 Installing mcml and conv 88

tar -xvfo mc.tar

At this moment, you should have three directories under the working directory. They are

mcmlcode, convcode, and Sun, or IBMPC, or Mac.

If you ordered a Sun version of the package, you only need to put the executables

under the proper directory., e.g., ~/bin (see Section 8.1).

If you ordered an IBM PC version or a Mac version of the package, you need to

transfer the files to your local computer using FTP or modem. Then refer to Section 8.2 or

8.3 for details.

It is appropriate to describe in more detail how we send the package through

electronic mails which is exactly the opposite of the above procedure. We put the package

in a working directory which include three subdirectories: mcmlcode, convcode, and Sun,

or IBMPC, or Mac. Then:

tar -cvf mc.tar

compress mc.tar

uuencode mc.tar.Z mc.tar.Z > mc.mail

mail your_address

In the mail utility, you can add in any messages in the beginning of the mail, then you need

to use the command r to read in the file mc.mail. Then, you can send the file by typing a

period "." and a return in a new line (see the manual page of mail).

Chapter 9 Instructions for mcml 89

 9. Instructions for mcml

This chapter describes the actual instructions to use mcml. Macintoshes, IBM PC

compatibles and UNIX machines are used as examples of computer systems, although

mcml can execute on any computer systems that support ANSI Standard C. The reader is

assumed to be familiar with the operating system and comfortable with at least one of the

text editors on the computer system to be used to execute mcml. Three steps involved in

the Monte Carlo simulation using mcml are included in the following sections: preparing

the input data file, executing the program mcml with the input data file, processing the

output data in the data files named in the input data file. We will also show some known

bugs.

 9.1 File of input data

The first step to do the simulation using mcml is to prepare an input data file (e.g.,

"filename.mci"). Any valid filenames on your system without spaces will be acceptable,

but extension ".mci" is recommended. In ANSI C, spaces are used as separators.

Therefore, filenames with spaces may not be accepted by mcml, although they are allowed

by some operating systems themselves such as the Macintosh System. We will use

"filename.mci" as an example in the following discussions.

This input data file may be edited with any text editors such as Apple Edit,

MockWrite or Microsoft Word on Macintoshes, Norton editor NE or Microsoft Word on

IBM PC compatibles, vi editor or EMACS on UNIX systems. However, if you use word

processors like Microsoft Word to edit the file, make sure that you save the file in text

format since mcml does not accept binary files as input. If you are using the UNIX system

and are uncomfortable with vi or other editors available on UNIX, you can use editors on

your personal computer, then transfer the file using Kermit if you use modem or FTP if

your personal computer is on a network. Make sure to use ASCII or text mode when you

transfer this file.

The best way to write an input data file is to make a copy of the template file called

"template.mci" (See Appendix D), then modify the parameters in the file. The input data

file is organized line by line. All parameters must be in the right order. The lines with

parameters in order must also be in order themselves. However, feel free to insert

comment lines or space lines in between to make the file more readable. Comment lines

Chapter 9 Instructions for mcml 90

start with the symbol "#". The symbol "#" can also be used after the parameters in a line to

mark the start of comments.

The parameters in the input data file are read by mcml line by line. If there are

multiple parameters in a line, use tabs or spaces to separate them. A tab is preferred,

because it aligns the parameters for better readability. All dimensional quantities are in cm

or derived from cm. The thickness of each layer is in cm. The grid line separations are

also in cm. Absorption coefficient and scattering coefficient are in 1/cm. Each line of the

input file is explained in the order that they appear in the input data file as follows.

1. File version of the input data file. Always use "1.0" for now.

2. Number of runs (integer). Each run is an independent simulation. You can

specify any number of runs, which is not subject to memory limit. Make sure you

use an integer instead of a floating point number for this parameter, e.g., 5 instead

of 5.0.

3. Output filename and file format. Extension ".mco" is recommended for the output

filenames, e.g., "output1.mco". The program mcml currently only supports ASCII

format, therefore always use "A" as the second parameter in this line. Make sure

that you use different output filenames if you have multiple runs in an input data

file, although mcml checks for this mistake. What is more important is that the

filenames should not be the same as the names of existent ones unless you want to

overwrite the existent files on purpose. Since the program mcml does not check

this error, you will lose the existent files.

4. Number of photon packets to be traced (integer).

5. Separations (in cm) between grid lines in z and r direction of the cylindrical

coordinate system. These are floating point numbers. Both z and r originate from

the photon incident point on the surface of first layer, and the z axis points down

into the turbid medium. Make sure these parameters are large enough to give you

an acceptable variance, and small enough to give you an acceptable resolution.

These parameters should be determined coordinately with the number of photons to

achieve both accuracy and resolution. Also note that users should try to choose

grid size in the z direction so that grid boxes do not cross tissue-tissue interfaces or

boundaries (see Section 9.5).

Chapter 9 Instructions for mcml 91

6. Number of grid elements (integers) in the z, r directions of the cylindrical

coordinate system and in the alpha direction, where alpha is the angle spanned

between the photon exiting direction and the surface normal. Since the angle

always covers 0 through 90 degrees, the angular separation is 90 degrees divided

by the number of angular grid elements specified in this line. Be careful with this

line, if the numbers are too large, the output file will be very big because 2D arrays

are written into the output file. If you do not need to resolve one of the directions (z

or r) or the angle, use 1 (not 0) for that parameter. Make sure to use integers for

these three parameters.

7. Number of layers (integer). This number does not include the ambient media

above or below the tissue.

8. Refractive index for the top ambient medium above the first layer (e.g., 1.0 for

air).

9. Layer parameter lines. One line for each layer. In each line are the refractive

index, the absorption coefficient (1/cm), the scattering coefficient (1/cm), the

anisotropy factor, and the thickness (cm). To simulate semi-infinite tissue, use a

very large thickness (e.g., 1E8 cm) compared with the mean free path of the tissue.

10. Refractive index for the bottom ambient medium below the last layer (e.g., 1.0

for air).

11. Repeat lines 3 through 10 for each additional run if you have multiple runs.

Note: Two points are worth noting. The only limit to the number of grid elements

and layers is the amount of memory allocated to mcml in your system because the arrays

are dynamically allocated according to these parameters. Do not use floating point numbers

for the integers. Otherwise, the program may interpret them incorrectly. However, you

may use integers for floating point numbers, e.g., 100 instead of 100.0.

 9.2 Execution

Once the input data file is prepared, the program mcml can be executed using the

input data file. During the execution, the program mcml will report an output message

which gives the number of photons remaining in the simulation, the number of runs left,

and the time of ending the job. The first report is after 10 photon packets are traced, then it

Chapter 9 Instructions for mcml 92

is updated when every 1/10 of the total number of photon packets are traced. The methods

of execution are slightly different on different operating systems.

 Macintosh

To run mcml on Macintosh System 6, you have to copy or move the executable

mcml to your working folder where the input data file resides, then double click on the

mcml icon to start the program. The program mcml will prompt for the input data filename,

which is entered through the keyboard. If the input data file cannot be found, the program

will prompt you again until it finds the file or a period "." is typed, where "." is used to

abort the program. If you use Macintosh System 7, you may use an alias of mcml instead

of a copy of it.

 IBM PC compatibles

For IBM PC compatibles, make sure that the directory with mcml is in the search

path, which can be checked by typing the command "path" or the file "autoexec.bat". To

run mcml with the input data file as a command parameter under DOS command prompt,

type:

mcml filename.mci

If you want to save the output message as a file (e.g., message.out), type:

mcml filename.mci > message.out

which redirects the output message to the file "message.out". To run mcml in the

interactive mode, type the following command without input data filename:

mcml

Then, the program mcml will prompt for the input data file.

 UNIX

On a UNIX system, you should place the executable mcml in a directory that is in

the search path. The directory ~/bin is a good choice. The search path can be found and

modified in the file ".cshrc" if you are using C Shell or the file ".login". The three ways of

Chapter 9 Instructions for mcml 93

invoking mcml under DOS can be used under UNIX operating systems. Moreover, if you

wish to discard the messages during the execution, use the command:

mcml filename.mci > /dev/null

which redirects the output to the "bit bucket" (/dev/null). You can also simply submit a

background job using:

mcml filename.mci > /dev/null &

Refer to your UNIX manual for how to inquire about the status of a background

job. If you are still in the same session, the command "jobs" can be used in C Shell.

Otherwise, you should use the UNIX command "ps" to check for background processes.

You can also directly look for the output files to check if the job is done.

 9.3 File of output data

When the job is completed, the results will be written into the output data files as

you named in your input data file. A sample output data file is shown in Appendix E. The

output data files can be read with any text editors if they are ASCII as a result of using "A"

for the file format in the input data file. They may be big if your numbers of grid elements

are large.

The contents of output files are self explanatory. The same policy for the input data

file is used for the output data file, that is, comment lines starting with a symbol "#" and

space lines are written to the file for clarity. The first line is used for file type identification

when the file is read by other applications. Then, the user time spent on the simulation is

reported in a comment line. Then, a few categories of data are reported sequentially in the

following order: pure numbers, 1D arrays and 2D arrays. The definitions of the output

data can be found in Chapter 4. The category "InParm" reports all the input parameters

specified in the input data file again so that the output file is a complete reference and the

input parameters may also be double checked against any errors in the input data file. The

category "RAT" reports the specular reflectance, the total diffuse reflectance, the total

absorption, and the total transmittance. The category "A_l" is the absorption as a function

of layer. The category "A_z" is the absorption as a function of depth z. The categories

"Rd_r" and "Rd_a" are the diffuse reflectances as a function of radius r and angle alpha

respectively. The categories "Tt_r" and "Tt_a" are the transmittance as a function of radius

r and angle alpha respectively. The 2D arrays A_rz, Rd_ra, and Tt_ra are then reported.

Chapter 9 Instructions for mcml 94

The category A_rz is the absorption as a function of depth z and radius r. The categories

Rd_ra and Tt_ra are correspondingly the diffuse reflectance and transmittance as a function

of radius r and angle alpha. The name of each category is written before the data, such that

the data can be easily identified. The units for these data were discussed in Chapter 4.

 9.4 Subset of output data

Sometimes, only a subset of the output data is needed for presentation or

processing. For example, we may need to print a 1D array into a file in XY format, namely

two columns of data, or a 2D array in XYZ format. These files can then be read into some

commercial applications such as AXUM on IBM PC compatibles and KaleidaGraph on

Macintoshes. This subset extraction can be done using another program -- conv. The

program conv is intended to read in the output data file of mcml that gives responses of

infinitely narrow photon beam, and convolve the output data if the responses of finite size

beam are to be computed. The program conv can output the original data or the convolved

data in various formats. The convolution part of the program conv has not been finished,

although it can be used to extract subsets of the original output data.

The program conv is made to be interactive. After the program is invoked, the

menu system will direct the data input, output, or process. On Macintosh, copy or move

the program conv to your working folder. Start conv by double clicking on the icon. On

IBM PC compatibles or UNIX machines, invoke the program conv by typing:

conv

Follow the menu to input an mcml output file (e.g., "filename.mco"). Then, output

specific data to new files. However, for the sake of efficiency, we wrote a C Shell script

file "conv.bat" for UNIX users. For shell programming, refer to Anderson et al. (1986) or

Arthur (1990). A similar file can be written on MS-DOS operating system. The file

"conv.bat" is used for fast batch process. For example, if there are several mcml output

files named "outfile1.mco", "outfile2.mco"... "outfilen.mco", and you need to select the

diffuse reflectance as a function of radius r of these mcml output files on a UNIX system,

then you can use the command:

conv.bat "outfile*.mco" Rr

This command takes two arguments. The first one gives the mcml output files to be

processed. If wild cards, such as * or ?, are used, the argument has to be within quotes to

Chapter 9 Instructions for mcml 95

prevent immediate file expansion. The second argument gives the type of subsets to be

extracted. In this case, it is the diffuse reflectance as a function of r. The files of the

subsets will be named as "outfile*.Rr". In each of these output files, there are two

columns, the first one is the radius, and the second one is the reflectance. To check the

complete usage of "conv.bat", type "conv.bat" on command line. More examples are:

conv.bat "outfile*.mco" Az

for 1D absorption as a function of z. In each of the output files of this command, there are

two columns representing z and the internal absorption respectively.

conv.bat "outfile*.mco" Azr

for 2D absorption as a function of z and r. In each of the output files of this command,

there are three columns representing z, r, and the internal absorption respectively.

If you use UNIX to do the simulation and want to present the results using

Macintosh or IBM PC compatibles, transfer the smaller subset files using KERMIT if you

use modem or FTP if you use Ethernet.

 9.5 Bugs of mcml

1. Users have to be careful with several known bugs about the program mcml version

1.0. If a grid element crosses a medium interface, e.g., a glass/tissue interface, the

photon absorption within this grid element is considered to be the absorption in the

medium where the center of the grid element is located. Therefore, if the center is

on the side of the glass, mcml may report small absorption in the glass.

Sometimes, this problem may be avoided by choosing the z-grid system carefully

so that the boundaries of elements align with the layer interfaces.

2. The user time of a simulation can be reported as zero if the simulation is long

enough to overflow the timer (See the function clock() in the file "mcmlmain.c").

3. The input parameters in the input data file have to be in the order as specified.

Furthermore, you have to use integers for number of photon packets, number of

layers, and number of grid elements in the input data file. If floating point numbers

are inadvertently used, mcml can not detect the error and may read in the wrong

parameters.

Chapter 9 Instructions for mcml 96

If you find any new bugs, please report to us using the information in Appendix G.

It is very important that you provide us enough information about the bug so that we can

reproduce it.

Chapter 10 Instructions for conv 97

 10. Instructions for conv

This chapter describes the instructions to use the program conv, which is used to

convolve the impulse responses of mcml over incident beams of finite size. This program

reads the output of mcml, then convolves the impulse responses according to the user

specified incident beams. The program can output the original data from mcml or the

convolved data in various ASCII formats as discussed subsequently.

 10.1 Start conv

To start conv on IBM PC compatibles or UNIX machines, invoke the program

conv by typing:

conv

To use conv on Macintoshes, copy or move the program conv to your working folder.

Then, double click the conv icon to start it. If you are using System 7, you may take

advantage of the alias mechanism.

 10.2 Main menu of conv

Once conv is started, it is in the main menu of the program after showing some

information about the program. In the main menu, the program prompts for a command as:

> Main menu (h for help) =>

To show all the available command, type "h" and return key. It will show you the

following information and prompt for the next command. You only need to show the help

information when you forget the commands.

i = Input filename of mcml output
b = specify laser Beam
r = convolution Resolution.
e = convolution Error.
oo = Output Original data
oc = Output Convolved data
co = Contour output of Original data
cc = Contour output of Convolved data
so = Scanning output of Original data
sc = Scanning output of Convolved data
q = Quit
* Commands in conv are not case-sensitive

> Main menu (h for help) =>

Chapter 10 Instructions for conv 98

Each command will be introduced subsequently.

 10.3 Command "i" of conv

You have to provide the filename of the mcml output to conv. This can be done by

typing "i" and return key in the main menu prompt, then type in the filename of the mcml

output. For example:

> Main menu (h for help) => i
Input filename of mcml output(or . to quit): example.mco

> Main menu (h for help) =>

The program returns to the main menu automatically. If the file cannot be located or

opened, the program will prompt you to type in another filename. You can also type "."

and return key to quit inputting the filename. If the file is not the output of mcml, the

program will quit to the operating system. You need to start the program again.

 10.4 Command "b" of conv

You need to specify the type and parameters of the incident beam. In version 1.0 of

conv, only Gaussian beams and circularly flat (rectangular) beams are supported. To enter

the incident beam, use command "b". Then you have to choose from "f" for flat beam, "g"

for Gaussian beam, or "q" to quit this command. If you choose either flat beam or

Gaussian beam., conv asks the total energy and the radius of the beam. For example:

> Main menu (h for help) => b
Beam profile:f=flat, g=Gaussian. q=quit: f
Total energy of the flat beam [J]: 1
Radius of the flat beam [cm]: .1
Total power: 1 J, and radius: 0.1 cm.

> Main menu (h for help) =>

It returns to the main menu automatically. Although we specify units of energy for the

incident beam, you can substitute units of power throughout the program. To get reliable

results, the radius should be much larger than the grid separation in the r direction of the

original mcml output, and much less than the total covered radius by the grid system in the

r direction of the original mcml output. As a rule of thumb, the radius should be in the

range between about 3 times the grid separation in the r direction and the total grid coverage

in the r direction minus the maximum radius of observation (see Eqs. 7.23 & 7.24 in

Section 7.4).

Chapter 10 Instructions for conv 99

 10.5 Command "r" of conv

This command is used to change the grid separation and the number of grid elements in the

r direction for the convolution. Since they take the values of the mcml output as the

default, you do not have to enter this command if you do not want to change them. The

maximum convolution radius should not be larger than that of the original mcml output to

get reliable results. For example:

> Main menu (h for help) => r
Current resolution: 0.01 cm and number of points: 50
Input resolution in r direction [cm]: .02
Input number of points in r direction: 20
Resolution: 0.02 cm and number of points: 20

> Main menu (h for help) =>

Note that if the number of points is chosen too large, the program can exit due to

the lack of memory. This is a bug in the current version of conv.

 10.6 Command "e" of conv

The integration is computed iteratively. The iteration stops when the difference

between the new estimate and the old estimate of the integration is a small part of the new

estimate. This small ratio can be controlled by users using command "e". It ranges

between 0 to 1. Small values would give better precision but longer computation time and

vice versa. Normally, 0.001 to 0.1 is recommended. The default value is 0.1. For

example:

> Main menu (h for help) => e
Relative convolution error
Current value is 0.05 (0.001-0.1 recommended): .01

Special attention has to be paid to this command. The convolution results may have

weird discontinuities if the allowed convolution error is too high (see Fig. 7.11), and the

convolution process may take too long if the convolution error is too low. The rule of

thumb is that you choose the lowest convolution error that does not make the convolution

too long to compute. If the convolution results still have any discontinuities which should

not be there, you need to decrease the convolution error and redo the convolution.

Chapter 10 Instructions for conv 100

 10.7 Command "oo" of conv

After you input the filename of the mcml output , you can output the original data of

the mcml output with various formats. One of the formats can be obtained by the

command "oo". For example:

> Main menu (h for help) => oo

> Output mcml data (h for help) => h
I = Input parameters of mcml
3 = reflectance, absorption, and transmittance
AL = absorption vs layer [-]
Az = absorption vs z [1/cm]
Arz = absorption vs r & z [1/cm3]
Fz = fluence vs z [-]
Frz = fluence vs r & z [1/cm2]
Rr = diffuse reflectance vs radius r [1/cm2]
Ra = diffuse reflectance vs angle alpha [1/sr]
Rra = diffuse reflectance vs radius and angle [1/(cm2 sr)]
Tr = transmittance vs radius r [1/cm2]
Ta = transmittance vs angle alpha [1/sr]
Tra = transmittance vs radius and angle [1/(cm2 sr)]
K = Keijzer's format
Q = Quit to main menu
* input filename: example.mco

> Output mcml data (h for help) =>

At this point, you can output various physical quantities by inputting the

subcommands, which can be listed by command "h" as shown above. After you type the

command, the program will ask you for the output filename. The exact physical meanings

of these physical quantities can be found in Chapter 4. The command "i" outputs the input

parameters of mcml to a file. The command "3" outputs three quantities to a file including

specular reflectance, total diffuse reflectance, absorption probability, and total

transmittance, which are actually four numbers. The command "Al" outputs the absorption

probability as a function layer to a file. The command "Az" outputs the absorption as a

function of z coordinate whose dimension is cm–1. The command "Arz" outputs the

absorption probability density as a function of r and z whose dimension is cm–3. The

commands "Fz" and "Frz" output the results of the commands "Az" and "Arz" divided by

the absorption coefficients. The command "Rr" outputs the diffuse reflectance as a

function of r whose unit is cm–2. The command "Ra" outputs the diffuse reflectance as a

function of the exit angle α , whose dimension is sr–1. The command "Rra" outputs the

diffuse reflectance as a function of r and α , whose unit is cm–2 sr–1. Similarly, the

commands "Tr", "Ta" and "Tra" are the corresponding commands for the transmittance.

