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Chapter 5
Monte Carlo Modeling of Light Transport
in Tissue (Steady State and Time of Flight)

Steven L. Jacques

5.1 Introduction

Monte Carlo simulations are a fundamental and versatile approach toward modeling
light transport in tissues. While diffusion theory for light transport is a fast and
convenient way to model light transport, it fails when close to sources or boundaries
and when absorption is strong compared to scattering; in other words, whenever
conditions cause the gradient of fluence rate (or photon concentration) to not be
simply linear but to have some curvature. Monte Carlo steps in to treat problems
when diffusion theory fails. Figure 5.1 illustrates a Monte Carlo simulation.

In the general Monte Carlo simulation, “photons™ are inserted into tissue at a
location defined by x, y, z coordinates with a trajectory defined by directional cosines
(projection of trajectory onto x, y and z axes). The random distance traveled before
the photon interacts with the tissue is based upon the selection of a random number
[0,1] and the local attenuation coefficient of the medium. At the end of each photon
step, the weight of the photon is reduced by absorption. The remaining non-absorbed
weight is redirected according to a scattering (or “phase”) function that describes
the angular dependence of single scattering by the particular tissue. Once a new
trajectory is specified, the photon is again moved a random distance. The details of
the photon path, absorption, scattering, reflection, and refraction are described in
the following paragraphs.

Refraction at mismatched boundaries and even changes in local optical properties
can be included in the simulation. The heat generated, § [W/cm?], within a small
volume depends upon the total photon weight absorbed in the volume, the total
number of photons, and power of the laser beam. Total energy absorbed [J/cm?] can
be computed when the energy [J] of the light source is given.

The Monte Carlo method is a widely used approach toward sampling probabil-
ity density functions for simulating a wide range of problems. The first use of the
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Fig. 5.1 A Monte Carlo simulation of photon transport. (a) Movement of a single photon in a
light-scattering tissue. When the photon is totally internally reflected at the air/tissue surface, a
fraction of the photon weight is allowed to escape as reflectance and the remaining photon weight
continues to propagate in the tissue. In this example for the sake of illustration, the third time the
photon encounters the surface, the photon is allowed to fully escape. (b) Superposition of millions
of photons recorded as relative fluence rate, [W/cm?] per W delivered, which is equivalently stated
as transport T [1/cm?]. The example is the penetration of a CO; laser (10.6 pm wavelength) into
the conjunctiva of the eye, which illustrates how Monte Carlo can also described the scattering in
a situation where absorption dominates over scattering, a situation not well described by diffusion
theory

Monte Carlo method for photon transport in biological materials was Adams and
Wilson (1983), which considered isotropic scattering [1]. Keijzer et al. (1987) intro-
duced anisotropic scattering into the Monte Carlo simulation of biological tissues,
implementing a simulation that propagated photons using cylindrical coordinates,
which introduced the Hop/Drop/Spin nomenclature for organizing the program [2].
Prahl et al. (1989) reformulated the program using photon propagation based on
Cartesian coordinates, which made the program much simpler to convey in writ-
ten form [3]. Wang and Jacques (1993) adapted and augmented the work of Keizer
and Prahl to write the Monte Carlo Multi-Layered (MCML) program that considers
tissues with many planar layers with different optical properties [4]. MCML is a well-
organized program with a simple text input file that the user can modify to specify
different problems, which allows various problems to be run without needing to re-
compile the program each time. MCML has been widely promulgated via the web as
source code [5-6], and modified by various groups to handle a variety of problems.
Jacques (1998) reported on using Monte Carlo to specify the point spread func-
tion for light in tissue in planar, cylindrical and spherical coordinates from a plane
source, line source or point source, respectively [7], using a minimal Monte Carlo
program derived from MCML called mc321 . c that is listed in the Appendix of this
chapter for reference and is available on the web [8]. Students have usually modi-
fied mc321 . c to build their own specialized programs. Jacques (2003) prepared a
Monte Carlo subroutine, mcsub . ¢, which allows routine calls to Monte Carlo runs
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5 Monte Carlo Modeling of Light Transport in Tissue 111

from other programs, discussed in [9], with updated versions listed on the web [10].
Ramella-Roman et al. (2005) modified mc321 . ¢ to simulate polarized light trans-
port by propagating the Stokes Vector state of a photon [11], and posted the program
on the web [12]. This paragraph does not offer a complete review of all contributions
to Monte Carlo simulations, but provides a brief history of the programming code
that is most widely used in biomedical optics and is freely available on the web.