The command "K" is used to convert the format of the mcml output to the format of

Chapter 10 Instructions for conv 101

Marleen Keijzer's convolution program (in PASCAL on Macintoshes) which was used by

our group before the program conv was written. This command is only useful if you have

Marleen Keijzer's program. The command "q" will return the program to the main menu.

For 1D arrays, the outputs are in two columns. The first column gives the

independent variable, and the second column gives the physical quantities. For example,

the output of the command "Rr" will have two columns. The first column gives the radius

in cm, and the second column gives the diffuse reflectance in cm–2.

For 2D arrays, the outputs are in three columns. The first two columns give the

first and the second independent variables, and the third column gives the physical

quantities. For example, the command "Arz" will give three columns. The first two

columns give r and z in cm respectively, and the third column gives the absorption

probability density in cm–2 sr–1 as a function of r and z.

An example is shown as follows:

> Output mcml data (h for help) => Rr
Enter output filename with extension .Rr (or . to quit): example.Rr

> Output mcml data (h for help) =>

This command will output the diffuse reflectance as a function of r to the file named

"example.Rr".

 10.8 Command "oc" of conv

After you input the filename of the mcml output and specify the incident photon

beam, you can output the convolved data with various formats. One of the formats is

writing data in columns, which can be obtained using the command "oc". For example:

> Main menu (h for help) => oc

> Output convolved data (h for help) => h
Arz = absorption vs r & z [J/cm3]
Frz = fluence vs r & z [J/cm2]
Rr = diffuse reflectance vs radius r [J/cm2]
Rra = diffuse reflectance vs radius and angle [J/(cm2 sr)]
Tr = transmittance vs radius r [J/cm2]
Tra = transmittance vs radius and angle [J/(cm2 sr)]
Q = Quit to main menu
* input filename: example.mco

> Output convolved data (h for help) =>

Chapter 10 Instructions for conv 102

At this point, you can output various physical quantities by inputting the

subcommands, which can be listed by command "h" as shown above. After you type the

command, the program will ask you for the output filename. The exact physical meanings

of these physical quantities can be found in Chapters 4 and 7. The command "Arz" outputs

the absorption energy density as a function of r and z whose dimension is J cm–3. The

command "Frz" outputs the results of the command "Arz" divided by the absorption

coefficients, which is the fluence in J cm–2. Since we consider steady-state responses

only in mcml and conv, you can systematically replace the energy [Joules] with power

[Watts] in conv.

The command "Rr" outputs the diffuse reflectance as a function of r whose unit is

J cm–2. The command "Rra" outputs the diffuse reflectance as a function of r and α ,

whose unit is J cm–2 sr–1. Similarly, the commands "Tr" and "Tra" are the corresponding

commands for the transmittance. The command "q" will return the program to the main

menu.

For 1D arrays, the outputs are in two columns. The first column gives the

independent variable, and the second column gives the physical quantities. For example,

the output of the command "Rr" will have two columns. The first column gives the radius

in cm, and the second column gives the diffuse reflectance in J cm–2.

For 2D arrays, the outputs are in three columns. The first two columns give the

first and the second independent variables respectively, and the third column gives the

physical quantities. For example, the command "Arz" will give three columns. The first

two columns give r and z in cm respectively, and the third column gives the absorption

energy density in J cm–2 sr–1 as a function of r and z.

An example is shown as follows:

> Output convolved data (h for help) => Rr
Enter output filename with extension .Rrc (or . to quit): example.Rrc

> Output convolved data (h for help) =>

This command will output the diffuse reflectance as a function of r to the file named

"example.Rrc".

Chapter 10 Instructions for conv 103

 10.9 Command "co" of conv

After you input the filename of the mcml output, you can output the original data of

the mcml output with various formats. One of the formats for 2D arrays is writing data in

contour lines. Every contour line will be given by two columns. This format can be

obtained using the command "co" standing for "contours of the original data". Then, the

output file can be imported to some plotting software such as KaleidaGraph on

Macintoshes, and the contour lines can be drawn. For example:

> Main menu (h for help) => co

> Contour output of mcml data (h for help) => h
A = absorption vs r & z [1/cm3]
F = fluence vs r & z [1/cm2]
R = diffuse reflectance vs radius and angle [1/(cm2 sr)]
T = transmittance vs radius and angle [1/(cm2 sr)]
Q = Quit to main menu
* input filename: example.mco

> Contour output of mcml data (h for help) =>

Since only the 2D arrays need to be presented in contour lines, there are only four

physical quantities. The command "A" outputs the absorption probability density as a

function of r and z whose dimension is cm–3. The command "F" outputs the probability

fluence as a function of r and z in cm–2. The commands "R" and "T" output diffuse

reflectance and transmittance as a function of r and α in cm–2 sr–1.

After you input one of the commands, the program will prompt for the output

filename and the isovalues for the contour output. The value range of the physical quantity

is shown so that valid isovalues can be provided by users. You can enter as many

isovalues as you want. System memory is the only thing that limits the number of

isovalues. Stop entering isovalues by inputting a period ".". For example:

> Contour output of mcml data (h for help) => A
Enter output filename with extension .iso (or . to quit): example.iso
The range of the value is 0.156280 to 3294.800000.
Input an isovalue or . to stop: 1000
Input an isovalue or . to stop: 100
Input an isovalue or . to stop: 10
Input an isovalue or . to stop: 1
Input an isovalue or . to stop: .

> Contour output of mcml data (h for help) =>

The output file of this example will have eight columns, each pair of columns describe one

contour line. The values of the contour lines are 1000, 100, 10, and 1 respectively.

Chapter 10 Instructions for conv 104

 10.10 Command "cc" of conv

After you input the filename of the mcml output and specify the incident photon

beam, you can output the convolved data with various formats. One of the formats for 2D

arrays is writing data in contour lines. Every contour line will be given by two columns.

This format can be obtained using the command "cc". The output file can be imported to

some plotting software such as KaleidaGraph, and the contour lines can be drawn. For

example:

> Main menu (h for help) => cc

> Contour output of convolved data (h for help) => h
A = absorption vs r & z [J/cm3]
F = fluence vs r & z [J/cm2]
R = diffuse reflectance vs radius and angle [J/(cm2 sr)]
T = transmittance vs radius and angle [J/(cm2 sr)]
Q = Quit to main menu
* input filename: example.mco

> Contour output of convolved data (h for help) =>

Since only the 2D arrays need to be presented in contour lines, there are only four

physical quantities. The command "A" outputs the absorption energy density as a function

of r and z whose dimension is J cm–3. The command "F" outputs the fluence as a function

of r and z in J cm–2. The commands "R" and "T" output diffuse reflectance and

transmittance as a function of r and α in J cm−2 sr–1 respectively.

After you input one of the commands, the program will prompt for the output

filename and the isovalues for the contour output. The value range of the physical quantity

is shown so that valid isovalues can be provided by users. You can enter as many

isovalues as you want. System memory is the only thing that limits the number of

isovalues. Stop entering isovalues by inputting a period ".". For example:

> Contour output of convolved data (h for help) => A
Enter output filename with extension .iso (or . to quit): exampleAc.iso
The range of the value is 0.048200 to 95.624939.
Input an isovalue or . to stop: 80
Input an isovalue or . to stop: 8
Input an isovalue or . to stop: 0.8
Input an isovalue or . to stop: .

> Contour output of convolved data (h for help) =>

The output file of this example will have six columns, each pair of columns describe one

contour line. The values of the contour lines are 80, 8, and 0.8 respectively.

Chapter 10 Instructions for conv 105

 10.11 Command "so" of conv

After you input the filename of the mcml output, you can output the original data of

the mcml output with various formats. One of the formats for 2D arrays is writing data in

two columns, where the two columns give the physical quantity as a function of one of two

independent variables. The other variable is fixed at a certain value which can be chosen by

users. This format, we call scanning output, can be obtained using the command "so".

The output file can be imported to some plotting software such as KaleidaGraph. For

example:

> Main menu (h for help) => so

> Scans of mcml data (h for help) => h
Ar = absorption vs r @ fixed z [1/cm3]
Az = absorption vs z @ fixed r [1/cm3]
Fr = fluence vs r @ fixed z [1/cm2]
Fz = fluence vs z @ fixed r [1/cm2]
Rr = diffuse reflectance vs r @ fixed angle [1/(cm2 sr)]
Ra = diffuse reflectance vs angle @ fixed r [1/(cm2 sr)]
Tr = transmittance vs r @ fixed angle [1/(cm2 sr)]
Ta = transmittance vs angle @ fixed r [1/(cm2 sr)]
Q = quit
* input filename: example.mco

> Scans of mcml data (h for help) =>

The command "Ar" outputs the absorption probability density as a function of r for

a fixed z, whose dimension is cm–3. The command "Az" outputs the absorption

probability density as a function of z for a fixed r, whose dimension is cm–3. The

command "Fr" outputs the probability fluence as a function of r for a fixed z in cm–2. The

command "Fz" outputs the probability fluence as a function of z for a fixed r in cm–2. The

command "Rr" outputs the diffuse reflectance as a function of r for a fixed α in cm–2sr–1.

The command "Ra" outputs the diffuse reflectance as a function of α for a fixed r in cm–

2sr–1. The commands "Tr" and "Ta" output the transmittance in the same format as for the

diffuse reflectance. The command "q" returns to the main menu.

After you input one of the commands, the program will prompt for the output

filename and the grid index to the value of the fixed variable. If you want to abort this

output, you can input a period "." as the filename. For example:

> Scans of mcml data (h for help) => Ar
Enter output filename with extension .Ars (or . to quit): example.Ars
z grid separation is 0.01 cm.
Input fixed z index (0 - 39): 0

> Scans of mcml data (h for help) =>

Chapter 10 Instructions for conv 106

This command outputs the absorption as a function of r for a fixed z. The program

shows that the z grid separation is 0.01 cm. The number of grid elements in the z direction

is 40. The grid index in the z direction is in the range from 0 to 39. The command will

generate two columns. The first column is r, and the second is the absorption.

 10.12 Command "sc" of conv

After you input the filename of the mcml output and specify the incident photon

beam, you can output the convolved data with various formats. One of the formats for 2D

arrays is writing data in two columns, where the two columns give the physical quantity as

a function of one of two independent variables. The other variable is fixed at a certain

value which can be chosen by users. This format, we call scanning output, can be obtained

using the command "sc". Then, the output file can be imported to some plotting software

such as KaleidaGraph. For example:

> Main menu (h for help) => sc

> Scans of convolved data (h for help) => h
Ar = absorption vs r @ fixed z [J/cm3]
Az = absorption vs z @ fixed r [J/cm3]
Fr = fluence vs r @ fixed z [J/cm2]
Fz = fluence vs z @ fixed r [J/cm2]
Rr = diffuse reflectance vs r @ fixed angle [J/(cm2 sr)]
Ra = diffuse reflectance vs angle @ fixed r [J/(cm2 sr)]
Tr = transmittance vs r @ fixed angle [J/(cm2 sr)]
Ta = transmittance vs angle @ fixed r [J/(cm2 sr)]
Q = quit
* input filename: example.mco

> Scans of convolved data (h for help) =>

The command "Ar" outputs the absorption energy density as a function of r for a

fixed z, whose dimension is J cm–3. The command "Az" outputs the absorption energy

density as a function of z for a fixed r, whose dimension is J cm−3. The command "Fr"

outputs the fluence as a function of r for a fixed z in J cm–2. The command "Fz" outputs

the fluence as a function of z for a fixed r in J cm–2. The command "Rr" outputs the

diffuse reflectance as a function of r for a fixed α in J cm−2 sr−1. The command "Ra"

outputs the diffuse reflectance as a function of α for a fixed r in J cm–2 sr–1. The

commands "Tr" and "Ta" output the transmittance in the same format as for the diffuse

reflectance. The command "q" returns to the main menu.

Chapter 10 Instructions for conv 107

After you input one of the commands, the program will prompt for the output

filename and the grid index to the value of the fixed variable. If you want to abort this

output, you can input a period "." as the filename. For example:

> Scans of convolved data (h for help) => Ar
Enter output filename with extension .Arsc (or . to quit): example.Arsc
z grid separation is 0.01 cm.
Input fixed z index (0 - 39): 0

> Scans of convolved data (h for help) =>

This command outputs the absorption as a function of r for a fixed z. The program

shows that the z grid separation is 0.01 cm. The number of grids in the z direction is 40.

The grid index in the z direction is in the range from 0 to 39. The command will generate

two columns. The first column is r, and the second is the absorption.

 10.13 Command "q" of conv

If you want to quit the program conv, use the command "q" in the main menu. The

program will ask you if you really mean to quit. You can answer yes or no. The program

will quit if the answer is "y". Otherwise, the program will return to the main menu. For

example:

> Main menu (h for help) => q
Do you really want to quit conv (y/n): n

> Main menu (h for help) => q
Do you really want to quit conv (y/n): y

 10.14 Bugs of conv

The convolution results may have weird discontinuities if the allowed convolution

error is too high, and the convolution process may take too long if the convolution error is

too low. We do not have a good way to predict the best convolution error yet. The rule of

thumb is that you choose the lowest convolution error that does not make the convolution

too long to compute. If the convolution results still have any discontinuities which should

not be there, you need to decrease the convolution error and redo the convolution.

As we discussed in Section 7.5, the radius of the incident beam has to be in the

right range to get reliable convolution integration due to the spatial resolution and the range

of grid system. As a rule of thumb, the radius should be in the range between about 3

Chapter 10 Instructions for conv 108

times the grid separation in the r direction and the total grid coverage in the r direction

minus the maximum radius of observation (see Eqs. 7.23 & 7.24 in Section 7.4).

If the number of points in the r direction is chosen too large in the command "r", the

program can exit due to the lack of memory.

Chapter 11 How to Modify mcml 109

 11. How to Modify mcml

The current version of program mcml simulates responses of an infinitely narrow

photon beam normally incident on multi-layered turbid media. We intend to make mcml

more general in the future. However, if you need to solve a different problem, such as

responses of isotropic photon sources instead of infinitely narrow photon beams,

responses of buried beams instead of externally incident beams, or time-resolved

simulations, then you will need to modify the program slightly. To do so, you need to

have prior knowledge of C language and understand Chapter 5. Appendix A and Appendix

B are provided to aid you in modifying the program. Appendix A gives you an overall

flow of the program, and Appendix B provides line-numbered source codes, which can be

used in combination with Appendix A for quick reference of the detail of the program.

As an example, let us modify several places of the program mcml to compute the

responses of buried isotropic photon sources. First, we need to allow users to provide the

depth of the isotropic photon source inside the tissue, which can be entered in the input data

file. For example, we can add the depth of the source as the second parameter in the line

for the number of photon packets. Second, we define one more member called source_z

in the structure InputStruct to store the depth of the source. Third, we read the depth into

the member source_z of structure InputStruct in function ReadParm() which is in the file

"mcmlio.c". Fourth, we need to modify the function LaunchPhoton() in the file

"mcmlgo.c" such that the photons are initialized isotropically at the correct depth according

to source_z. If you know the program well, you will know that you can make the source

isotropic utilizing the function Spin() in the file "mcmlgo.c". To do so, we can initialize

the photon packet to be unidirectional (e.g., +z direction) temporarily, then pretend that the

whole photon packet suffers an isotropic scattering on the same spot as initialized using the

function Spin(). All you need to do is to provide an anisotropy factor g equal 0 as the real

parameter for the function. The propagation simulation functions need no change, and the

scoring procedures need no change either because the problem is still cylindrically

symmetric. After you modify the source code, you need to recompile and link (refer to the

manual with the compiler and linker).

After we modified mcml like this, we simulated the diffuse reflectances of a buried

isotropic photon source in two media separately, whose optical properties are equivalent

according to the similarity relations (Wyman et al., 1989a and 1989b). The optical

properties for the isotropic scattering medium (g = 0) are: absorption coefficient µa = 0.1

Chapter 11 How to Modify mcml 110

cm−1, scattering coefficient µs = 10 cm−1, anisotropy factor g = 0, relative refractive index

nrel = 1. The optical properties for the anisotropic scattering medium (g ≠ 0) are: µa = 0.1

cm−1, µs = 100 cm−1, g = 0.9, nrel = 1. The depth of the isotropic photon source is 1

transport mean free path (mfp'), which is computed by 1 mfp' = 1/(µa + µs(1–g)) = 1/(0.1

+ 10) ≈ 0.1 cm. The grid separations in the z and r directions are both 0.005 cm, and the

numbers of grid elements in the z and r directions are both 200. One million photon

packets were used in the modified mcml.

0.01

0.1

1

10

0

R
d

(c
m

-2
)

0.2 0.4 0.6 0.8 1
r (cm)

C: Isotropic Source, g=0

D: Isotropic Source, g=0.9

Fig. 11.1 . Comparison of diffuse reflectances as a function of radius r

for two semi-infinite media whose optical properties are governed by the

similarity relations.The diffuse reflectances and the fluences for the two

media are compared in Figs. 11.1 and 11.2 respectively. The results of the diffuse

reflectances show that the similarity relations work well for photon sources deep inside the

tissue, and the results of the fluences show that the similarity relations work well when the

observation point is far away from the source. The fluence near the source for the isotropic

scattering medium is larger than that for the anisotropic scattering medium. Similar to the

discussion in Section 4.2, the fluences presented here are the responses of an isotropic

infinitely wide plane source with a difference of a constant factor which is the power

density of the source.

Chapter 11 How to Modify mcml 111

0

1

2

3

4

5

6

F
lu

en
ce

 [
-]

0 0.2 0.4 0.6 0.8 1
z [cm]

g = 0
g = 0.9

Responses to
isotropic infinitely
wide plane source

Depth of source

Fig. 11.2. Comparison between fluences as a function of z for two semi-

infinite media whose optical properties are governed by the similarity

relations (see Section 4.2 for discussion of an infinitely wide incident

beam).

Appendix A Cflow Output of the Program mcml 112

 Appendices

 Appendix A. Cflow Output of the Program mcml

We have listed the short format of the UNIX command cflow output in Section 5.5.

To show all depth of the nesting levels, we list here the results of the UNIX command:

cflow mcmlgo.c

1 main: char(), <mcmlmain.c 198>
2 ShowVersion: void*(), <mcmlio.c 49>
3 CenterStr: char*(), <mcmlio.c 28>
4 strlen: <>
5 strcpy: <>
6 strcat: <>
7 puts: <>
8 GetFnameFromArgv: void*(), <mcmlmain.c 150>
9 strcpy: 5
10 GetFile: struct*(), <mcmlio.c 94>
11 printf: <>
12 scanf: <>
13 strlen: 4
14 exit: <>
15 fopen: <>
16 CheckParm: void*(), <mcmlio.c 514>
17 ReadNumRuns: short(), <mcmlio.c 205>
18 FindDataLine: char*(), <mcmlio.c 184>
19 fgets: <>
20 printf: 11
21 CheckChar: char(), <mcmlio.c 139>
22 strlen: 4
23 nrerror: void*(), <mcmlnr.c 19>
24 fprintf: <>
25 exit: 14
26 KillChar: void*(), <mcmlio.c 123>
27 CommentLine: char(), <mcmlio.c 165>
28 strspn: <>
29 strcspn: <>
30 strcpy: 5
31 nrerror: 23
32 sscanf: <>
33 printf: 11
34 ReadParm: void*(), <mcmlio.c 425>
35 ReadFnameFormat: void*(), <mcmlio.c 225>
36 FindDataLine: 18
37 strcpy: 5
38 nrerror: 23
39 sscanf: 32
40 toupper: <>
41 ReadNumPhotons: void*(), <mcmlio.c 243>
42 FindDataLine: 18
43 strcpy: 5
44 nrerror: 23
45 sscanf: 32

Appendix A Cflow Output of the Program mcml 113

46 ReadDzDr: void*(), <mcmlio.c 260>
47 FindDataLine: 18
48 strcpy: 5
49 nrerror: 23
50 sscanf: 32
51 ReadNzNrNa: void*(), <mcmlio.c 276>
52 FindDataLine: 18
53 strcpy: 5
54 nrerror: 23
55 sscanf: 32
56 ReadNumLayers: void*(), <mcmlio.c 299>
57 FindDataLine: 18
58 strcpy: 5
59 nrerror: 23
60 sscanf: 32
61 ReadLayerSpecs: void*(), <mcmlio.c 375>
62 malloc: <>
63 nrerror: 23
64 ReadAmbient: void*(), <mcmlio.c 318>
65 FindDataLine: 18
66 strcpy: 5
67 sprintf: <>
68 nrerror: 23
69 sscanf: 32
70 ReadOneLayer: char(), <mcmlio.c 347>
71 FindDataLine: 18
72 strcpy: 5
73 sscanf: 32
74 sprintf: 67
75 CriticalAngle: void*(), <mcmlio.c 405>
76 sqrt: <>
77 FnameTaken: char(), <mcmlio.c 487>
78 NameInList: char(), <mcmlio.c 446>
79 strcmp: <>
80 AddNameToList: void*(), <mcmlio.c 459>
81 malloc: 62
82 strcpy: 5
83 sprintf: 67
84 free: <>
85 nrerror: 23
86 FreeFnameList: void*(), <mcmlio.c 500>
87 free: 84
88 rewind: <>
89 ReadNumRuns: 17
90 ReadParm: 34
91 DoOneRun: void*(), <mcmlmain.c 163>
92 InitOutputData: void*(), <mcmlio.c 546>
93 nrerror: 23
94 AllocMatrix: double**(), <mcmlnr.c 52>
95 malloc: 62
96 nrerror: 23
97 AllocVector: double*(), <mcmlnr.c 33>
98 malloc: 62
99 nrerror: 23
100 Rspecular: double(), <mcmlgo.c 117>
101 PunchTime: long(), <mcmlmain.c 60>
102 clock: <>
103 time: <>

Appendix A Cflow Output of the Program mcml 114

104 sprintf: 67
105 puts: 7
106 strcpy: 5
107 difftime: <>
108 ReportStatus: void*(), <mcmlmain.c 122>
109 printf: 11
110 PredictDoneTime: void*(), <mcmlmain.c 95>
111 time: 103
112 localtime: <>
113 strftime: <>
114 printf: 11
115 PunchTime: 101
116 LaunchPhoton: void*(), <mcmlgo.c 143>
117 Rspecular: 100
118 HopDropSpin: void*(), <mcmlgo.c 726>
119 HopInGlass: void*(), <mcmlgo.c 675>
120 StepSizeInGlass: void*(), <mcmlgo.c 265>
121 Hop: void*(), <mcmlgo.c 246>
122 CrossOrNot: void*(), <mcmlgo.c 660>
123 CrossUpOrNot: void*(), <mcmlgo.c 547>
124 RFresnel: double(), <mcmlgo.c 421>
125 sqrt: 76
126 RandomNum: double(), <mcmlgo.c 83>
127 time: 103
128 ran3: float(), <mcmlgo.c 32>
129 RecordR: void*(), <mcmlgo.c 480>
130 sqrt: 76
131 acos: <>
132 CrossDnOrNot: void*(), <mcmlgo.c 609>
133 RFresnel: 124
134 RandomNum: 126
135 RecordT: void*(), <mcmlgo.c 508>
136 sqrt: 76
137 acos: 131
138 HopDropSpinInTissue: void*(), <mcmlgo.c 706>
139 StepSizeInTissue: void*(), <mcmlgo.c 295>
140 RandomNum: 126
141 log: <>
142 HitBoundary: char(), <mcmlgo.c 323>
143 Hop: 121
144 CrossOrNot: 122
145 Drop: void*(), <mcmlgo.c 365>
146 sqrt: 76
147 Spin: void*(), <mcmlgo.c 204>
148 SpinTheta: double(), <mcmlgo.c 176>
149 RandomNum: 126
150 sqrt: 76
151 RandomNum: 126
152 cos: <>
153 fabs: <>
154 Roulette: void*(), <mcmlgo.c 395>
155 RandomNum: 126
156 ReportResult: void*(), <mcmlmain.c 133>
157 strcpy: 5
158 PunchTime: 101
159 SumScaleResult: void*(), <mcmlio.c 802>
160 Sum2DRd: void*(), <mcmlio.c 607>
161 Sum2DA: void*(), <mcmlio.c 652>

Appendix A Cflow Output of the Program mcml 115

162 IzToLayer: short(), <mcmlio.c 637>
163 Sum2DTt: void*(), <mcmlio.c 677>
164 ScaleRdTt: void*(), <mcmlio.c 720>
165 sin: <>
166 ScaleA: void*(), <mcmlio.c 766>
167 WriteResult: void*(), <mcmlio.c 1091>
168 fopen: 15
169 nrerror: 23
170 toupper: 40
171 WriteVersion: void*(), <mcmlio.c 819>
172 fprintf: 24
173 fprintf: 24
174 WriteInParm: void*(), <mcmlio.c 833>
175 fprintf: 24
176 WriteRAT: void*(), <mcmlio.c 872>
177 fprintf: 24
178 WriteA_layer: void*(), <mcmlio.c 895>
179 fprintf: 24
180 WriteA_z: void*(), <mcmlio.c 1035>
181 fprintf: 24
182 WriteRd_r: void*(), <mcmlio.c 941>
183 fprintf: 24
184 WriteRd_a: void*(), <mcmlio.c 960>
185 fprintf: 24
186 WriteTt_r: void*(), <mcmlio.c 1054>
187 fprintf: 24
188 WriteTt_a: void*(), <mcmlio.c 1073>
189 fprintf: 24
190 WriteA_rz: void*(), <mcmlio.c 1008>
191 fprintf: 24
192 WriteRd_ra: void*(), <mcmlio.c 914>
193 fprintf: 24
194 WriteTt_ra: void*(), <mcmlio.c 980>
195 fprintf: 24
196 fclose: <>
197 FreeData: void*(), <mcmlio.c 581>
198 free: 84
199 FreeMatrix: void*(), <mcmlnr.c 86>
200 free: 84
201 FreeVector: void*(), <mcmlnr.c 77>
202 free: 84
203 fclose: 196

Section B.1 mcml.h 116

 Appendix B. Source Code of the Program mcml

The whole program is divided into several files. The file "mcml.h" is the header

file, which defines data structures and some constants. The file "mcmlmain.c" contains the

function main(). It also deals with the timings and status report. The file "mcmlio.c"

reads or writes data from or to data files. The file "mcmlgo.c" does most of the Monte

Carlo simulations. The file "mcmlnr.c" (nr stands for numerical recipes) contains several

functions for dynamical data allocations and error report.

 B.1 mcml.h

 1 /***
 2 * Copyright Univ. of Texas M.D. Anderson Cancer Center
 3 * 1992.
 4 *
 5 * Monte Carlo simulation of photon distribution in
 6 * multi-layered turbid media in ANSI Standard C.
 7 ****
 8 * Starting Date: 10/1991.
 9 * Current Date: 6/1992.
 10 *
 11 * Lihong Wang, Ph. D.
 12 * Steven L. Jacques, Ph. D.
 13 * Laser Biology Research Laboratory - 17
 14 * M.D. Anderson Cancer Center
 15 * University of Texas
 16 * 1515 Holcombe Blvd.
 17 * Houston, TX 77030
 18 * USA
 19 *
 20 * This program was based on:
 21 * (1) The Pascal code written by Marleen Keijzer and
 22 * Steven L. Jacques in this laboratory in 1989, which
 23 * deals with multi-layered turbid media.
 24 *
 25 * (2) Algorithm for semi-infinite turbid medium by
 26 * S.A. Prahl, M. Keijzer, S.L. Jacques, A.J. Welch,
 27 * SPIE Institute Series Vol. IS 5 (1989), and by
 28 * A.N. Witt, The Astrophysical journal Supplement
 29 * Series 35, 1-6 (1977).
 30 *
 31 * Major modifications include:
 32 * . Conform to ANSI Standard C.
 33 * . Removal of limit on number of array elements,
 34 * because arrays in this program are dynamically
 35 * allocated. This means that the program can accept
 36 * any number of layers or gridlines as long as the
 37 * memory permits.
 38 * . Avoiding global variables whenever possible. This
 39 * program has not used global variables so far.
 40 * . Grouping variables logically using structures.

Section B.1 mcml.h 117

 41 * . Top-down design, keep each subroutine clear &
 42 * short.
 43 * . Reflectance and transmittance are angularly
 44 * resolved.
 45 ****
 46 * General Naming Conventions:
 47 * Preprocessor names: all capital letters,
 48 * e.g. #define PREPROCESSORS
 49 * Globals: first letter of each word is capital, no
 50 * underscores,
 51 * e.g. short GlobalVar;
 52 * Dummy variables: first letter of each word is capital,
 53 * and words are connected by underscores,
 54 * e.g. void NiceFunction(char Dummy_Var);
 55 * Local variables: all lower cases, words are connected
 56 * by underscores,
 57 * e.g. short local_var;
 58 * Function names or data types: same as Globals.
 59 *
 60 ****
 61 * Dimension of length: cm.
 62 *
 63 ****/
 64
 65 #include <math.h>
 66 #include <stdlib.h>
 67 #include <stdio.h>
 68 #include <stddef.h>
 69 #include <time.h>
 70 #include <string.h>
 71 #include <ctype.h>
 72
 73 #define PI 3.1415926
 74 #define WEIGHT 1E-4 /* Critical weight for roulette. */
 75 #define CHANCE 0.1 /* Chance of roulette survival. */
 76 #define STRLEN 256 /* String length. */
 77
 78 #define Boolean char
 79
 80 #define SIGN(x) ((x)>=0 ? 1:-1)
 81
 82 /****************** Stuctures *****************************/
 83
 84 /****
 85 * Structure used to describe a photon packet.
 86 ****/
 87 typedef struct {
 88 double x, y ,z; /* Cartesian coordinates.[cm] */
 89 double ux, uy, uz;/* directional cosines of a photon. */
 90 double w; /* weight. */
 91 Boolean dead; /* 1 if photon is terminated. */
 92 short layer; /* index to layer where the photon */
 93 /* packet resides. */
 94 double s; /* current step size. [cm]. */
 95 double sleft; /* step size left. dimensionless [-]. */
 96 } PhotonStruct;
 97
 98 /****

Section B.1 mcml.h 118

 99 * Structure used to describe the geometry and optical
 100 * properties of a layer.
 101 * z0 and z1 are the z coordinates for the upper boundary
 102 * and lower boundary respectively.
 103 *
 104 * cos_crit0 and cos_crit1 are the cosines of the
 105 * critical angle of total internal reflection for the
 106 * upper boundary and lower boundary respectively.
 107 * They are set to zero if no total internal reflection
 108 * exists.
 109 * They are used for computation speed.
 110 ****/
 111 typedef struct {
 112 double z0, z1; /* z coordinates of a layer. [cm] */
 113 double n; /* refractive index of a layer. */
 114 double mua; /* absorption coefficient. [1/cm] */
 115 double mus; /* scattering coefficient. [1/cm] */
 116 double g; /* anisotropy. */
 117
 118 double cos_crit0, cos_crit1;
 119 } LayerStruct;
 120
 121 /****
 122 * Input parameters for each independent run.
 123 *
 124 * z and r are for the cylindrical coordinate system. [cm]
 125 * a is for the angle alpha between the photon exiting
 126 * direction and the surface normal. [radian]
 127 *
 128 * The grid line separations in z, r, and alpha
 129 * directions are dz, dr, and da respectively. The numbers
 130 * of grid lines in z, r, and alpha directions are
 131 * nz, nr, and na respectively.
 132 *
 133 * The member layerspecs will point to an array of
 134 * structures which store parameters of each layer.
 135 * This array has (number_layers + 2) elements. One
 136 * element is for a layer.
 137 * The layers 0 and (num_layers + 1) are for top ambient
 138 * medium and the bottom ambient medium respectively.
 139 ****/
 140 typedef struct {
 141 char out_fname[STRLEN]; /* output file name. */
 142 char out_fformat; /* output file format. */
 143 /* 'A' for ASCII, */
 144 /* 'B' for binary. */
 145 long num_photons; /* to be traced. */
 146 double Wth; /* play roulette if photon */
 147 /* weight < Wth.*/
 148
 149 double dz; /* z grid separation.[cm] */
 150 double dr; /* r grid separation.[cm] */
 151 double da; /* alpha grid separation. */
 152 /* [radian] */
 153 short nz; /* array range 0..nz-1. */
 154 short nr; /* array range 0..nr-1. */
 155 short na; /* array range 0..na-1. */
 156

Section B.1 mcml.h 119

 157 short num_layers; /* number of layers. */
 158 LayerStruct * layerspecs; /* layer parameters. */
 159 } InputStruct;
 160
 161 /****
 162 * Structures for scoring physical quantities.
 163 * z and r represent z and r coordinates of the
 164 * cylindrical coordinate system. [cm]
 165 * a is the angle alpha between the photon exiting
 166 * direction and the normal to the surfaces. [radian]
 167 * See comments of the InputStruct.
 168 * See manual for the physcial quantities.
 169 ****/
 170 typedef struct {
 171 double Rsp; /* specular reflectance. [-] */
 172 double ** Rd_ra; /* 2D distribution of diffuse */
 173 /* reflectance. [1/(cm2 sr)] */
 174 double * Rd_r; /* 1D radial distribution of diffuse */
 175 /* reflectance. [1/cm2] */
 176 double * Rd_a; /* 1D angular distribution of diffuse */
 177 /* reflectance. [1/sr] */
 178 double Rd; /* total diffuse reflectance. [-] */
 179
 180 double ** A_rz; /* 2D probability density in turbid */
 181 /* media over r & z. [1/cm3] */
 182 double * A_z; /* 1D probability density over z. */
 183 /* [1/cm] */
 184 double * A_l; /* each layer's absorption */
 185 /* probability. [-] */
 186 double A; /* total absorption probability. [-] */
 187
 188 double ** Tt_ra; /* 2D distribution of total */
 189 /* transmittance. [1/(cm2 sr)] */
 190 double * Tt_r; /* 1D radial distribution of */
 191 /* transmittance. [1/cm2] */
 192 double * Tt_a; /* 1D angular distribution of */
 193 /* transmittance. [1/sr] */
 194 double Tt; /* total transmittance. [-] */
 195 } OutStruct;
 196
 197 /***
 198 * Routine prototypes for dynamic memory allocation and
 199 * release of arrays and matrices.
 200 * Modified from Numerical Recipes in C.
 201 ****/
 202 double *AllocVector(short, short);
 203 double **AllocMatrix(short, short,short, short);
 204 void FreeVector(double *, short, short);
 205 void FreeMatrix(double **, short, short, short, short);
 206 void nrerror(char *);

Section B.2 mcmlmain.c 120

 B.2 mcmlmain.c

 1 /***
 2 * Copyright Univ. of Texas M.D. Anderson Cancer Center
 3 * 1992.
 4 *
 5 * main program for Monte Carlo simulation of photon
 6 * distribution in multi-layered turbid media.
 7 *
 8 ****/
 9
 10 /****
 11 * THINKCPROFILER is defined to generate profiler calls in
 12 * Think C. If 1, remember to turn on "Generate profiler
 13 * calls" in the options menu.
 14 ****/
 15 #define THINKCPROFILER 0
 16
 17 /* GNU cc does not support difftime() and CLOCKS_PER_SEC.*/
 18 #define GNUCC 0
 19
 20 #if THINKCPROFILER
 21 #include <profile.h>
 22 #include <console.h>
 23 #endif
 24
 25 #include "mcml.h"
 26
 27 /* Declare before they are used in main(). */
 28 FILE *GetFile(char *);
 29 short ReadNumRuns(FILE*);
 30 void ReadParm(FILE* , InputStruct *);
 31 void CheckParm(FILE* , InputStruct *);
 32 void InitOutputData(InputStruct, OutStruct *);
 33 void FreeData(InputStruct, OutStruct *);
 34 double Rspecular(LayerStruct *);
 35 void LaunchPhoton(double, LayerStruct *, PhotonStruct *);
 36 void HopDropSpin(InputStruct *,PhotonStruct *,OutStruct *);
 37 void SumScaleResult(InputStruct, OutStruct *);
 38 void WriteResult(InputStruct, OutStruct, char *);
 39
 40
 41 /***
 42 * If F = 0, reset the clock and return 0.
 43 *
 44 * If F = 1, pass the user time to Msg and print Msg on
 45 * screen, return the real time since F=0.
 46 *
 47 * If F = 2, same as F=1 except no printing.
 48 *
 49 * Note that clock() and time() return user time and real
 50 * time respectively.
 51 * User time is whatever the system allocates to the
 52 * running of the program;
 53 * real time is wall-clock time. In a time-shared system,
 54 * they need not be the same.

Section B.2 mcmlmain.c 121

 55 *
 56 * clock() only hold 16 bit integer, which is about 32768
 57 * clock ticks.
 58 ****/
 59 time_t PunchTime(char F, char *Msg)
 60 {
 61 #if GNUCC
 62 return(0);
 63 #else
 64 static clock_t ut0; /* user time reference. */
 65 static time_t rt0; /* real time reference. */
 66 double secs;
 67 char s[STRLEN];
 68
 69 if(F==0) {
 70 ut0 = clock();
 71 rt0 = time(NULL);
 72 return(0);
 73 }
 74 else if(F==1) {
 75 secs = (clock() - ut0)/(double)CLOCKS_PER_SEC;
 76 if (secs<0) secs=0; /* clock() can overflow. */
 77 sprintf(s, "User time: %8.0lf sec = %8.2lf hr. %s\n",
 78 secs, secs/3600.0, Msg);
 79 puts(s);
 80 strcpy(Msg, s);
 81 return(difftime(time(NULL), rt0));
 82 }
 83 else if(F==2) return(difftime(time(NULL), rt0));
 84 else return(0);
 85 #endif
 86 }
 87
 88 /***
 89 * Print the current time and the estimated finishing time.
 90 *
 91 * P1 is the number of computed photon packets.
 92 * Pt is the total number of photon packets.
 93 ****/
 94 void PredictDoneTime(long P1, long Pt)
 95 {
 96 time_t now, done_time;
 97 struct tm *date;
 98 char s[80];
 99
 100 now = time(NULL);
 101 date = localtime(&now);
 102 strftime(s, 80, "%H:%M %x", date);
 103 printf("Now %s, ", s);
 104
 105 done_time = now +
 106 (time_t) (PunchTime(2,"")*(Pt-P1)/(double)P1);
 107 date = localtime(&done_time);
 108 strftime(s, 80, "%H:%M %x", date);
 109 printf("End %s\n", s);
 110 }
 111
 112 /***

Section B.2 mcmlmain.c 122

 113 * Report estimated time, number of photons and runs left
 114 * after calculating 10 photons or every 1/10 of total
 115 * number of photons.
 116 *
 117 * Num_Runs is the number of runs left.
 118 * Pi is the index to the current photon, counting down.
 119 * Pt is the total number of photons.
 120 ****/
 121 void ReportStatus(short Num_Runs,long Pi,long Pt)
 122 {
 123 if(Pt-Pi == 10 || Pi*10%Pt == 0 && Pi != Pt) {
 124 printf("%ld photons & %hd runs left, ", Pi, Num_Runs);
 125 PredictDoneTime(Pt-Pi, Pt);
 126 }
 127 }
 128
 129 /***
 130 * Report time and write results.
 131 ****/
 132 void ReportResult(InputStruct In_Parm, OutStruct Out_Parm)
 133 {
 134 char time_report[STRLEN];
 135
 136 strcpy(time_report, " Simulation time of this run.");
 137 PunchTime(1, time_report);
 138
 139 SumScaleResult(In_Parm, &Out_Parm);
 140 WriteResult(In_Parm, Out_Parm, time_report);
 141 }
 142
 143 /***
 144 * Get the file name of the input data file from the
 145 * argument to the command line.
 146 ****/
 147 void GetFnameFromArgv(int argc,
 148 char * argv[],
 149 char * input_filename)
 150 {
 151 if(argc>=2) { /* filename in command line */
 152 strcpy(input_filename, argv[1]);
 153 }
 154 else
 155 input_filename[0] = '\0';
 156 }
 157
 158
 159 /***
 160 * Execute Monte Carlo simulation for one independent run.
 161 ****/
 162 void DoOneRun(short NumRuns, InputStruct *In_Ptr)
 163 {
 164 register long i_photon;
 165 /* index to photon. register for speed.*/
 166 OutStruct out_parm; /* distribution of photons.*/
 167 PhotonStruct photon;
 168
 169 #if THINKCPROFILER
 170 InitProfile(200,200); cecho2file("prof.rpt",0, stdout);