A small note: throughout this chapter, simple math equations are mixed with
programming language, and often an equal sign, “=", is used when an assignment,
“«7, is the appropriate symbol. The meaning will be obvious, but for those readers
familiar with scientific grammar, the poor grammar is intentional.

5.2 Basic Monte Carlo Sampling

The Monte Carlo simulation of light propagation in tissue requires random selection
of photon step size, scattering angle and reflection or transmission at boundaries.
This is accomplished by a random number [0,1] assigned to the value of a random
variable x, such as photon step size. The relationship is established through the den-
sity function p(x) and distribution function F(x) (see Chapter 3). Given p(x), the
value of the probability distribution function at a particular value x; of the random
variable x is

X1

F(x;) = fp(x)dx = function(xy) (5.1)
0

This F(x;) is equated with a random number, RND, in the interval [0,1]:
RNDy = F(x1) (5.2)

Then Eq. (5.2) is rearranged to solve for x; in terms of RND;. The resulting
expression allows a series of values RND) to specify a series of values x;. The his-
togram of x; values will conform to the probability density function p(x). Figure 5.2
illustrates the procedure.

This process is illustrated in the following section by the random selection of
photon step size, s.

5.2.1 Predicting the Step Size of a Photon

The first example is predicting the step size of a photon between interaction events
(absorption or scattering) as the photon multiply scatters within a tissue. A photon
takes a step (s [cm]) whose length is exponentially distributed, and depends on the
value of the total attenuation coefficient u,[cm~!] equal to pg + ws, where p, is
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Fig. 5.2 A random number
generator [0,1] selects a value
RNDy which is set equal to
the distribution function F(x)
which then specifies the value
x1. The cross hatched area is
equal to RND,|

X
2 |
|
15 !
E 1
0.5
% X, 05 1
X

the absorption coefficient and p; is the scattering coefficient. The value 1/y, is the
photon’s mean free pathlength before either absorption or scattering occurs.

The first step is to specify a properly normalized probability density function that
describes the probability of a particular photon step size s:

P(s) = exp(—pus)/ s (5.3)
such that
o 4] o0
e“ufs
f pis)ds = f ds=1 (5.4)
o . Ht

The second step is to determine the integral of p(s) evaluated at a particular s,
which defines the probability distribution function:

? ? e s
F(sl) = fp(S)dS = [ m ds = 1 -_— e—u’lsl (5.5)
1
0 0
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Fig. 53 Histogram of step x10°

sizes predicted by 1000 25
random numbers using Monte
Carlo sampling (Eq. (5.7)).
N(s) is the number of step
sizes per bin over a range of s
value bins. The value of p, is
1 cm™~}. The bin size of the
histogram is ds; = 0.275 cm.
The curved line is N(s) =
1000 exp(—gues1 sy / s

N(s)

s [em]

The third step is to set F(x) equal to a random number RND,.
RND| = F(s1) = 1 —e™ "% (5.6)
and solve for sq:

- — RND —In(R
5 = In(1 1) _ n(RND1) 5.7
He Hr

The terms (1 — RND,) and (RND) are equal in a probabilistic sense because
of the uniform distribution of the random number between [0,1]. This is the final
answer. A series of random numbers RND; will generate a series of step sizes 51
that follow the probability density function p(s) of Eq. (5.3).

To illustrate, Fig. 5.3 shows a histogram of s; values specified by 1000 RND,
values. The value of , is 1 cm™!. The bin size of the histogram is ds; = 0.275 cm.
Also plotted is the curve N(s) = 1000 exp(—pi,s1)ds;.

5.2.2 Predicting the Photon Launch Point for a Circular
Flat-Field Beam

The second example is predicting where a photon should be launched at a tissue
surface so as to mimic a circular flat-field (i.e., a uniform irradiance) beam of light.
Assume the beam of light is delivered perpendicular to the tissue surface. Also
assume that we are working in cylindrically symmetric Cartesian coordinates. The
Monte Carlo simulation will propagate the photon in 3D using x, y and z coordi-
nates, but we will report out our results only as a function of  and z. Therefore, we
need only specify the radial distance r from the center of the beam where a photon
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should enter the tissue, and the photon can be launched along the x axis by letting

x = r. Assume the beam of light has a radius a.