Section B.2 mcmlmain.c 123

 171 #endif
 172
 173 InitOutputData(*In_Ptr, &out_parm);
 174 out_parm.Rsp = Rspecular(In_Ptr->layerspecs);
 175 i_photon = In_Ptr->num_photons;
 176 PunchTime(0, "");
 177
 178 do {
 179 ReportStatus(NumRuns, i_photon, In_Ptr->num_photons);
 180 LaunchPhoton(out_parm.Rsp, In_Ptr->layerspecs, &photon);
 181 do HopDropSpin(In_Ptr, &photon, &out_parm);
 182 while (!photon.dead);
 183 } while(--i_photon);
 184
 185 #if THINKCPROFILER
 186 exit(0);
 187 #endif
 188
 189 ReportResult(*In_Ptr, out_parm);
 190 FreeData(*In_Ptr, &out_parm);
 191 }
 192
 193 /***
 194 * The argument to the command line is filename, if any.
 195 * Macintosh does not support command line.
 196 ****/
 197 char main(int argc, char *argv[])
 198 {
 199 char input_filename[STRLEN];
 200 FILE *input_file_ptr;
 201 short num_runs; /* number of independent runs. */
 202 InputStruct in_parm;
 203
 204 ShowVersion("Version 1.1, 1992");
 205 GetFnameFromArgv(argc, argv, input_filename);
 206 input_file_ptr = GetFile(input_filename);
 207 CheckParm(input_file_ptr, &in_parm);
 208 num_runs = ReadNumRuns(input_file_ptr);
 209
 210 while(num_runs--) {
 211 ReadParm(input_file_ptr, &in_parm);
 212 DoOneRun(num_runs, &in_parm);
 213 }
 214
 215 fclose(input_file_ptr);
 216 return(0);
 217 }

Section B.3 mcmlio.c 124

 B.3 mcmlio.c

 1 /***
 2 * Copyright Univ. of Texas M.D. Anderson Cancer Center
 3 * 1992.
 4 *
 5 * Input/output of data.
 6 ****/
 7
 8 #include "mcml.h"
 9
 10 /***
 11 * Structure used to check against duplicated file names.
 12 ****/
 13 struct NameList {
 14 char name[STRLEN];
 15 struct NameList * next;
 16 };
 17
 18 typedef struct NameList NameNode;
 19 typedef NameNode * NameLink;
 20
 21
 22 /***
 23 * Center a string according to the column width.
 24 ****/
 25 char * CenterStr(short Wid,
 26 char * InStr,
 27 char * OutStr)
 28 {
 29 size_t nspaces; /* number of spaces to be filled */
 30 /* before InStr. */
 31
 32 nspaces = (Wid - strlen(InStr))/2;
 33 if(nspaces<0) nspaces = 0;
 34
 35 strcpy(OutStr, "");
 36 while(nspaces--) strcat(OutStr, " ");
 37
 38 strcat(OutStr, InStr);
 39
 40 return(OutStr);
 41 }
 42
 43 /***
 44 * Print some messages before starting simulation.
 45 * e.g. author, address, program version, year.
 46 ****/
 47 #define COLWIDTH 80
 48 void ShowVersion(char *version)
 49 {
 50 char str[STRLEN];
 51
 52 CenterStr(COLWIDTH,
 53 "mcml - Monte Carlo Simulation of Multi-layered Turbid Media",
 54 str);

Section B.3 mcmlio.c 125

 55 puts(str);
 56 puts("");
 57
 58 CenterStr(COLWIDTH, "Lihong Wang, Ph. D.", str);
 59 puts(str);
 60
 61 CenterStr(COLWIDTH, "Steven L. Jacques, Ph. D.", str);
 62 puts(str);
 63
 64 CenterStr(COLWIDTH,
 65 "Laser Biology Research Laboratory - Box 17",str);
 66 puts(str);
 67
 68 CenterStr(COLWIDTH, "M.D. Anderson Cancer Center", str);
 69 puts(str);
 70
 71 CenterStr(COLWIDTH, "University of Texas", str);
 72 puts(str);
 73
 74 CenterStr(COLWIDTH, "Houston, TX 77030", str);
 75 puts(str);
 76
 77 CenterStr(COLWIDTH, "Fax: (713)792-3995", str);
 78 puts(str);
 79 puts("");
 80
 81 CenterStr(COLWIDTH, version, str);
 82 puts(str);
 83 puts("\n\n\n\n");
 84 }
 85 #undef COLWIDTH
 86
 87 /***
 88 * Get a filename and open it for reading, retry until
 89 * the file can be opened. '.' terminates the program.
 90 *
 91 * If Fname != NULL, try Fname first.
 92 ****/
 93 FILE *GetFile(char *Fname)
 94 {
 95 FILE * file=NULL;
 96 Boolean firsttime=1;
 97
 98 do {
 99 if(firsttime && Fname[0]!='\0') {
 100 /* use the filename from command line */
 101 firsttime = 0;
 102 }
 103 else {
 104 printf("Input filename(or . to exit):");
 105 scanf("%s", Fname);
 106 firsttime = 0;
 107 }
 108
 109 if(strlen(Fname) == 1 && Fname[0] == '.')
 110 exit(1); /* exit if no filename entered. */
 111
 112 file = fopen(Fname, "r");

Section B.3 mcmlio.c 126

 113 } while(file == NULL);
 114
 115 return(file);
 116 }
 117
 118 /***
 119 * Kill the ith char (counting from 0), push the following
 120 * chars forward by one.
 121 ****/
 122 void KillChar(size_t i, char * Str)
 123 {
 124 size_t sl = strlen(Str);
 125
 126 for(;i<sl;i++) Str[i] = Str[i+1];
 127 }
 128
 129 /***
 130 * Eliminate the chars in a string which are not printing
 131 * chars or spaces.
 132 *
 133 * Spaces include ' ', '\f', '\t' etc.
 134 *
 135 * Return 1 if no nonprinting chars found, otherwise
 136 * return 0.
 137 ****/
 138 Boolean CheckChar(char * Str)
 139 {
 140 Boolean found = 0; /* found bad char. */
 141 size_t sl = strlen(Str);
 142 size_t i=0;
 143
 144 while(i<sl)
 145 if (Str[i]<0 || Str[i]>255)
 146 nrerror("Non-ASCII file\n");
 147 else if(isprint(Str[i]) || isspace(Str[i]))
 148 i++;
 149 else {
 150 found = 1;
 151 KillChar(i, Str);
 152 sl--;
 153 }
 154
 155 return(found);
 156 }
 157
 158 /***
 159 * Return 1 if this line is a comment line in which the
 160 * first non-space character is "#".
 161 *
 162 * Also return 1 if this line is space line.
 163 ****/
 164 Boolean CommentLine(char *Buf)
 165 {
 166 size_t spn, cspn;
 167
 168 spn = strspn(Buf, " \t");
 169 /* length spanned by space or tab chars. */
 170

Section B.3 mcmlio.c 127

 171 cspn = strcspn(Buf, "#\n");
 172 /* length before the 1st # or return. */
 173
 174 if(spn == cspn) /* comment line or space line. */
 175 return(1);
 176 else /* the line has data. */
 177 return(0);
 178 }
 179
 180 /***
 181 * Skip space or comment lines and return a data line only.
 182 ****/
 183 char * FindDataLine(FILE *File_Ptr)
 184 {
 185 char buf[STRLEN];
 186
 187 buf[0] = '\0';
 188 do { /* skip space or comment lines. */
 189 if(fgets(buf, 255, File_Ptr) == NULL) {
 190 printf("Incomplete data\n");
 191 buf[0]='\0';
 192 break;
 193 }
 194 else
 195 CheckChar(buf);
 196 } while(CommentLine(buf));
 197
 198 return(buf);
 199 }
 200
 201 /***
 202 * Skip file version, then read number of runs.
 203 ****/
 204 short ReadNumRuns(FILE* File_Ptr)
 205 {
 206 char buf[STRLEN];
 207 short n=0;
 208
 209 FindDataLine(File_Ptr); /* skip file version. */
 210
 211 strcpy(buf, FindDataLine(File_Ptr));
 212 if(buf[0]=='\0') nrerror("Reading number of runs\n");
 213 sscanf(buf, "%hd",&n);
 214 return(n);
 215 }
 216
 217
 218 /***
 219 * Read the file name and the file format.
 220 *
 221 * The file format can be either A for ASCII or B for
 222 * binary.
 223 ****/
 224 void ReadFnameFormat(FILE *File_Ptr, InputStruct *In_Ptr)
 225 {
 226 char buf[STRLEN];
 227
 228 /** read in file name and format. **/

Section B.3 mcmlio.c 128

 229 strcpy(buf, FindDataLine(File_Ptr));
 230 if(buf[0]=='\0')
 231 nrerror("Reading file name and format.\n");
 232 sscanf(buf, "%s %c",
 233 In_Ptr->out_fname, &(In_Ptr->out_fformat));
 234 if(toupper(In_Ptr->out_fformat) != 'B')
 235 In_Ptr->out_fformat = 'A';
 236 }
 237
 238
 239 /***
 240 * Read the number of photons.
 241 ****/
 242 void ReadNumPhotons(FILE *File_Ptr, InputStruct *In_Ptr)
 243 {
 244 char buf[STRLEN];
 245
 246 /** read in number of photons. **/
 247 strcpy(buf, FindDataLine(File_Ptr));
 248 if(buf[0]=='\0')
 249 nrerror("Reading number of photons.\n");
 250 sscanf(buf, "%ld", &In_Ptr->num_photons);
 251 if(In_Ptr->num_photons<=0)
 252 nrerror("Nonpositive number of photons.\n");
 253 }
 254
 255
 256 /***
 257 * Read the members dz and dr.
 258 ****/
 259 void ReadDzDr(FILE *File_Ptr, InputStruct *In_Ptr)
 260 {
 261 char buf[STRLEN];
 262
 263 /** read in dz, dr. **/
 264 strcpy(buf, FindDataLine(File_Ptr));
 265 if(buf[0]=='\0') nrerror("Reading dz, dr.\n");
 266 sscanf(buf, "%lf%lf", &In_Ptr->dz, &In_Ptr->dr);
 267 if(In_Ptr->dz<=0) nrerror("Nonpositive dz.\n");
 268 if(In_Ptr->dr<=0) nrerror("Nonpositive dr.\n");
 269 }
 270
 271
 272 /***
 273 * Read the members nz, nr, na.
 274 ****/
 275 void ReadNzNrNa(FILE *File_Ptr, InputStruct *In_Ptr)
 276 {
 277 char buf[STRLEN];
 278
 279 /** read in number of dz, dr, da. **/
 280 strcpy(buf, FindDataLine(File_Ptr));
 281 if(buf[0]=='\0')
 282 nrerror("Reading number of dz, dr, da's.\n");
 283 sscanf(buf, "%hd%hd%hd",
 284 &In_Ptr->nz, &In_Ptr->nr, &In_Ptr->na);
 285 if(In_Ptr->nz<=0)
 286 nrerror("Nonpositive number of dz's.\n");

Section B.3 mcmlio.c 129

 287 if(In_Ptr->nr<=0)
 288 nrerror("Nonpositive number of dr's.\n");
 289 if(In_Ptr->na<=0)
 290 nrerror("Nonpositive number of da's.\n");
 291 In_Ptr->da = 0.5*PI/In_Ptr->na;
 292 }
 293
 294
 295 /***
 296 * Read the number of layers.
 297 ****/
 298 void ReadNumLayers(FILE *File_Ptr, InputStruct *In_Ptr)
 299 {
 300 char buf[STRLEN];
 301
 302 /** read in number of layers. **/
 303 strcpy(buf, FindDataLine(File_Ptr));
 304 if(buf[0]=='\0')
 305 nrerror("Reading number of layers.\n");
 306 sscanf(buf, "%hd", &In_Ptr->num_layers);
 307 if(In_Ptr->num_layers<=0)
 308 nrerror("Nonpositive number of layers.\n");
 309 }
 310
 311
 312 /***
 313 * Read the refractive index n of the ambient.
 314 ****/
 315 void ReadAmbient(FILE *File_Ptr,
 316 LayerStruct * Layer_Ptr,
 317 char *side)
 318 {
 319 char buf[STRLEN], msg[STRLEN];
 320 double n;
 321
 322 strcpy(buf, FindDataLine(File_Ptr));
 323 if(buf[0]=='\0') {
 324 sprintf(msg, "Rading n of %s ambient.\n", side);
 325 nrerror(msg);
 326 }
 327
 328 sscanf(buf, "%lf", &n);
 329 if(n<=0) nrerror("Wrong n.\n");
 330 Layer_Ptr->n = n;
 331 }
 332
 333
 334 /***
 335 * Read the parameters of one layer.
 336 *
 337 * Return 1 if error detected.
 338 * Return 0 otherwise.
 339 *
 340 * *Z_Ptr is the z coordinate of the current layer, which
 341 * is used to convert thickness of layer to z coordinates
 342 * of the two boundaries of the layer.
 343 ****/
 344 Boolean ReadOneLayer(FILE *File_Ptr,

Section B.3 mcmlio.c 130

 345 LayerStruct * Layer_Ptr,
 346 double *Z_Ptr)
 347 {
 348 char buf[STRLEN], msg[STRLEN];
 349 double d, n, mua, mus, g; /* d is thickness. */
 350
 351 strcpy(buf, FindDataLine(File_Ptr));
 352 if(buf[0]=='\0') return(1); /* error. */
 353
 354 sscanf(buf, "%lf%lf%lf%lf%lf", &n, &mua, &mus, &g, &d);
 355 if(d<0 || n<=0 || mua<0 || mus<0 || g<0 || g>1)
 356 return(1); /* error. */
 357
 358 Layer_Ptr->n = n;
 359 Layer_Ptr->mua = mua;
 360 Layer_Ptr->mus = mus;
 361 Layer_Ptr->g = g;
 362 Layer_Ptr->z0 = *Z_Ptr;
 363 *Z_Ptr += d;
 364 Layer_Ptr->z1 = *Z_Ptr;
 365
 366 return(0);
 367 }
 368
 369 /***
 370 * Read the parameters of one layer at a time.
 371 ****/
 372 void ReadLayerSpecs(FILE *File_Ptr,
 373 short Num_Layers,
 374 LayerStruct ** Layerspecs_PP)
 375 {
 376 char msg[STRLEN];
 377 short i=0;
 378 double z = 0.0; /* z coordinate of the current layer. */
 379
 380 /* Allocate an array for the layer parameters. */
 381 /* layer 0 and layer Num_Layers + 1 are for ambient. */
 382 *Layerspecs_PP = (LayerStruct *)
 383 malloc((unsigned) (Num_Layers+2)*sizeof(LayerStruct));
 384 if (!(*Layerspecs_PP))
 385 nrerror("allocation failure in ReadLayerSpecs()");
 386
 387 ReadAmbient(File_Ptr, &((*Layerspecs_PP)[i]), "top");
 388 for(i=1; i<=Num_Layers; i++)
 389 if(ReadOneLayer(File_Ptr, &((*Layerspecs_PP)[i]), &z)) {
 390 sprintf(msg, "Error reading %hd of %hd layers\n",
 391 i, Num_Layers);
 392 nrerror(msg);
 393 }
 394 ReadAmbient(File_Ptr, &((*Layerspecs_PP)[i]), "bottom");
 395 }
 396
 397 /***
 398 * Compute the critical angles for total internal
 399 * reflection according to the relative refractive index
 400 * of the layer.
 401 * All layers are processed.
 402 ****/

Section B.3 mcmlio.c 131

 403 void CriticalAngle(short Num_Layers,
 404 LayerStruct ** Layerspecs_PP)
 405 {
 406 short i=0;
 407 double n1, n2;
 408
 409 for(i=1; i<=Num_Layers; i++) {
 410 n1 = (*Layerspecs_PP)[i].n;
 411 n2 = (*Layerspecs_PP)[i-1].n;
 412 (*Layerspecs_PP)[i].cos_crit0 = n1>n2 ?
 413 sqrt(1.0 - n2*n2/(n1*n1)) : 0.0;
 414
 415 n2 = (*Layerspecs_PP)[i+1].n;
 416 (*Layerspecs_PP)[i].cos_crit1 = n1>n2 ?
 417 sqrt(1.0 - n2*n2/(n1*n1)) : 0.0;
 418 }
 419 }
 420
 421 /***
 422 * Read in the input parameters for one run.
 423 ****/
 424 void ReadParm(FILE* File_Ptr, InputStruct * In_Ptr)
 425 {
 426 char buf[STRLEN];
 427
 428 In_Ptr->Wth = WEIGHT;
 429
 430 ReadFnameFormat(File_Ptr, In_Ptr);
 431 ReadNumPhotons(File_Ptr, In_Ptr);
 432 ReadDzDr(File_Ptr, In_Ptr);
 433 ReadNzNrNa(File_Ptr, In_Ptr);
 434 ReadNumLayers(File_Ptr, In_Ptr);
 435
 436 ReadLayerSpecs(File_Ptr, In_Ptr->num_layers,
 437 &In_Ptr->layerspecs);
 438 CriticalAngle(In_Ptr->num_layers, &In_Ptr->layerspecs);
 439 }
 440
 441 /***
 442 * Return 1, if the name in the name list.
 443 * Return 0, otherwise.
 444 ****/
 445 Boolean NameInList(char *Name, NameLink List)
 446 {
 447 while (List != NULL) {
 448 if(strcmp(Name, List->name) == 0)
 449 return(1);
 450 List = List->next;
 451 };
 452 return(0);
 453 }
 454
 455 /***
 456 * Add the name to the name list.
 457 ****/
 458 void AddNameToList(char *Name, NameLink * List_Ptr)
 459 {
 460 NameLink list = *List_Ptr;

Section B.3 mcmlio.c 132

 461
 462 if(list == NULL) { /* first node. */
 463 *List_Ptr = list = (NameLink)malloc(sizeof(NameNode));
 464 strcpy(list->name, Name);
 465 list->next = NULL;
 466 }
 467 else { /* subsequent nodes. */
 468 /* Move to the last node. */
 469 while(list->next != NULL)
 470 list = list->next;
 471
 472 /* Append a node to the list. */
 473 list->next = (NameLink)malloc(sizeof(NameNode));
 474 list = list->next;
 475 strcpy(list->name, Name);
 476 list->next = NULL;
 477 }
 478 }
 479
 480 /***
 481 * Check against duplicated file names.
 482 *
 483 * A linked list is set up to store the file names used
 484 * in this input data file.
 485 ****/
 486 Boolean FnameTaken(char *fname, NameLink * List_Ptr)
 487 {
 488 if(NameInList(fname, *List_Ptr))
 489 return(1);
 490 else {
 491 AddNameToList(fname, List_Ptr);
 492 return(0);
 493 }
 494 }
 495
 496 /***
 497 * Free each node in the file name list.
 498 ****/
 499 void FreeFnameList(NameLink List)
 500 {
 501 NameLink next;
 502
 503 while(List != NULL) {
 504 next = List->next;
 505 free(List);
 506 List = next;
 507 }
 508 }
 509
 510 /***
 511 * Check the input parameters for each run.
 512 ****/
 513 void CheckParm(FILE* File_Ptr, InputStruct * In_Ptr)
 514 {
 515 short i_run;
 516 short num_runs; /* number of independent runs. */
 517 NameLink head = NULL;
 518 Boolean name_taken;/* output files share the same */