The number of photons per unit area should be constant. For each radial position
r there is an annular ring of area (27 r dr). Therefore, the number of photons to be
launched at each choice of r should vary as (2mr dr). The total area of the light
beam is wa?. The first step is to specify the properly normalized probability density

function p(r):

2rr 2

ry=——s=—5r
p(r) p, Rl

such that

a a 2
fp(r)dr:/;rdr= 1
0 0

(5.8a)

(5.8b)

The second step is to integrate this p(r), evaluated for a specific r1, and equate to

RND;.
rn 2 r%
—2rdr = —2 = RND]
a a
0

The third step is to solve for ry in terms of RND;:

ry = day/ RND;

(5.9)

(5.10)

Now to illustrate, Fig. 5.4 shows the histogram of 1000 r; values predicted by

1000 random numbers.

700 =
Fig. 5.4 Histogram of radial 600} f ]
position of photon launch to
achieve a circular flat-field 500} _?f
beam of light, perpendicularly N
illuminating a tissue surface. 400} 4
The histogram is predicted by = ;j
1000 random numbers using 2 300
Monte Carlo sampling (Eq. I 1
(5.10)). N(r) is the number of
predicted r positions per bin 200} 1
over a range of r value bins.
The value of the beam radius 100¢
a is 1 cm. The bin size of the

histogram is ds; = 0 |
0.0327 cm. The diagonal line 0 02 04
is N(s) = (1000 2r dr)/a?

0.6
rcm]

0.8
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5.3 The Steady-State Monte Carlo Propagation of Photons
in a Tissue

This section presents the basic form of the steady-state Monte Carlo simulation of
photon propagation in tissues with optical scattering and absorption properties. The
term steady-state means that a stable distribution of light has been achieved, and
there are no time dynamics. Section 5.4 will discuss time-resolved Monte Carlo.

It is convenient to consider the Monte Carlo simulation as yielding the fractional
density matrix of incident light absorbed, A [1/cm?], in response to one unit of
delivered power or energy. The corresponding heat source matrix S [W/cm?] or
radiant energy density matrix W [J/cm?] is obtained by scaling A by the beam power
P or radiant energy Q, respectively, such that

S=PA (5.11a)
or
W=0A (5.11b)

where S(r) [chm3] is the local density of power deposition at r = (x, y, z) in
response to a delivered power P [W], and W(r) [J/em?] is the local density of energy
deposition in response to a delivered energy Q [J].

Also, the simulation keeps track of the escaping flux density out of the front sur-
face to which light is delivered, R, [1/cm?], and out of the rear surface, T+ /cmZ].
The A [1/cm?] is converted into the fractional transport T[iz][ir][1/cm?] within the
tissue, where iz and ir are the indices of the array 7, such that the fluence rate
¢ [W/cm?] and the fluence ¥ [J/em?] are

¢(r) = PI(r) (5.12a)

¥(r) = QT(r) (5.12b)

The following sections will present the algorithm for implementing the
Monte Carlo simulation. The overall algorithm is described by the flow diagram
in Fig. 5.5.

5.3.1 The Input File

The parameters that govern a Monte Carlo simulation must be passed to the pro-
gram before it can run. These parameters can be included in the programming at the
beginning of a simple Monte Carlo code (as inmc321. c, see Appendix), or passed
to a Monte Carlo subroutine from another program (as in mcsub. ¢ [8, 9]) or read
from an input file (as in MCML [4-6]). In Fig. 5.5, these possibilities are referred to
as the “input file”.
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Fig. 55 The flow-diagram
for a steady-state Monte input file

Carlo simulation _1_

aunch

— %
hop
Y
drop
!

> check
| boundaries

spin

™ lerminate?
I

4 N photons?
yes
oulput

In this simple summary of a generic Monte Carlo simulation, a simple homoge-
neous tissue is specified. The tissue parameters to be specified are:

Ma [em™1] absorption coefficient of tissue
us [em™!1] scattering coefficient of tissue

g [-] anisotropy of scattering of tissue
n [-] refractive index of tissue

(5.13)

where [-] denotes [dimensionless]. The above parameters specify an infinite opti-
cally homogeneous medium, and the simulation will track the 3D movement of a
photon over an infinite spatial range. To specify boundaries, for example the front
and rear surfaces of a slab of tissue, the following parameters should be specified:

D [cm] thickness of the tissue slab
nr [=] refractive index of external medium outside front of tissue (5.14)
n, [—] refractive index of external medium outside rear of tissue

The position z = 0 is aligned with the front surface of the tissue slab, and the
rear surface is aligned with z = D. As the program runs, the history of the photon
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is recorded by deposition of “photon weight” into spatially distributed bins, either
A(x, v, ) for fuli 3-D accumulations or A(r, z) for circular symmetric laser beams.
In the example of this chapter, the bins are denoted A[éz][ir] [photon weight/bin].
The grid of bins for recording this A is independent of the photon propagation; which