Section B.3 mcmlio.c 133

 519 /* file name.*/
 520 char msg[STRLEN];
 521
 522 num_runs = ReadNumRuns(File_Ptr);
 523 for(i_run=1; i_run<=num_runs; i_run++) {
 524 printf("Checking input data for run %hd\n", i_run);
 525 ReadParm(File_Ptr, In_Ptr);
 526
 527 name_taken = FnameTaken(In_Ptr->out_fname, &head);
 528 if(name_taken)
 529 sprintf(msg, "file name %s duplicated.\n",
 530 In_Ptr->out_fname);
 531
 532 free(In_Ptr->layerspecs);
 533 if(name_taken) nrerror(msg);
 534 }
 535 FreeFnameList(head);
 536 rewind(File_Ptr);
 537 }
 538
 539
 540 /***
 541 * Allocate the arrays in OutStruct for one run, and
 542 * array elements are automatically initialized to zeros.
 543 ****/
 544 void InitOutputData(InputStruct In_Parm,
 545 OutStruct * Out_Ptr)
 546 {
 547 short nz = In_Parm.nz;
 548 short nr = In_Parm.nr;
 549 short na = In_Parm.na;
 550 short nl = In_Parm.num_layers;
 551 /* remember to use nl+2 because of 2 for ambient. */
 552
 553 if(nz<=0 || nr<=0 || na<=0 || nl<=0)
 554 nrerror("Wrong grid parameters.\n");
 555
 556 /* Init pure numbers. */
 557 Out_Ptr->Rsp = 0.0;
 558 Out_Ptr->Rd = 0.0;
 559 Out_Ptr->A = 0.0;
 560 Out_Ptr->Tt = 0.0;
 561
 562 /* Allocate the arrays and the matrices. */
 563 Out_Ptr->Rd_ra = AllocMatrix(0,nr-1,0,na-1);
 564 Out_Ptr->Rd_r = AllocVector(0,nr-1);
 565 Out_Ptr->Rd_a = AllocVector(0,na-1);
 566
 567 Out_Ptr->A_rz = AllocMatrix(0,nr-1,0,nz-1);
 568 Out_Ptr->A_z = AllocVector(0,nz-1);
 569 Out_Ptr->A_l = AllocVector(0,nl+1);
 570
 571 Out_Ptr->Tt_ra = AllocMatrix(0,nr-1,0,na-1);
 572 Out_Ptr->Tt_r = AllocVector(0,nr-1);
 573 Out_Ptr->Tt_a = AllocVector(0,na-1);
 574 }
 575
 576 /***

Section B.3 mcmlio.c 134

 577 * Undo what InitOutputData did.
 578 * i.e. free the data allocations.
 579 ****/
 580 void FreeData(InputStruct In_Parm, OutStruct * Out_Ptr)
 581 {
 582 short nz = In_Parm.nz;
 583 short nr = In_Parm.nr;
 584 short na = In_Parm.na;
 585 short nl = In_Parm.num_layers;
 586 /* remember to use nl+2 because of 2 for ambient. */
 587
 588 free(In_Parm.layerspecs);
 589
 590 FreeMatrix(Out_Ptr->Rd_ra, 0,nr-1,0,na-1);
 591 FreeVector(Out_Ptr->Rd_r, 0,nr-1);
 592 FreeVector(Out_Ptr->Rd_a, 0,na-1);
 593
 594 FreeMatrix(Out_Ptr->A_rz, 0, nr-1, 0,nz-1);
 595 FreeVector(Out_Ptr->A_z, 0, nz-1);
 596 FreeVector(Out_Ptr->A_l, 0,nl+1);
 597
 598 FreeMatrix(Out_Ptr->Tt_ra, 0,nr-1,0,na-1);
 599 FreeVector(Out_Ptr->Tt_r, 0,nr-1);
 600 FreeVector(Out_Ptr->Tt_a, 0,na-1);
 601 }
 602
 603 /***
 604 * Get 1D array elements by summing the 2D array elements.
 605 ****/
 606 void Sum2DRd(InputStruct In_Parm, OutStruct * Out_Ptr)
 607 {
 608 short nr = In_Parm.nr;
 609 short na = In_Parm.na;
 610 short ir,ia;
 611 double sum;
 612
 613 for(ir=0; ir<nr; ir++) {
 614 sum = 0.0;
 615 for(ia=0; ia<na; ia++) sum += Out_Ptr->Rd_ra[ir][ia];
 616 Out_Ptr->Rd_r[ir] = sum;
 617 }
 618
 619 for(ia=0; ia<na; ia++) {
 620 sum = 0.0;
 621 for(ir=0; ir<nr; ir++) sum += Out_Ptr->Rd_ra[ir][ia];
 622 Out_Ptr->Rd_a[ia] = sum;
 623 }
 624
 625 sum = 0.0;
 626 for(ir=0; ir<nr; ir++) sum += Out_Ptr->Rd_r[ir];
 627 Out_Ptr->Rd = sum;
 628 }
 629
 630 /***
 631 * Return the index to the layer according to the index
 632 * to the grid line system in z direction (Iz).
 633 *
 634 * Use the center of box.

Section B.3 mcmlio.c 135

 635 ****/
 636 short IzToLayer(short Iz, InputStruct In_Parm)
 637 {
 638 short i=1; /* index to layer. */
 639 short num_layers = In_Parm.num_layers;
 640 double dz = In_Parm.dz;
 641
 642 while((Iz+0.5)*dz >= In_Parm.layerspecs[i].z1
 643 && i<num_layers) i++;
 644
 645 return(i);
 646 }
 647
 648 /***
 649 * Get 1D array elements by summing the 2D array elements.
 650 ****/
 651 void Sum2DA(InputStruct In_Parm, OutStruct * Out_Ptr)
 652 {
 653 short nz = In_Parm.nz;
 654 short nr = In_Parm.nr;
 655 short iz,ir;
 656 double sum;
 657
 658 for(iz=0; iz<nz; iz++) {
 659 sum = 0.0;
 660 for(ir=0; ir<nr; ir++) sum += Out_Ptr->A_rz[ir][iz];
 661 Out_Ptr->A_z[iz] = sum;
 662 }
 663
 664 sum = 0.0;
 665 for(iz=0; iz<nz; iz++) {
 666 sum += Out_Ptr->A_z[iz];
 667 Out_Ptr->A_l[IzToLayer(iz, In_Parm)]
 668 += Out_Ptr->A_z[iz];
 669 }
 670 Out_Ptr->A = sum;
 671 }
 672
 673 /***
 674 * Get 1D array elements by summing the 2D array elements.
 675 ****/
 676 void Sum2DTt(InputStruct In_Parm, OutStruct * Out_Ptr)
 677 {
 678 short nr = In_Parm.nr;
 679 short na = In_Parm.na;
 680 short ir,ia;
 681 double sum;
 682
 683 for(ir=0; ir<nr; ir++) {
 684 sum = 0.0;
 685 for(ia=0; ia<na; ia++) sum += Out_Ptr->Tt_ra[ir][ia];
 686 Out_Ptr->Tt_r[ir] = sum;
 687 }
 688
 689 for(ia=0; ia<na; ia++) {
 690 sum = 0.0;
 691 for(ir=0; ir<nr; ir++) sum += Out_Ptr->Tt_ra[ir][ia];
 692 Out_Ptr->Tt_a[ia] = sum;

Section B.3 mcmlio.c 136

 693 }
 694
 695 sum = 0.0;
 696 for(ir=0; ir<nr; ir++) sum += Out_Ptr->Tt_r[ir];
 697 Out_Ptr->Tt = sum;
 698 }
 699
 700 /***
 701 * Scale Rd and Tt properly.
 702 *
 703 * "a" stands for angle alpha.
 704 ****
 705 * Scale Rd(r,a) and Tt(r,a) by
 706 * (area perpendicular to photon direction)
 707 * x(solid angle)x(No. of photons).
 708 * or
 709 * [2*PI*r*dr*cos(a)]x[2*PI*sin(a)*da]x[No. of photons]
 710 * or
 711 * [2*PI*PI*dr*da*r*sin(2a)]x[No. of photons]
 712 ****
 713 * Scale Rd(r) and Tt(r) by
 714 * (area on the surface)x(No. of photons).
 715 ****
 716 * Scale Rd(a) and Tt(a) by
 717 * (solid angle)x(No. of photons).
 718 ****/
 719 void ScaleRdTt(InputStruct In_Parm, OutStruct * Out_Ptr)
 720 {
 721 short nr = In_Parm.nr;
 722 short na = In_Parm.na;
 723 double dr = In_Parm.dr;
 724 double da = In_Parm.da;
 725 short ir,ia;
 726 double scale1, scale2;
 727
 728 scale1 = 4.0*PI*PI*dr*sin(da/2)*dr*In_Parm.num_photons;
 729 /* The factor (ir+0.5)*sin(2a) to be added. */
 730
 731 for(ir=0; ir<nr; ir++)
 732 for(ia=0; ia<na; ia++) {
 733 scale2 = 1.0/((ir+0.5)*sin(2.0*(ia+0.5)*da)*scale1);
 734 Out_Ptr->Rd_ra[ir][ia] *= scale2;
 735 Out_Ptr->Tt_ra[ir][ia] *= scale2;
 736 }
 737
 738 scale1 = 2.0*PI*dr*dr*In_Parm.num_photons;
 739 /* area is 2*PI*[(ir+0.5)*dr]*dr.*/
 740 /* ir+0.5 to be added. */
 741
 742 for(ir=0; ir<nr; ir++) {
 743 scale2 = 1.0/((ir+0.5)*scale1);
 744 Out_Ptr->Rd_r[ir] *= scale2;
 745 Out_Ptr->Tt_r[ir] *= scale2;
 746 }
 747
 748 scale1 = 2.0*PI*da*In_Parm.num_photons;
 749 /* solid angle is 2*PI*sin(a)*da. sin(a) to be added. */
 750

Section B.3 mcmlio.c 137

 751 for(ia=0; ia<na; ia++) {
 752 scale2 = 1.0/(sin((ia+0.5)*da)*scale1);
 753 Out_Ptr->Rd_a[ia] *= scale2;
 754 Out_Ptr->Tt_a[ia] *= scale2;
 755 }
 756
 757 scale2 = 1.0/(double)In_Parm.num_photons;
 758 Out_Ptr->Rd *= scale2;
 759 Out_Ptr->Tt *= scale2;
 760 }
 761
 762 /***
 763 * Scale absorption arrays properly.
 764 ****/
 765 void ScaleA(InputStruct In_Parm, OutStruct * Out_Ptr)
 766 {
 767 short nz = In_Parm.nz;
 768 short nr = In_Parm.nr;
 769 double dz = In_Parm.dz;
 770 double dr = In_Parm.dr;
 771 short nl = In_Parm.num_layers;
 772 short iz,ir;
 773 short il;
 774 double scale1;
 775
 776 /* Scale A_rz. */
 777 scale1 = 2.0*PI*dr*dr*dz*In_Parm.num_photons;
 778 /* volume is 2*pi*(ir+0.5)*dr*dr*dz.*/
 779 /* ir+0.5 to be added. */
 780 for(iz=0; iz<nz; iz++)
 781 for(ir=0; ir<nr; ir++)
 782 Out_Ptr->A_rz[ir][iz] /= (ir+0.5)*scale1;
 783
 784 /* Scale A_z. */
 785 scale1 = 1.0/(dz*In_Parm.num_photons);
 786 for(iz=0; iz<nz; iz++)
 787 Out_Ptr->A_z[iz] *= scale1;
 788
 789 /* Scale A_l. Avoid int/int. */
 790 scale1 = 1.0/(double)In_Parm.num_photons;
 791 for(il=0; il<=nl+1; il++)
 792 Out_Ptr->A_l[il] *= scale1;
 793
 794 Out_Ptr->A *=scale1;
 795 }
 796
 797 /***
 798 * Sum and scale results of current run.
 799 ****/
 800 void SumScaleResult(InputStruct In_Parm,
 801 OutStruct * Out_Ptr)
 802 {
 803 /* Get 1D & 0D results. */
 804 Sum2DRd(In_Parm, Out_Ptr);
 805 Sum2DA(In_Parm, Out_Ptr);
 806 Sum2DTt(In_Parm, Out_Ptr);
 807
 808 ScaleRdTt(In_Parm, Out_Ptr);

Section B.3 mcmlio.c 138

 809 ScaleA(In_Parm, Out_Ptr);
 810 }
 811
 812 /***
 813 * Write the version number as the first string in the
 814 * file.
 815 * Use chars only so that they can be read as either
 816 * ASCII or binary.
 817 ****/
 818 void WriteVersion(FILE *file, char *Version)
 819 {
 820 fprintf(file,
 821 "%s \t# Version number of the file format.\n\n",
 822 Version);
 823 fprintf(file, "####\n# Data categories include: \n");
 824 fprintf(file, "# InParm, RAT, \n");
 825 fprintf(file, "# A_l, A_z, Rd_r, Rd_a, Tt_r, Tt_a, \n");
 826 fprintf(file, "# A_rz, Rd_ra, Tt_ra \n####\n\n");
 827 }
 828
 829 /***
 830 * Write the input parameters to the file.
 831 ****/
 832 void WriteInParm(FILE *file, InputStruct In_Parm)
 833 {
 834 short i;
 835
 836 fprintf(file,
 837 "InParm \t\t\t# Input parameters. cm is used.\n");
 838
 839 fprintf(file,
 840 "%s \tA\t\t# output file name, ASCII.\n",
 841 In_Parm.out_fname);
 842 fprintf(file,
 843 "%ld \t\t\t# No. of photons\n", In_Parm.num_photons);
 844
 845 fprintf(file,
 846 "%G\t%G\t\t# dz, dr [cm]\n", In_Parm.dz,In_Parm.dr);
 847 fprintf(file, "%hd\t%hd\t%hd\t# No. of dz, dr, da.\n\n",
 848 In_Parm.nz, In_Parm.nr, In_Parm.na);
 849
 850 fprintf(file,
 851 "%hd\t\t\t\t\t# Number of layers\n",
 852 In_Parm.num_layers);
 853 fprintf(file,
 854 "#n\tmua\tmus\tg\td\t# One line for each layer\n");
 855 fprintf(file,
 856 "%G\t\t\t\t\t# n for medium above\n",
 857 In_Parm.layerspecs[0].n);
 858 for(i=1; i<=In_Parm.num_layers; i++) {
 859 LayerStruct s;
 860 s = In_Parm.layerspecs[i];
 861 fprintf(file, "%G\t%G\t%G\t%G\t%G\t# layer %hd\n",
 862 s.n, s.mua, s.mus, s.g, s.z1-s.z0, i);
 863 }
 864 fprintf(file, "%G\t\t\t\t\t# n for medium below\n\n",
 865 In_Parm.layerspecs[i].n);
 866 }

Section B.3 mcmlio.c 139

 867
 868 /***
 869 * Write reflectance, absorption, transmission.
 870 ****/
 871 void WriteRAT(FILE * file, OutStruct Out_Parm)
 872 {
 873 fprintf(file,
 874 "RAT #Reflectance, absorption, transmission. \n");
 875 /* flag. */
 876
 877 fprintf(file,
 878 "%-14.6G \t#Specular reflectance [-]\n", Out_Parm.Rsp);
 879 fprintf(file,
 880 "%-14.6G \t#Diffuse reflectance [-]\n", Out_Parm.Rd);
 881 fprintf(file,
 882 "%-14.6G \t#Absorbed fraction [-]\n", Out_Parm.A);
 883 fprintf(file,
 884 "%-14.6G \t#Transmittance [-]\n", Out_Parm.Tt);
 885
 886 fprintf(file, "\n");
 887 }
 888
 889 /***
 890 * Write absorption as a function of layer.
 891 ****/
 892 void WriteA_layer(FILE * file,
 893 short Num_Layers,
 894 OutStruct Out_Parm)
 895 {
 896 short i;
 897
 898 fprintf(file,
 899 "A_l #Absorption as a function of layer. [-]\n");
 900 /* flag. */
 901
 902 for(i=1; i<=Num_Layers; i++)
 903 fprintf(file, "%12.4G\n", Out_Parm.A_l[i]);
 904 fprintf(file, "\n");
 905 }
 906
 907 /***
 908 * 5 numbers each line.
 909 ****/
 910 void WriteRd_ra(FILE * file,
 911 short Nr,
 912 short Na,
 913 OutStruct Out_Parm)
 914 {
 915 short ir, ia;
 916
 917 fprintf(file,
 918 "%s\n%s\n%s\n%s\n%s\n%s\n", /* flag. */
 919 "# Rd[r][angle]. [1/(cm2sr)].",
 920 "# Rd[0][0], [0][1],..[0][na-1]",
 921 "# Rd[1][0], [1][1],..[1][na-1]",
 922 "# ...",
 923 "# Rd[nr-1][0], [nr-1][1],..[nr-1][na-1]",
 924 "Rd_ra");

Section B.3 mcmlio.c 140

 925
 926 for(ir=0;ir<Nr;ir++)
 927 for(ia=0;ia<Na;ia++) {
 928 fprintf(file, "%12.4E ", Out_Parm.Rd_ra[ir][ia]);
 929 if((ir*Na + ia + 1)%5 == 0) fprintf(file, "\n");
 930 }
 931
 932 fprintf(file, "\n");
 933 }
 934
 935 /***
 936 * 1 number each line.
 937 ****/
 938 void WriteRd_r(FILE * file,
 939 short Nr,
 940 OutStruct Out_Parm)
 941 {
 942 short ir;
 943
 944 fprintf(file,
 945 "Rd_r #Rd[0], [1],..Rd[nr-1]. [1/cm2]\n"); /* flag. */
 946
 947 for(ir=0;ir<Nr;ir++) {
 948 fprintf(file, "%12.4E\n", Out_Parm.Rd_r[ir]);
 949 }
 950
 951 fprintf(file, "\n");
 952 }
 953
 954 /***
 955 * 1 number each line.
 956 ****/
 957 void WriteRd_a(FILE * file,
 958 short Na,
 959 OutStruct Out_Parm)
 960 {
 961 short ia;
 962
 963 fprintf(file,
 964 "Rd_a #Rd[0], [1],..Rd[na-1]. [sr-1]\n"); /* flag. */
 965
 966 for(ia=0;ia<Na;ia++) {
 967 fprintf(file, "%12.4E\n", Out_Parm.Rd_a[ia]);
 968 }
 969
 970 fprintf(file, "\n");
 971 }
 972
 973 /***
 974 * 5 numbers each line.
 975 ****/
 976 void WriteTt_ra(FILE * file,
 977 short Nr,
 978 short Na,
 979 OutStruct Out_Parm)
 980 {
 981 short ir, ia;
 982

Section B.3 mcmlio.c 141

 983 fprintf(file,
 984 "%s\n%s\n%s\n%s\n%s\n%s\n", /* flag. */
 985 "# Tt[r][angle]. [1/(cm2sr)].",
 986 "# Tt[0][0], [0][1],..[0][na-1]",
 987 "# Tt[1][0], [1][1],..[1][na-1]",
 988 "# ...",
 989 "# Tt[nr-1][0], [nr-1][1],..[nr-1][na-1]",
 990 "Tt_ra");
 991
 992 for(ir=0;ir<Nr;ir++)
 993 for(ia=0;ia<Na;ia++) {
 994 fprintf(file, "%12.4E ", Out_Parm.Tt_ra[ir][ia]);
 995 if((ir*Na + ia + 1)%5 == 0) fprintf(file, "\n");
 996 }
 997
 998 fprintf(file, "\n");
 999 }
1000
1001 /***
1002 * 5 numbers each line.
1003 ****/
1004 void WriteA_rz(FILE * file,
1005 short Nr,
1006 short Nz,
1007 OutStruct Out_Parm)
1008 {
1009 short iz, ir;
1010
1011 fprintf(file,
1012 "%s\n%s\n%s\n%s\n%s\n%s\n", /* flag. */
1013 "# A[r][z]. [1/cm3]",
1014 "# A[0][0], [0][1],..[0][nz-1]",
1015 "# A[1][0], [1][1],..[1][nz-1]",
1016 "# ...",
1017 "# A[nr-1][0], [nr-1][1],..[nr-1][nz-1]",
1018 "A_rz");
1019
1020 for(ir=0;ir<Nr;ir++)
1021 for(iz=0;iz<Nz;iz++) {
1022 fprintf(file, "%12.4E ", Out_Parm.A_rz[ir][iz]);
1023 if((ir*Nz + iz + 1)%5 == 0) fprintf(file, "\n");
1024 }
1025
1026 fprintf(file, "\n");
1027 }
1028
1029 /***
1030 * 1 number each line.
1031 ****/
1032 void WriteA_z(FILE * file,
1033 short Nz,
1034 OutStruct Out_Parm)
1035 {
1036 short iz;
1037
1038 fprintf(file,
1039 "A_z #A[0], [1],..A[nz-1]. [1/cm]\n"); /* flag. */
1040

Section B.3 mcmlio.c 142

1041 for(iz=0;iz<Nz;iz++) {
1042 fprintf(file, "%12.4E\n", Out_Parm.A_z[iz]);
1043 }
1044
1045 fprintf(file, "\n");
1046 }
1047
1048 /***
1049 * 1 number each line.
1050 ****/
1051 void WriteTt_r(FILE * file,
1052 short Nr,
1053 OutStruct Out_Parm)
1054 {
1055 short ir;
1056
1057 fprintf(file,
1058 "Tt_r #Tt[0], [1],..Tt[nr-1]. [1/cm2]\n"); /* flag. */
1059
1060 for(ir=0;ir<Nr;ir++) {
1061 fprintf(file, "%12.4E\n", Out_Parm.Tt_r[ir]);
1062 }
1063
1064 fprintf(file, "\n");
1065 }
1066
1067 /***
1068 * 1 number each line.
1069 ****/
1070 void WriteTt_a(FILE * file,
1071 short Na,
1072 OutStruct Out_Parm)
1073 {
1074 short ia;
1075
1076 fprintf(file,
1077 "Tt_a #Tt[0], [1],..Tt[na-1]. [sr-1]\n"); /* flag. */
1078
1079 for(ia=0;ia<Na;ia++) {
1080 fprintf(file, "%12.4E\n", Out_Parm.Tt_a[ia]);
1081 }
1082
1083 fprintf(file, "\n");
1084 }
1085
1086 /***
1087 ****/
1088 void WriteResult(InputStruct In_Parm,
1089 OutStruct Out_Parm,
1090 char * TimeReport)
1091 {
1092 FILE *file;
1093
1094 file = fopen(In_Parm.out_fname, "w");
1095 if(file == NULL) nrerror("Cannot open file to write.\n");
1096
1097 if(toupper(In_Parm.out_fformat) == 'A')
1098 WriteVersion(file, "A1");

Section B.3 mcmlio.c 143

1099 else
1100 WriteVersion(file, "B1");
1101
1102 fprintf(file, "# %s", TimeReport);
1103 fprintf(file, "\n");
1104
1105 WriteInParm(file, In_Parm);
1106 WriteRAT(file, Out_Parm);
1107 /* reflectance, absorption, transmittance. */
1108
1109 /* 1D arrays. */
1110 WriteA_layer(file, In_Parm.num_layers, Out_Parm);
1111 WriteA_z(file, In_Parm.nz, Out_Parm);
1112 WriteRd_r(file, In_Parm.nr, Out_Parm);
1113 WriteRd_a(file, In_Parm.na, Out_Parm);
1114 WriteTt_r(file, In_Parm.nr, Out_Parm);
1115 WriteTt_a(file, In_Parm.na, Out_Parm);
1116
1117 /* 2D arrays. */
1118 WriteA_rz(file, In_Parm.nr, In_Parm.nz, Out_Parm);
1119 WriteRd_ra(file, In_Parm.nr, In_Parm.na, Out_Parm);
1120 WriteTt_ra(file, In_Parm.nr, In_Parm.na, Out_Parm);
1121
1122 fclose(file);
1123 }

Section B.4 mcmlgo.c 144

 B.4 mcmlgo.c

 1 /***
 2 * Copyright Univ. of Texas M.D. Anderson Cancer Center
 3 * 1992.
 4 *
 5 * Launch, move, and record photon weight.
 6 ****/
 7
 8 #include "mcml.h"
 9
 10 #define STANDARDTEST 0
 11 /* testing program using fixed rnd seed. */
 12
 13 #define PARTIALREFLECTION 0
 14 /* 1=split photon, 0=statistical reflection. */
 15
 16 #define COSZERO (1.0-1.0E-12)
 17 /* cosine of about 1e-6 rad. */
 18
 19 #define COS90D 1.0E-6
 20 /* cosine of about 1.57 - 1e-6 rad. */
 21
 22
 23 /***
 24 * A random number generator from Numerical Recipes in C.
 25 ****/
 26 #define MBIG 1000000000
 27 #define MSEED 161803398
 28 #define MZ 0
 29 #define FAC 1.0E-9
 30
 31 float ran3(int *idum)
 32 {
 33 static int inext,inextp;
 34 static long ma[56];
 35 static int iff=0;
 36 long mj,mk;
 37 int i,ii,k;
 38
 39 if (*idum < 0 || iff == 0) {
 40 iff=1;
 41 mj=MSEED-(*idum < 0 ? -*idum : *idum);
 42 mj %= MBIG;
 43 ma[55]=mj;
 44 mk=1;
 45 for (i=1;i<=54;i++) {
 46 ii=(21*i) % 55;
 47 ma[ii]=mk;
 48 mk=mj-mk;
 49 if (mk < MZ) mk += MBIG;
 50 mj=ma[ii];
 51 }
 52 for (k=1;k<=4;k++)
 53 for (i=1;i<=55;i++) {
 54 ma[i] -= ma[1+(i+30) % 55];

Section B.4 mcmlgo.c 145

 55 if (ma[i] < MZ) ma[i] += MBIG;
 56 }
 57 inext=0;
 58 inextp=31;
 59 *idum=1;
 60 }
 61 if (++inext == 56) inext=1;
 62 if (++inextp == 56) inextp=1;
 63 mj=ma[inext]-ma[inextp];
 64 if (mj < MZ) mj += MBIG;
 65 ma[inext]=mj;
 66 return mj*FAC;
 67 }
 68
 69 #undef MBIG
 70 #undef MSEED
 71 #undef MZ
 72 #undef FAC
 73
 74
 75 /***
 76 * Generate a random number between 0 and 1. Take a
 77 * number as seed the first time entering the function.
 78 * The seed is limited to 1<<15.
 79 * We found that when idum is too large, ran3 may return
 80 * numbers beyond 0 and 1.
 81 ****/
 82 double RandomNum(void)
 83 {
 84 static Boolean first_time=1;
 85 static int idum; /* seed for ran3. */
 86
 87 if(first_time) {
 88 #if STANDARDTEST /* Use fixed seed to test the program. */
 89 idum = - 1;
 90 #else
 91 idum = -(int)time(NULL)%(1<<15);
 92 /* use 16-bit integer as the seed. */
 93 #endif
 94 ran3(&idum);
 95 first_time = 0;
 96 idum = 1;
 97 }
 98
 99 return((double)ran3(&idum));
 100 }
 101
 102 /***
 103 * Compute the specular reflection.
 104 *
 105 * If the first layer is a turbid medium, use the Fresnel
 106 * reflection from the boundary of the first layer as the
 107 * specular reflectance.
 108 *
 109 * If the first layer is glass, multiple reflections in
 110 * the first layer is considered to get the specular
 111 * reflectance.
 112 *

Section B.4 mcmlgo.c 146

 113 * The subroutine assumes the Layerspecs array is correctly
 114 * initialized.
 115 ****/
 116 double Rspecular(LayerStruct * Layerspecs_Ptr)
 117 {
 118 double r1, r2;
 119 /* direct reflections from the 1st and 2nd layers. */
 120 double temp;
 121
 122 temp =(Layerspecs_Ptr[0].n - Layerspecs_Ptr[1].n)
 123 /(Layerspecs_Ptr[0].n + Layerspecs_Ptr[1].n);
 124 r1 = temp*temp;
 125
 126 if((Layerspecs_Ptr[1].mua == 0.0)
 127 && (Layerspecs_Ptr[1].mus == 0.0)) { /* glass layer. */
 128 temp = (Layerspecs_Ptr[1].n - Layerspecs_Ptr[2].n)
 129 /(Layerspecs_Ptr[1].n + Layerspecs_Ptr[2].n);
 130 r2 = temp*temp;
 131 r1 = r1 + (1-r1)*(1-r1)*r2/(1-r1*r2);
 132 }
 133
 134 return (r1);
 135 }
 136
 137 /***
 138 * Initialize a photon packet.
 139 ****/
 140 void LaunchPhoton(double Rspecular,
 141 LayerStruct * Layerspecs_Ptr,
 142 PhotonStruct * Photon_Ptr)
 143 {
 144 Photon_Ptr->w = 1.0 - Rspecular;
 145 Photon_Ptr->dead = 0;
 146 Photon_Ptr->layer = 1;
 147 Photon_Ptr->s = 0;
 148 Photon_Ptr->sleft= 0;
 149
 150 Photon_Ptr->x = 0.0;
 151 Photon_Ptr->y = 0.0;
 152 Photon_Ptr->z = 0.0;
 153 Photon_Ptr->ux = 0.0;
 154 Photon_Ptr->uy = 0.0;
 155 Photon_Ptr->uz = 1.0;
 156
 157 if((Layerspecs_Ptr[1].mua == 0.0)
 158 && (Layerspecs_Ptr[1].mus == 0.0)) { /* glass layer. */
 159 Photon_Ptr->layer = 2;
 160 Photon_Ptr->z = Layerspecs_Ptr[2].z0;
 161 }
 162 }
 163
 164 /***
 165 * Choose (sample) a new theta angle for photon propagation
 166 * according to the anisotropy.
 167 *
 168 * If anisotropy g is 0, then
 169 * cos(theta) = 2*rand-1.
 170 * otherwise

Section B.4 mcmlgo.c 147

 171 * sample according to the Henyey-Greenstein function.
 172 *
 173 * Returns the cosine of the polar deflection angle theta.
 174 ****/
 175 double SpinTheta(double g)
 176 {
 177 double cost;
 178
 179 if(g == 0.0)
 180 cost = 2*RandomNum() -1;
 181 else {
 182 double temp = (1-g*g)/(1-g+2*g*RandomNum());
 183 cost = (1+g*g - temp*temp)/(2*g);
 184 }
 185 return(cost);
 186 }
 187
 188
 189 /***
 190 * Choose a new direction for photon propagation by
 191 * sampling the polar deflection angle theta and the
 192 * azimuthal angle psi.
 193 *
 194 * Note:
 195 * theta: 0 - pi so sin(theta) is always positive
 196 * feel free to use sqrt() for cos(theta).
 197 *
 198 * psi: 0 - 2pi
 199 * for 0-pi sin(psi) is +
 200 * for pi-2pi sin(psi) is -
 201 ****/
 202 void Spin(double g,
 203 PhotonStruct * Photon_Ptr)
 204 {
 205 double cost, sint; /* cosine and sine of the */
 206 /* polar deflection angle theta. */
 207 double cosp, sinp; /* cosine and sine of the */
 208 /* azimuthal angle psi. */
 209 double ux = Photon_Ptr->ux;
 210 double uy = Photon_Ptr->uy;
 211 double uz = Photon_Ptr->uz;
 212 double psi;
 213
 214 cost = SpinTheta(g);
 215 sint = sqrt(1.0 - cost*cost);
 216 /* sqrt() is faster than sin(). */
 217
 218 psi = 2.0*PI*RandomNum(); /* spin psi 0-2pi. */
 219 cosp = cos(psi);
 220 if(psi<PI)
 221 sinp = sqrt(1.0 - cosp*cosp);
 222 /* sqrt() is faster than sin(). */
 223 else
 224 sinp = - sqrt(1.0 - cosp*cosp);
 225
 226 if(fabs(uz) > COSZERO) { /* normal incident. */
 227 Photon_Ptr->ux = sint*cosp;
 228 Photon_Ptr->uy = sint*sinp;

Section B.4 mcmlgo.c 148

 229 Photon_Ptr->uz = cost*SIGN(uz);
 230 /* SIGN() is faster than division. */
 231 }
 232 else { /* regular incident. */
 233 double temp = sqrt(1.0 - uz*uz);
 234 Photon_Ptr->ux = sint*(ux*uz*cosp - uy*sinp)
 235 /temp + ux*cost;
 236 Photon_Ptr->uy = sint*(uy*uz*cosp + ux*sinp)
 237 /temp + uy*cost;
 238 Photon_Ptr->uz = -sint*cosp*temp + uz*cost;
 239 }
 240 }
 241
 242 /***
 243 * Move the photon s away in the current layer of medium.
 244 ****/
 245 void Hop(PhotonStruct * Photon_Ptr)
 246 {
 247 double s = Photon_Ptr->s;
 248
 249 Photon_Ptr->x += s*Photon_Ptr->ux;
 250 Photon_Ptr->y += s*Photon_Ptr->uy;
 251 Photon_Ptr->z += s*Photon_Ptr->uz;
 252 }
 253
 254 /***
 255 * If uz != 0, return the photon step size in glass,
 256 * Otherwise, return 0.
 257 *
 258 * The step size is the distance between the current
 259 * position and the boundary in the photon direction.
 260 *
 261 * Make sure uz !=0 before calling this function.
 262 ****/
 263 void StepSizeInGlass(PhotonStruct * Photon_Ptr,
 264 InputStruct * In_Ptr)
 265 {
 266 double dl_b; /* step size to boundary. */
 267 short layer = Photon_Ptr->layer;
 268 double uz = Photon_Ptr->uz;
 269
 270 /* Stepsize to the boundary. */
 271 if(uz>0.0)
 272 dl_b = (In_Ptr->layerspecs[layer].z1 - Photon_Ptr->z)
 273 /uz;
 274 else if(uz<0.0)
 275 dl_b = (In_Ptr->layerspecs[layer].z0 - Photon_Ptr->z)
 276 /uz;
 277 else
 278 dl_b = 0.0;
 279
 280 Photon_Ptr->s = dl_b;
 281 }
 282
 283 /***
 284 * Pick a step size for a photon packet when it is in
 285 * tissue.
 286 * If the member sleft is zero, make a new step size

Section B.4 mcmlgo.c 149

 287 * with: -log(rnd)/(mua+mus).
 288 * Otherwise, pick up the leftover in sleft.
 289 *
 290 * Layer is the index to layer.
 291 * In_Ptr is the input parameters.
 292 ****/
 293 void StepSizeInTissue(PhotonStruct * Photon_Ptr,
 294 InputStruct * In_Ptr)
 295 {
 296 short layer = Photon_Ptr->layer;
 297 double mua = In_Ptr->layerspecs[layer].mua;
 298 double mus = In_Ptr->layerspecs[layer].mus;
 299
 300 if(Photon_Ptr->sleft == 0.0) { /* make a new step. */
 301 double rnd;
 302
 303 do rnd = RandomNum();
 304 while(rnd <= 0.0); /* avoid zero. */
 305 Photon_Ptr->s = -log(rnd)/(mua+mus);
 306 }
 307 else { /* take the leftover. */
 308 Photon_Ptr->s = Photon_Ptr->sleft/(mua+mus);
 309 Photon_Ptr->sleft = 0.0;
 310 }
 311 }
 312
 313 /***
 314 * Check if the step will hit the boundary.
 315 * Return 1 if hit boundary.
 316 * Return 0 otherwise.
 317 *
 318 * If the projected step hits the boundary, the members
 319 * s and sleft of Photon_Ptr are updated.
 320 ****/
 321 Boolean HitBoundary(PhotonStruct * Photon_Ptr,
 322 InputStruct * In_Ptr)
 323 {
 324 double dl_b; /* length to boundary. */
 325 short layer = Photon_Ptr->layer;
 326 double uz = Photon_Ptr->uz;
 327 Boolean hit;
 328
 329 /* Distance to the boundary. */
 330 if(uz>0.0)
 331 dl_b = (In_Ptr->layerspecs[layer].z1
 332 - Photon_Ptr->z)/uz; /* dl_b>0. */
 333 else if(uz<0.0)
 334 dl_b = (In_Ptr->layerspecs[layer].z0
 335 - Photon_Ptr->z)/uz; /* dl_b>0. */
 336
 337 if(uz != 0.0 && Photon_Ptr->s > dl_b) {
 338 /* not horizontal & crossing. */
 339 double mut = In_Ptr->layerspecs[layer].mua
 340 + In_Ptr->layerspecs[layer].mus;
 341
 342 Photon_Ptr->sleft = (Photon_Ptr->s - dl_b)*mut;
 343 Photon_Ptr->s = dl_b;
 344 hit = 1;

Section B.4 mcmlgo.c 150

 345 }
 346 else
 347 hit = 0;
 348
 349 return(hit);
 350 }
 351
 352 /***
 353 * Drop photon weight inside the tissue (not glass).
 354 *
 355 * The photon is assumed not dead.
 356 *
 357 * The weight drop is dw = w*mua/(mua+mus).
 358 *
 359 * The dropped weight is assigned to the absorption array
 360 * elements.
 361 ****/
 362 void Drop(InputStruct * In_Ptr,
 363 PhotonStruct * Photon_Ptr,
 364 OutStruct * Out_Ptr)
 365 {
 366 double dwa; /* absorbed weight.*/
 367 double x = Photon_Ptr->x;
 368 double y = Photon_Ptr->y;
 369 short iz, ir; /* index to z & r. */
 370 short layer = Photon_Ptr->layer;
 371 double mua, mus;
 372
 373 /* compute array indices. */
 374 iz = (short)(Photon_Ptr->z/In_Ptr->dz);
 375 if(iz>In_Ptr->nz-1) iz=In_Ptr->nz-1;
 376
 377 ir = (short)(sqrt(x*x+y*y)/In_Ptr->dr);
 378 if(ir>In_Ptr->nr-1) ir=In_Ptr->nr-1;
 379
 380 /* update photon weight. */
 381 mua = In_Ptr->layerspecs[layer].mua;
 382 mus = In_Ptr->layerspecs[layer].mus;
 383 dwa = Photon_Ptr->w * mua/(mua+mus);
 384 Photon_Ptr->w -= dwa;
 385
 386 /* assign dwa to the absorption array element. */
 387 Out_Ptr->A_rz[ir][iz] += dwa;
 388 }
 389
 390 /***
 391 * The photon weight is small, and the photon packet tries
 392 * to survive a roulette.
 393 ****/
 394 void Roulette(PhotonStruct * Photon_Ptr)
 395 {
 396 if(Photon_Ptr->w == 0.0)
 397 Photon_Ptr->dead = 1;
 398 else if(RandomNum() < CHANCE) /* survived the roulette.*/
 399 Photon_Ptr->w /= CHANCE;
 400 else
 401 Photon_Ptr->dead = 1;
 402 }

Section B.4 mcmlgo.c 151

 403
 404 /***
 405 * Compute the Fresnel reflectance.
 406 *
 407 * Make sure that the cosine of the incident angle a1
 408 * is positive, and the case when the angle is greater
 409 * than the critical angle is ruled out.
 410 *
 411 * Avoid trigonometric function operations as much as
 412 * possible, because they are computation-intensive.
 413 ****/
 414 double RFresnel(double n1, /* incident refractive index.*/
 415 double n2, /* transmit refractive index.*/
 416 double ca1, /* cosine of the incident */
 417 /* angle. 0<a1<90 degrees. */
 418 double * ca2_Ptr) /* pointer to the */
 419 /* cosine of the transmission */
 420 /* angle. a2>0. */
 421 {
 422 double r;
 423
 424 if(n1==n2) { /** matched boundary. **/
 425 *ca2_Ptr = ca1;
 426 r = 0.0;
 427 }
 428 else if(ca1>COSZERO) { /** normal incident. **/
 429 *ca2_Ptr = ca1;
 430 r = (n2-n1)/(n2+n1);
 431 r *= r;
 432 }
 433 else if(ca1<COS90D) { /** very slant. **/
 434 *ca2_Ptr = 0.0;
 435 r = 1.0;
 436 }
 437 else { /** general. **/
 438 double sa1, sa2;
 439 /* sine of the incident and transmission angles. */
 440 double ca2;
 441
 442 sa1 = sqrt(1-ca1*ca1);
 443 sa2 = n1*sa1/n2;
 444 if(sa2>=1.0) {
 445 /* double check for total internal reflection. */
 446 *ca2_Ptr = 0.0;
 447 r = 1.0;
 448 }
 449 else {
 450 double cap, cam; /* cosines of the sum ap or */
 451 /* difference am of the two */
 452 /* angles. ap = a1+a2 */
 453 /* am = a1 - a2. */
 454 double sap, sam; /* sines. */
 455
 456 *ca2_Ptr = ca2 = sqrt(1-sa2*sa2);
 457
 458 cap = ca1*ca2 - sa1*sa2; /* c+ = cc - ss. */
 459 cam = ca1*ca2 + sa1*sa2; /* c- = cc + ss. */
 460 sap = sa1*ca2 + ca1*sa2; /* s+ = sc + cs. */

Section B.4 mcmlgo.c 152

 461 sam = sa1*ca2 - ca1*sa2; /* s- = sc - cs. */
 462 r = 0.5*sam*sam*(cam*cam+cap*cap)/(sap*sap*cam*cam);
 463 /* rearranged for speed. */
 464 }
 465 }
 466 return(r);
 467 }
 468
 469 /***
 470 * Record the photon weight exiting the first layer(uz<0),
 471 * no matter whether the layer is glass or not, to the
 472 * reflection array.
 473 *
 474 * Update the photon weight as well.
 475 ****/
 476 void RecordR(double Refl, /* reflectance. */
 477 InputStruct * In_Ptr,
 478 PhotonStruct * Photon_Ptr,
 479 OutStruct * Out_Ptr)
 480 {
 481 double x = Photon_Ptr->x;
 482 double y = Photon_Ptr->y;
 483 short ir, ia; /* index to r & angle. */
 484
 485 ir = (short)(sqrt(x*x+y*y)/In_Ptr->dr);
 486 if(ir>In_Ptr->nr-1) ir=In_Ptr->nr-1;
 487
 488 ia = (short)(acos(-Photon_Ptr->uz)/In_Ptr->da);
 489 if(ia>In_Ptr->na-1) ia=In_Ptr->na-1;
 490
 491 /* assign photon to the reflection array element. */
 492 Out_Ptr->Rd_ra[ir][ia] += Photon_Ptr->w*(1.0-Refl);
 493
 494 Photon_Ptr->w *= Refl;
 495 }
 496
 497 /***
 498 * Record the photon weight exiting the last layer(uz>0),
 499 * no matter whether the layer is glass or not, to the
 500 * transmittance array.
 501 *
 502 * Update the photon weight as well.
 503 ****/
 504 void RecordT(double Refl,
 505 InputStruct * In_Ptr,
 506 PhotonStruct * Photon_Ptr,
 507 OutStruct * Out_Ptr)
 508 {
 509 double x = Photon_Ptr->x;
 510 double y = Photon_Ptr->y;
 511 short ir, ia; /* index to r & angle. */
 512
 513 ir = (short)(sqrt(x*x+y*y)/In_Ptr->dr);
 514 if(ir>In_Ptr->nr-1) ir=In_Ptr->nr-1;
 515
 516 ia = (short)(acos(Photon_Ptr->uz)/In_Ptr->da);
 517 if(ia>In_Ptr->na-1) ia=In_Ptr->na-1;
 518

Section B.4 mcmlgo.c 153

 519 /* assign photon to the transmittance array element. */
 520 Out_Ptr->Tt_ra[ir][ia] += Photon_Ptr->w*(1.0-Refl);
 521
 522 Photon_Ptr->w *= Refl;
 523 }
 524
 525 /***
 526 * Decide whether the photon will be transmitted or
 527 * reflected on the upper boundary (uz<0) of the current
 528 * layer.
 529 *
 530 * If "layer" is the first layer, the photon packet will
 531 * be partially transmitted and partially reflected if
 532 * PARTIALREFLECTION is set to 1,
 533 * or the photon packet will be either transmitted or
 534 * reflected determined statistically if PARTIALREFLECTION
 535 * is set to 0.
 536 *
 537 * Record the transmitted photon weight as reflection.
 538 *
 539 * If the "layer" is not the first layer and the photon
 540 * packet is transmitted, move the photon to "layer-1".
 541 *
 542 * Update the photon parmameters.
 543 ****/
 544 void CrossUpOrNot(InputStruct * In_Ptr,
 545 PhotonStruct * Photon_Ptr,
 546 OutStruct * Out_Ptr)
 547 {
 548 double uz = Photon_Ptr->uz; /* z directional cosine. */
 549 double uz1; /* cosines of transmission alpha. always */
 550 /* positive. */
 551 double r=0.0; /* reflectance */
 552 short layer = Photon_Ptr->layer;
 553 double ni = In_Ptr->layerspecs[layer].n;
 554 double nt = In_Ptr->layerspecs[layer-1].n;
 555
 556 /* Get r. */
 557 if(- uz <= In_Ptr->layerspecs[layer].cos_crit0)
 558 r=1.0; /* total internal reflection. */
 559 else r = RFresnel(ni, nt, -uz, &uz1);
 560
 561 #if PARTIALREFLECTION
 562 if(layer == 1 && r<1.0) { /* partially transmitted. */
 563 Photon_Ptr->uz = -uz1; /* transmitted photon. */
 564 RecordR(r, In_Ptr, Photon_Ptr, Out_Ptr);
 565 Photon_Ptr->uz = -uz; /* reflected photon. */
 566 }
 567 else if(RandomNum() > r) {/* transmitted to layer-1. */
 568 Photon_Ptr->layer--;
 569 Photon_Ptr->ux *= ni/nt;
 570 Photon_Ptr->uy *= ni/nt;
 571 Photon_Ptr->uz = -uz1;
 572 }
 573 else /* reflected. */
 574 Photon_Ptr->uz = -uz;
 575 #else
 576 if(RandomNum() > r) { /* transmitted to layer-1. */

Section B.4 mcmlgo.c 154

 577 if(layer==1) {
 578 Photon_Ptr->uz = -uz1;
 579 RecordR(0.0, In_Ptr, Photon_Ptr, Out_Ptr);
 580 Photon_Ptr->dead = 1;
 581 }
 582 else {
 583 Photon_Ptr->layer--;
 584 Photon_Ptr->ux *= ni/nt;
 585 Photon_Ptr->uy *= ni/nt;
 586 Photon_Ptr->uz = -uz1;
 587 }
 588 }
 589 else /* reflected. */
 590 Photon_Ptr->uz = -uz;
 591 #endif
 592 }
 593
 594 /***
 595 * Decide whether the photon will be transmitted or be
 596 * reflected on the bottom boundary (uz>0) of the current
 597 * layer.
 598 *
 599 * If the photon is transmitted, move the photon to
 600 * "layer+1". If "layer" is the last layer, record the
 601 * transmitted weight as transmittance. See comments for
 602 * CrossUpOrNot.
 603 *
 604 * Update the photon parmameters.
 605 ****/
 606 void CrossDnOrNot(InputStruct * In_Ptr,
 607 PhotonStruct * Photon_Ptr,
 608 OutStruct * Out_Ptr)
 609 {
 610 double uz = Photon_Ptr->uz; /* z directional cosine. */
 611 double uz1; /* cosines of transmission alpha. */
 612 double r=0.0; /* reflectance */
 613 short layer = Photon_Ptr->layer;
 614 double ni = In_Ptr->layerspecs[layer].n;
 615 double nt = In_Ptr->layerspecs[layer+1].n;
 616
 617 /* Get r. */
 618 if(uz <= In_Ptr->layerspecs[layer].cos_crit1)
 619 r=1.0; /* total internal reflection. */
 620 else r = RFresnel(ni, nt, uz, &uz1);
 621
 622 #if PARTIALREFLECTION
 623 if(layer == In_Ptr->num_layers && r<1.0) {
 624 Photon_Ptr->uz = uz1;
 625 RecordT(r, In_Ptr, Photon_Ptr, Out_Ptr);
 626 Photon_Ptr->uz = -uz;
 627 }
 628 else if(RandomNum() > r) {/* transmitted to layer+1. */
 629 Photon_Ptr->layer++;
 630 Photon_Ptr->ux *= ni/nt;
 631 Photon_Ptr->uy *= ni/nt;
 632 Photon_Ptr->uz = uz1;
 633 }
 634 else /* reflected. */

Section B.4 mcmlgo.c 155

 635 Photon_Ptr->uz = -uz;
 636 #else
 637 if(RandomNum() > r) { /* transmitted to layer+1. */
 638 if(layer == In_Ptr->num_layers) {
 639 Photon_Ptr->uz = uz1;
 640 RecordT(0.0, In_Ptr, Photon_Ptr, Out_Ptr);
 641 Photon_Ptr->dead = 1;
 642 }
 643 else {
 644 Photon_Ptr->layer++;
 645 Photon_Ptr->ux *= ni/nt;
 646 Photon_Ptr->uy *= ni/nt;
 647 Photon_Ptr->uz = uz1;
 648 }
 649 }
 650 else /* reflected. */
 651 Photon_Ptr->uz = -uz;
 652 #endif
 653 }
 654
 655 /***
 656 ****/
 657 void CrossOrNot(InputStruct * In_Ptr,
 658 PhotonStruct * Photon_Ptr,
 659 OutStruct * Out_Ptr)
 660 {
 661 if(Photon_Ptr->uz < 0.0)
 662 CrossUpOrNot(In_Ptr, Photon_Ptr, Out_Ptr);
 663 else
 664 CrossDnOrNot(In_Ptr, Photon_Ptr, Out_Ptr);
 665 }
 666
 667 /***
 668 * Move the photon packet in glass layer.
 669 * Horizontal photons are killed because they will
 670 * never interact with tissue again.
 671 ****/
 672 void HopInGlass(InputStruct * In_Ptr,
 673 PhotonStruct * Photon_Ptr,
 674 OutStruct * Out_Ptr)
 675 {
 676 double dl; /* step size. 1/cm */
 677
 678 if(Photon_Ptr->uz == 0.0) {
 679 /* horizontal photon in glass is killed. */
 680 Photon_Ptr->dead = 1;
 681 }
 682 else {
 683 StepSizeInGlass(Photon_Ptr, In_Ptr);
 684 Hop(Photon_Ptr);
 685 CrossOrNot(In_Ptr, Photon_Ptr, Out_Ptr);
 686 }
 687 }
 688
 689 /***
 690 * Set a step size, move the photon, drop some weight,
 691 * choose a new photon direction for propagation.
 692 *

Section B.4 mcmlgo.c 156

 693 * When a step size is long enough for the photon to
 694 * hit an interface, this step is divided into two steps.
 695 * First, move the photon to the boundary free of
 696 * absorption or scattering, then decide whether the
 697 * photon is reflected or transmitted.
 698 * Then move the photon in the current or transmission
 699 * medium with the unfinished stepsize to interaction
 700 * site. If the unfinished stepsize is still too long,
 701 * repeat the above process.
 702 ****/
 703 void HopDropSpinInTissue(InputStruct * In_Ptr,
 704 PhotonStruct * Photon_Ptr,
 705 OutStruct * Out_Ptr)
 706 {
 707 StepSizeInTissue(Photon_Ptr, In_Ptr);
 708
 709 if(HitBoundary(Photon_Ptr, In_Ptr)) {
 710 Hop(Photon_Ptr); /* move to boundary plane. */
 711 CrossOrNot(In_Ptr, Photon_Ptr, Out_Ptr);
 712 }
 713 else {
 714 Hop(Photon_Ptr);
 715 Drop(In_Ptr, Photon_Ptr, Out_Ptr);
 716 Spin(In_Ptr->layerspecs[Photon_Ptr->layer].g,
 717 Photon_Ptr);
 718 }
 719 }
 720
 721 /***
 722 ****/
 723 void HopDropSpin(InputStruct * In_Ptr,
 724 PhotonStruct * Photon_Ptr,
 725 OutStruct * Out_Ptr)
 726 {
 727 short layer = Photon_Ptr->layer;
 728
 729 if((In_Ptr->layerspecs[layer].mua == 0.0)
 730 && (In_Ptr->layerspecs[layer].mus == 0.0))
 731 /* glass layer. */
 732 HopInGlass(In_Ptr, Photon_Ptr, Out_Ptr);
 733 else
 734 HopDropSpinInTissue(In_Ptr, Photon_Ptr, Out_Ptr);
 735
 736 if(Photon_Ptr->w < In_Ptr->Wth && !Photon_Ptr->dead)
 737 Roulette(Photon_Ptr);
 738 }

Section B.5 mcmlnr.c 157

 B.5 mcmlnr.c

 1 /***
 2 * Copyright Univ. of Texas M.D. Anderson Cancer Center
 3 * 1992.
 4 *
 5 * Some routines modified from Numerical Recipes in C,
 6 * including error report, array or matrix declaration
 7 * and releasing.
 8 ****/
 9 #include <stdlib.h>
 10 #include <stdio.h>
 11 #include <math.h>
 12
 13 /***
 14 * Report error message to stderr, then exit the program
 15 * with signal 1.
 16 ****/
 17 void nrerror(char error_text[])
 18
 19 {
 20 fprintf(stderr,"%s\n",error_text);
 21 fprintf(stderr,"...now exiting to system...\n");
 22 exit(1);
 23 }
 24
 25 /***
 26 * Allocate an array with index from nl to nh inclusive.
 27 *
 28 * Original matrix and vector from Numerical Recipes in C
 29 * don't initialize the elements to zero. This will
 30 * be accomplished by the following functions.
 31 ****/
 32 double *AllocVector(short nl, short nh)
 33 {
 34 double *v;
 35 short i;
 36
 37 v=(double *)malloc((unsigned) (nh-nl+1)*sizeof(double));
 38 if (!v) nrerror("allocation failure in vector()");
 39
 40 v -= nl;
 41 for(i=nl;i<=nh;i++) v[i] = 0.0; /* init. */
 42 return v;
 43 }
 44
 45 /***
 46 * Allocate a matrix with row index from nrl to nrh
 47 * inclusive, and column index from ncl to nch
 48 * inclusive.
 49 ****/
 50 double **AllocMatrix(short nrl,short nrh,
 51 short ncl,short nch)
 52 {
 53 short i,j;
 54 double **m;

Section B.5 mcmlnr.c 158

 55
 56 m=(double **) malloc((unsigned) (nrh-nrl+1)
 57 *sizeof(double*));
 58 if (!m) nrerror("allocation failure 1 in matrix()");
 59 m -= nrl;
 60
 61 for(i=nrl;i<=nrh;i++) {
 62 m[i]=(double *) malloc((unsigned) (nch-ncl+1)
 63 *sizeof(double));
 64 if (!m[i]) nrerror("allocation failure 2 in matrix()");
 65 m[i] -= ncl;
 66 }
 67
 68 for(i=nrl;i<=nrh;i++)
 69 for(j=ncl;j<=nch;j++) m[i][j] = 0.0;
 70 return m;
 71 }
 72
 73 /***
 74 * Release the memory.
 75 ****/
 76 void FreeVector(double *v,short nl,short nh)
 77 {
 78 free((char*) (v+nl));
 79 }
 80
 81 /***
 82 * Release the memory.
 83 ****/
 84 void FreeMatrix(double **m,short nrl,short nrh,
 85 short ncl,short nch)
 86 {
 87 short i;
 88
 89 for(i=nrh;i>=nrl;i--) free((char*) (m[i]+ncl));
 90 free((char*) (m+nrl));
 91 }

Appendix C Makefile for the Program mcml 159

 Appendix C. Makefile for the Program mcml

We present the make file used for compiling and linking the code for UNIX users.

This make file (named makefile) can be placed under the same directory as the source code,

and used by the UNIX command make.

CFLAGS =
CC=cc
RM=/bin/rm -rf
LOCAL_LIBRARIES= -lm
OBJS = mcmlmain.o mcmlgo.o mcmlio.o mcmlnr.o

.c.o:
 $(RM) $@
 $(CC) -c $(CFLAGS) $*.c
#####

all : mcml

mcml: $(OBJS)
 $(RM) $@
 $(CC) -o $@ $(OBJS) $(LOCAL_LIBRARIES)

clean::
 $(RM) mcml
 $(RM) mcmlmain.o

If you use ANSI Standard C compiler (acc) on SPARCstation 2, you need to change cc to

acc in the second line. Similarly, if you want to use GNU C compiler, you need to use gcc

instead of cc. If you need to use a debugger (e.g., dbx), you need to add the option -g to

CFLAGS in the first line, and recompile the source codes using the new make file. Then,

you can call the debugger (e.g., dbx mcml). To compile and link use the makefile, use:

make

Appendix D A Template of mcml Input Data File 160

 Appendix D. A Template of mcml Input Data File

This is a template for the input data file. The template file is named as

"template.mci" if nobody has changed its name. You can copy this file to a new file whose

extension is preferably ".mci", and modify the parameters in the new file to solve your

specific problem. Any valid filenames without spaces are acceptable (see Section 9.1 for

detail).

####
Template of input files for Monte Carlo simulation (mcml).
Anything in a line after "#" is ignored as comments.
Space lines are also ignored.
Lengths are in cm, mua and mus are in 1/cm.
####

1.0 # file version
2 # number of runs

Specify data for run 1
temp1.mco A # output filename, ASCII/Binary
10 # No. of photons
20E-4 20E-4 # dz, dr
10 20 30 # No. of dz, dr & da.

2 # No. of layers
n mua mus g d # One line for each layer
1.0 # n for medium above.
1.3 20 200 0.70 0.01 # layer 1
1.4 10 200 0.90 1.0E+8 # layer 2
1.0 # n for medium below.

Specify data for run 2
temp2.mco A # output filename, ASCII/Binary
20 # No. of photons
20E-4 20E-4 # dz, dr
80 80 30 # No. of dz, dr & da.

1 # No. of layers
n mua mus g d # One line for each layer
1.0 # n for medium above.
1.4 10 200 0.70 1.0E+8 # layer 1
1.0 # n for medium below.

Appendix E A Sample Output Data File of mcml 161

 Appendix E. A Sample Output Data File of mcml

This is a sample output data file. To limit the length of the file, we used very small

numbers of grid elements as can be seen in the section of the input parameter in the file.

A1 # Version number of the file format.

####
Data categories include:
InParm, RAT,
A_l, A_z, Rd_r, Rd_a, Tt_r, Tt_a,
A_rz, Rd_ra, Tt_ra
####

User time: 0.42 sec = 0.00 hr. Simulation time of this run.

InParm # Input parameters. cm is used.
sample.mco A # output file name, ASCII.
100 # No. of photons
0.1 0.1 # dz, dr [cm]
3 3 4 # No. of dz, dr, da.

2 # Number of layers
#n mua mus g d # One line for each layer
1 # n for medium above
1.3 5 100 0.7 0.1 # layer 1
1.4 2 10 0 0.2 # layer 2
1 # n for medium below

RAT #Reflectance, absorption, transmission.
0.0170132 #Specular reflectance [-]
0.259251 #Diffuse reflectance [-]
0.708072 #Absorbed fraction [-]
0.0156549 #Transmittance [-]

A_l #Absorption as a function of layer. [-]
 0.6418
 0.06624

A_z #A[0], [1],..A[nz-1]. [1/cm]
 6.4184E+00
 4.2203E-01
 2.4034E-01

Rd_r #Rd[0], [1],..Rd[nr-1]. [1/cm2]
 7.1961E+00
 3.1968E-01
 1.9419E-02

Rd_a #Rd[0], [1],..Rd[na-1]. [sr-1]
 5.5689E-02
 6.2845E-02
 3.6396E-02
 2.9598E-02

Tt_r #Tt[0], [1],..Tt[nr-1]. [1/cm2]

Appendix E A Sample Output Data File of mcml 162

 1.5008E-01
 4.8650E-02
 4.0457E-02

Tt_a #Tt[0], [1],..Tt[na-1]. [sr-1]
 1.0965E-03
 3.5961E-03
 3.1196E-03
 1.5692E-03

A[r][z]. [1/cm3]
A[0][0], [0][1],..[0][nz-1]
A[1][0], [1][1],..[1][nz-1]
...
A[nr-1][0], [nr-1][1],..[nr-1][nz-1]
A_rz
 1.7934E+02 5.9590E+00 2.9838E+00 7.4003E+00 1.3974E+00
 7.6865E-01 5.5296E-01 6.5647E-01 4.7210E-01

Rd[r][angle]. [1/(cm2sr)].
Rd[0][0], [0][1],..[0][na-1]
Rd[1][0], [1][1],..[1][na-1]
...
Rd[nr-1][0], [nr-1][1],..[nr-1][na-1]
Rd_ra
 1.7856E+00 2.0312E+00 1.8606E+00 4.0608E+00 0.0000E+00
 1.0438E-01 7.3502E-02 2.4768E-01 4.3564E-03 1.2307E-02
 8.2665E-04 5.0690E-03

Tt[r][angle]. [1/(cm2sr)].
Tt[0][0], [0][1],..[0][na-1]
Tt[1][0], [1][1],..[1][na-1]
...
Tt[nr-1][0], [nr-1][1],..[nr-1][na-1]
Tt_ra
 0.0000E+00 2.6871E-02 0.0000E+00 2.5301E-01 0.0000E+00
 9.0115E-05 4.2593E-02 0.0000E+00 7.1173E-03 2.2105E-02
 1.0191E-02 6.0383E-04

Appendix F Several C Shell Scripts 163

 Appendix F. Several C Shell Scripts

 F.1 conv.bat for batch processing conv

The C Shell script "conv.bat" is used to batch process the program conv (see

Section 9.4 for description of use of conv.bat).

Shell script for the convolution program "conv"
Feb. 2, 1992
#
Format: conv.bat filename(s) output_type
output_type includes: Rr, Ra, Az ...

Check parm, echo the help if something is wrong.
if ($#argv == 0 || $#argv >= 3) then
 echo 'Usage: conv.bat "input_filename(s)" output_type'
 echo "output_type includes: "
 echo "I, 3, K"
 echo "Al, Az, Arz"
 echo "Rr, Ra, Rra"
 echo "Tr, Ta, Tra"
 exit
endif

Check the second parameter.
if (! ($2 =~ [Ii3Kk] || \
 $2 =~ [Aa][LlZz] || \
 $2 =~ [Aa][Rr][Zz] || \
 $2 =~ [RrTt][RrAa] || \
 $2 =~ [RrTt][Rr][Aa])) then
 echo "Wrong parm -- $2"
 echo "output_type includes: "
 echo "I, 3, K"
 echo "Al, Az, Arz"
 echo "Rr, Ra, Rra"
 echo "Tr, Ta, Tra"
 exit(3)
endif

foreach infile ($1)
 # make sure the file is existent and readable.
 if (! -e $infile) then
 echo "File $infile not exist"
 exit(2);
 else if (! -r $infile) then
 echo "File $infile not readable"
 exit(2)
 endif

 # remove the existent output files, if any.
 if (-e $infile:r.$2) then
 rm $infile:r.$2
 endif

Appendix F Several C Shell Scripts 164

 # echo the command sequence to conv.
 (echo i;echo $infile;\
 echo oo;echo $2;echo $infile:r.$2;echo q;echo q;echo y)\
 |conv>/dev/null

end # of foreach

 F.2 p1 for pasting files of 1D arrays

The C Shell script p1 is used to paste side by side multiple files of 1D arrays, which

are in 2 columns. If the files of 1D arrays share the same first column, p1 will not

duplicate the first column in the pasted file. If the output file is existent, then it is backed

up as the original filename appended with ".bak". The original output file is still kept as

part of the new output file. This script is particularly useful to prepare the data for

processing and presentation by some commercial plotting softwares such as KaleidaGraph.

For example, if you have three mcml output files file1.Rr, file2.Rr, and file3.Rr saved in 2

columns representing the diffuse reflectance as a function of radius r. You can combine

these three files into one file by:

p1 "file?.Rr" filex.Rrs

where filex.Rrs is the filename of the output.

Paste 1D files (in 2 columns) together side by side.
February 7, 1992.

Check number of arguments.
if ($#argv != 2) then
 echo 'Usage: p1 "input_file(s)" output_fname'
 exit(1)
endif

onintr catch # Prepare to catch interrpts.

set com = $0
set infiles = $1:q
set outfile = $2

Check validity of arguments for outfile.
if (-e $outfile) then
 if (! -w $outfile) then
 echo $outfile not writable
 exit(2)
 endif

 cp $outfile $outfile.bak # Backup existent files.
endif

Appendix F Several C Shell Scripts 165

Setup temp files with the PID number.
set outbuf = /tmp/$com:t.$$.outbuf
set buf1 = /tmp/$com:t.$$.buf1
set buf2 = /tmp/$com:t.$$.buf2
set cmp1 = /tmp/$com:t.$$.cmp1
set cmp2 = /tmp/$com:t.$$.cmp2

Run through each file, keep the results in $outbuf.
foreach infile ($infiles)
 if (! -r $infile) then
 echo $infile not readable
 exit(3)
 endif

 # Delimit by tab.
 awk -F" " '{print $1 "\t" $2}' $infile >! $buf1

 if (! -e $outbuf) then
 cut -f1 $buf1 >! $cmp1
 cp $buf1 $outbuf
 else
 cut -f1 $buf1 >! $cmp2
 diff $cmp1 $cmp2 > /dev/null

 if ($status) then
 # 1st rows are not the same. Paste both columns.
 paste $outbuf $buf1 >! $buf2; cp $buf2 $outbuf
 cut -f1 $buf1 >! $cmp1
 else
 # 1st rows are the same. Paste only the 2nd column.
 cut -f2 $buf1 >! $buf2
 paste $outbuf $buf2 >! $buf1; cp $buf1 $outbuf
 endif
 endif

end

Copy $outbuf to $outfile
if (! -e $outfile) then
 cp $outbuf $outfile
else
 paste $outfile $outbuf >! $buf1; cp $buf1 $outfile
endif

catch: # jump to here if interrupted
 rm -f $outbuf $buf1 $buf2 $cmp1 $cmp2
 exit(1)

Appendix G Where to Get the Programs mcml and conv 166

 Appendix G. Where to Get the Programs mcml and conv

We will eventually set up a bulletin board of our own so that you can download the

software over the network. For now, you can contact Lihong Wang, or Steven L. Jacques

using the following information to get the software.

Lihong Wang, Ph. D.

Optical Imaging Laboratory, Biomedical Engineering Program

Texas A&M University, College Station, TX 77843-3120

Email: LWang@tamu.edu

URL: http://biomed.tamu.edu/~lw

Steven L. Jacques, Ph. D.

Oregon Medical Laser Center, Providence t. Vincent Hospital

9205 SW Barnes Rd., Portland, OR 97225

Email:sjacques@ece.ogi.edu

URL: http://ece.ogi.edu/omlc

Make sure that you tell us the specific machines (including brand and model) you

will use for the simulation, so that we can compile the code correctly for you. If you use

IBM PC compatibles, please also tell us whether you use a math co-processor or not.

Appendix H Future Developments of the Package 167

 Appendix H. Future Developments of the Package

The release is by no means the end of the package. We plan to make at least the

following improvements. As we gather comments from users, we may consider even more

improvements.

 Collimated responses in mcml

In this version (version 1.0) of mcml, the first photon interactions in the media are

scored into the first grid elements in the r direction together with the later interactions. The

first interactions are all on the z-axis, and should yield a delta function of r (Gardner et al.,

1992b) to be exact. Therefore, they should be scored separately as demonstrated by

Gardner et al.

The specular reflectance is computed analytically using Fresnel's formulas.

However, the reflected photons that are uninteracted inside the tissue are scored into the

first grid elements in the r direction of the diffuse reflectance. To be strict, these photons

should contribute to the specular reflectance rather than the diffuse reflectance although this

is small in thick tissues.

The transmittance in version 1.0 of mcml does not differentiate between diffuse

transmittance and unscattered transmittance. This problem and the problem with the

reflectance can be solved by keeping track of the number of interactions.

 Best points for each grid e lement

As we have discussed in Section 4.3, we should use:

 rb = [(n + 0.5) +
1

12 (n + 0.5)] ∆r

instead of the center of the grid element as the coordinate of the simulated data in the nth

grid element in the r direction. In the case when the radius of a Gaussian beam is

comparable with the grid separation ∆r, this may make a considerably large difference in

the convolution program conv.

Appendix H Future Developments of the Package 168

 Flexible photon sources

In version 1.0 of mcml, only collimated photon beams incident on the tissue surface

are supported. Several other cylindrically symmetric sources should be able to be

incorporated without substantially modifying the program.

The convolution program conv 1.0 only supports Gaussian beams and circularly

flat beams, it can be easily adopted to convolve over arbitrary beam profiles that are

cylindrically symmetric. For beams that are not cylindrically symmetric, the convolution

still can be done but with longer integration time.

 Faster sampling procedures

The sampling of the step size involves an exponential computation which is

computation intensive. Faster approaches can be used as discussed in Section 3.2.

References 169

 References

Ahrens, J.H. and U. Dieter, "Computer Methods for Sampling for the Exponential and

Normal Distributions," Comm. ACM, 15, 873 (1972).

Anderson, G., and P. Anderson, "The UNIX C Shell Field Guide," Prentice-Hall (1986).

Arthur, L.J., "UNIX Shell Programming," Second Ed., John Wiley & Sons, Inc. (1990).

Born, M., and E. Wolf, "Principles of Optics: Electromagnetic Theory of Propagation,

Interference and Diffraction of Light," Sixth corrected Ed., Pergamon Press (1986).

Cashwell E.D., C.J. Everett, "A Practical Manual on the Monte Carlo Method for Random

Walk Problems," Pergamon Press, New York (1959).

Cheong W.F., S.A. Prahl, A.J. Welch, "A Review of the Optical Properties of Biological

Tissues," IEEE J Quantum Electronics, 26, 2166-2185 (1990).

Gardner, C.M., and A.J. Welch, private communication, Biomedical Eng. Program, Univ.

of Texas, Austin (1992).

Gardner, C.M., and A.J. Welch, in SPIE Proceedings, Laser-tissue Interaction III, Vol.

1646 (1992b).

Giovanelli, R.G., "Reflection by Semi-Infinite Diffusers," Optica Acta, 2 , 153-162

(1955).

Hecht, E., "Optics," Second Ed., Addison-Wesley Publishing Company, Inc. (1987).

Hendricks, J.S., and T.E. Booth, "MCNP Variance Reduction Overview," Lecture Notes

in Physics, 240, 83-92 (1985).

Henyey, L.G., and J.L. Greenstein, "Diffuse Radiation in the Galaxy," Astrophys. J., 93,

70-83 (1941).

Kalos, M.H., and P.A. Whitlock, "Monte Carlo Methods, I: Basics," John Wiley & Sons,

Inc. (1986).

References 170

Keijzer, M., S.L. Jacques, S.A. Prahl, and A.J. Welch, "Light Distributions in Artery

Tissue: Monte Carlo simulations for Finite-Diameter Laser Beams," Lasers in Surg. &.

Med., 9, 148-154 (1989).

Kelley, A., and I. Pohl, "A Book on C: Programming in C," Second Ed.,

Benjamin/Cummings Publishing Company, Inc. (1990).

Lux, I., and L. Koblinger, "Monte Carlo Particle Transport Methods: Neutron and Photon

Calculations," CRC Press (1991).

MacLaren, M.D., G. Marsaglia, and T. Bray, "A Fast Procedure for Generating

Exponential Random Variables," Comm. ACM, 7, 298 (1964).

Marsaglia, G., "Generating Exponential Random Variables," Ann. Math. Stat., 32 , 899

(1961).

Plauger, P.J., and J. Brodie, "Standard C," Microsoft Press (1989).

Prahl, S.A., "Calculation of Light Distributions and Optical Properties of Tissue," Ph.D.

Dissertation, Department of Biomedical Engineering, U. Texas at Austin (1988).

Prahl, S.A., M. Keijzer, S.L. Jacques, and A.J. Welch, "A Monte Carlo Model of Light

Propagation in Tissue," Dosimetry of Laser Radiation in Medicine and Biology, SPIE

Institute Series, IS 5, 102-111 (1989). (Note the typo in Eq. (10), where the denominator

should be 1 – g0 + 2 g0 ξ).

Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes

in C," Cambridge Univ. Press (1988).

Spiegel, M. R., "Mathematical Handbook of Formulas and Tables," McGraw-Hill, Inc.,

(1968).

Symantec Corporation, "THINKC User Manual," Symantec Corporation (1991).

van de Hulst, H.C, "Multiple Light Scattering, Volume II," Academic Press, New York

(1980).

Wang, L.-H., and S.L. Jacques, "Hybrid Model of Monte Carlo Simulation Diffusion

Theory for Light Reflectance by Turbid Media," unpublished.

References 171

Wilson, B.C., and S. L. Jacques, "Optical Reflectance and Transmittance of Tissues:

Principles and Applications," IEEE J. of Quant. Electronics, 26 (12), 2186-2199 (1990).

Witt, A.N., "Multiple Scattering in Reflection Nebulae I. a Monte Carlo approach," The

Astrophysical J. Supp. Series, 35, 1-6 (1977).

Wyman, D. R., M. S. Patterson, and B. C. Wilson, "Similarity relations for anisotropic

scattering in Monte Carlo simulations of deeply penetrating neutral particles," J. Comput.

Phys., 81, 137-150 (1989a).

Wyman, D. R., M. S. Patterson, and B. C. Wilson, "Similarity relations for the interaction

parameters in radiation transport," Appl. Opt., 28, 5243-5249 (1989b).

Index 172

 Index

—A—

A, 35

absorption, 4

absorption, 14, 22, 35

absorption coefficient, 33

absorption coefficient, 4, 5, 23, 90

absorption-only, 28

angularly resolved diffuse reflectance and

transmittance, 46

anisotropy, 14

anisotropy, 4

anisotropy factor, 33

ANSI C, 85

ANSI Standard C, 85, 89

ANSI Standard C, 30

Apple Edit, 89

arrows, 13

ASCII format, 90

AXUM, 94

azimuthal angle, 14

A_l, 35, 93

A_rz, 35, 93

A_z, 35, 93

—B—

background job, 93

background processes, 93

batch process, 94

Bessel function, 69, 74

binary files, 89

binary tree, 72

binary tree, 75

bit bucket, 93

Boolean, 33

bugs, 95

buried isotropic photon sources, 109

—C—

Cartesian coordinate system, 4

cell, the last, 20

cflow, 39

CHANCE, 31

comment lines, 89, 93

compress, 88

computation results, 45

computation time, 50

constants, 31

contour, 64, 81

conv, 78

convolution, 65

convolution, 65

convolution error, 83

convolve, 94

coordinate systems, 4

COS90D, 31

COSZERO, 31

cos_crit0, 33

cos_crit1, 33

critical angles, 33

cross the boundary, 36

cumulative distribution function, 7

cylindrical coordinate system, 5

—D—

da, 34

Index 173

Data structures, 32

dead, 32

deflection angle, 14

delta function, 28

depth resolved internal fluence, 48

diffuse reflectance, 20, 35

diffuse reflectances, 61, 79, 82

diffuse transmittance, 46

diffuse transmittance, 18

dimensional step size, 13

dimensionless step size, 13

directional cosines, 16

directional cosines, 10, 32

divergence, 69

dr, 34

duplicated filenames, 41

dynamic allocation, 35

dz, 34

—E—

editor, 89

eject, 86

electronic mail, 87

EMACS, 89

empirical formulas, 53, 56

empirical formulas, 60

Ethernet, 95

execution, 91

extended trapezoidal integration, 29

extended trapezoidal integration, 72

extraction, subset, 94

extrapolations, 74

—F—

file expansion, 95

file format, 90

file of input data, 89

file of output data, 93

File version, 90

filename for data output, 34

first photon interactions, 28

flat beam, 67

flat beams, 70

flow graph, 39

flow of the program, 30

flowchart, 36

fluences, 63, 80, 83

folder, 94

folder, 92

free path, 11

Fresnel reflectances, 11

Fresnel's formulas, 17

FTP, 89, 95

—G—

g, 33

Gaussian beam, 67

glass, 10

glass layer, 13, 36

GNUCC, 31

grid line separations, 90

grid system, 5

—H—

Henyey and Greenstein, 14

hybrid model, 53

—I—

IBM PC compatibles, 92

implicit photon capture, 10

impulse response, 65

impulse response, 64

Index 174

index range of the array, 36

input data file, 89, 95

input parameters, 34, 93, 95

InputStruct, 34

instructions, 89

integers, 95

integral limits, 75, 77

integrand evaluation, 74, 76

intensity profile, 66

interaction coefficient, 4, 11, 38

interpolations, 73

invariance, 65

isotropic photon sources, 109

isotropic photon sources, buried, 109

—J—

job, background, 93

—K—

KaleidaGraph, 164

KaleidaGraph, 94

Kermit, 89, 95

—L—

last cells, 20

Launch photon, 36

layer, 32

Layer parameter, 91

layerspecs, 34

LayerStruct, 33

linear and invariant, 65

linear approximations, 25

linear linked list, 41

linearity, 65

logarithmic operation, 43

log-log plot, 53

log-log scale, 53

long int, 34

—M—

Macintosh, 92

mail, 88

mails, 87

make file, 30

matched boundaries, 51

matched boundary, 45

Max, 76, 77

Max, 70

Mean free path, 2, 91

mean free path, 12

mean free path, transport, 49, 110

memory, ii, 35, 41, 91

memory, release, 41

Microsoft Word, 89

Min, 76, 77

mismatched boundaries, 56

mismatched boundary, 46

mismatched boundary, 10

MockWrite, 89

modem, 95

modified Bessel function, 69

modify the program, 109

Monte Carlo, 1

mua, 33

multi-layered tissue, 4

multi-layered tissues, 60

multiple runs, 91

multiple simulations, 41

mus, 33

—N—

n, 33

Index 175

na, 34

nesting depth, 39

network, 89

Norton editor, 89

nr, 34

Number of grid elements, 91

Number of layers, 91

number of photon packets, 34, 90

Number of runs, 90

numerical computation, 71

num_layers, 34

num_photons, 34

nz, 34

—O—

observation point, 66

operating system, 89

output data files, 93

Output filename, 90

OutStruct, 35

out_fformat, 34

out_fname, 34

overflow, 75

overflow, 20

—P—

partial reflection approach, 18

PARTIALREFLECTION, 31

path, search, 92

photon absorption, 14

photon fluence, 23

photon packet, 10, 32

photon propagation, 10

photon scattering, 14

photon termination, 19

PhotonStruct, 32

physical quantities, 4, 20

position of the photon packet, 13

probability density function, 7

probability of interaction, 11

process, background, 93

profiler, 42, 44

pseudo-random number generator, 7

—R—

radially resolved diffuse reflectance, 47

random variable, 7

RAT, 93

Rd, 35

Rd_a, 35, 93

Rd_r, 35, 93

Rd_ra, 34, 93

real time, 41

reflectance, 17

reflection at boundary, 16

reflection at interface, 18

refractive index, 33

Refractive index, 91

release the memory, and continues execution, 41

resolution, 90

roulette, 34

roulette, 19, 39

Rsp, 34

—S—

s, 32

sampling random variables, 7

scattering coefficient, 33

scattering coefficient, 4, 5, 90

scattering function), 14

script file, 94

search path, 92

Index 176

search path, 86

semi-infinite turbid medium, 45

shell programming, 94

short, 33

similarity relations, 48, 110

sleft, 32

Snell's law, 17

software installation, 85

solid angle, 21, 46

source, 66

source code, 30

source or error, 77

source point, 66

space lines, 89, 93

specular reflectance, 35, 93

specular reflectance, 10, 20

spherical coordinate system, 5

standard errors, 45

STANDARDTEST, 31

step size, 11, 33

STRLEN, 31

subset extraction, 94

subset of the output data, 94

—T—

tar, 88

Taylor series, 26

template file, 89

termination, 19

text editors, 89

text format, 89

THINKCPROFILER, 31

threshold weight, 34

time of computation, 50

timer, 95

time-shared system, 51

timing profile, 42, 43

tissue/tissue interface, 18

total absorption, 93

total diffuse reflectance, 93

total diffuse reflectance, 35, 45, 46

total diffuse reflectance and transmittance, 21

total diffuse transmittance, 46

total transmittance, 93

total transmittance, 45

trajectory, 2

transformation of variables, 67

transmission at boundary, 16

transmission at interface, 18

transmittance, 17

transmittance, 20

transmittances, 61

transmittances, 79, 82

transport mean free path, 49

transport mean free path, 110

trapezoidal rule, 71

Tt, 35

Tt_a, 35, 93

Tt_r, 35, 93

Tt_ra, 35

Tt_ra, 93

—U—

uncompress, 87

unit of length, 5

UNIX, 92

unscattered transmittance, 18

unscattered transmittance, 46

user time, 41, 93, 95

user times, 50

uudecode, 87

uuencode, 88

Index 177

ux, 32

uy, 32

uz, 32

—V—

variance, 90

variance reduction technique, 10

vi, 89

—W—

w, 32

wave phenomenon,, 1

weight, 10

wild cards, 94

Word, 89

Wth, 34

—X—

x, 32

—Y—

y, 32

—Z—

z, 32

z0, 33

z1, 33