N; [—] number of z bins (depth)
N; [—] number of r bins (radial position)
dz [cm)] size of z bins
dr [cm] size of r bins

where the bins cover the extent of the tissue,

(5.16)

(5.17)

Typically about 10°~10% photons are launched, depending on how much com-
putation time is appropriate or available. The run time will vary with the optical
properties. As will be discussed in later sections,each photon will take an average
step size of 1/(us + 14) and at each step the photon weight will drop via multipli-
cation by the fraction gt /(s + p15) called the albedo. The weight is initially 1 upon
launching the photon and drops until it reachés a threshold value, THRESHOLD,
which is typically 10~*. The time required to reach THRESHOLD is proportional
to the number of steps, Ngeps, taken by the photon

& ' ' Us Nsteps
THRESHOLD = ( ) (5.18)
e s+ g

and the number of steps required for each photon is

In (THRESHOLD
Neieps = ¢ ) (5.19)

t=N, photons tper.step N, steps (5-20)
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where fpersiep iS the time required per photon step in the simulation. One may
run several example simulations with known values of THRESHOLD, u;, 14, and
Nphotons» and record the time required for each simulation. Then fit the data to solve

fOl‘ Iper‘step .

f .
Iperstep = o (3.21)
P P N, photonsN steps .4:;

For example if it takes 23,0 s to run 10° photons with optical Wues #a =
lem ™!, g =100 em™ usmg THRESHOLD = 107%, then tpersteg is 249":%5 Now,
if one desires a simulation that takes exactly ¢t = 10 min (600 s) for propa;ﬁes Ha =
0.4 cm~1 and p; = 65 cm™ 1, then the choice of Nphotons s

In
t _ ¢ Hoy: 'I' .u'a

Noh =
photons tper.stcpNsteps Iper.step 1IN (THRESH%D)

(65
6005 \65+04
T 249x107%  In(1074)

(5.22)

So one would launch 1.60 million photons for & M}-mm simulation using the
above optical properties. In this manner, the choiee of Npnotons for a given simulation
can be made on the basis of available time, regardleS“s of the optical properties in the

simulation.

Now the Monte Carlo simulation can p?oceed to run.

5.3.2 Launching Photons

Photons are launched with an initia&%yeight (w) set to 1.0. As the photon propa-
bins A[tz][tr] where iz and ir are. mdex pointers to the bins for the depth z and radial
position r, respectively. A Iarggmumber of photons will be launched (Nphotons) and
later at the end of the program aftthe welght deposited in A[zz] [ir], as well as any

Nphotons, such that the final resu]ts are reported as the fI‘aCtIOIl of all delivered light
that is either absorbed, reﬁectgi or transmitted.

The position of the pheten is specified in Cartesian coordinates, (x,yz), and all
the propagation is done nfull 3D. The recording of A[iz][ir] is in cylindrical coor-
dinates, but one CMIH 1mplement Aliz][ix][éy] if desired. If one is using 100x 100
bms for A[zz][:r'? =Qne "heeds only to ﬁll 10* bins with photon welght If one is
weight. Since the signal-to-noise in any b1n is roughly proportional to ~/A/A, it takes
many more photons to attain good signal-to-noise filling A[iz][ix][iy] than filling.
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Aliz][ir]. This is why cylindrical coordinates are often chosen for use. But there is
no reason not to record data as A[iz][ix][iy]. The choice of recording does not affect
the photon propagation.

The trajectory of the photon will be specified by the trajectory cosines
(ux, uy, uz):

ux = cosf cos ¢
uy = cos@ sing (5.23)
uz = cost

where 6 is the angle that the trajectory makes with respect to the z axis, and g is the
angle that the trajectory makes with the x axis.
So let’s launch some photons.

5.3.2.1 Collimated Launch

In this example, photons are launched perpendicular to the tissue and enter the tissue
exactly at the origin (x, y,z) = (0,0, 0). The photon position and trajectory are

X=0()
y=0 (5.24a)
z=0

and
ux =0
uy =0 (5.24b)
uz =1

The photon is directed straight downward, so uz = 1. The values of ux and uy are
zero because no component of the trajectory is directed in the x or y directions.

The case of collimated launch as a flat-field beam, i.e., uniform irradiance, where
the beam has a radius a, was discussed in Section 5.2.2. Photons can be placed along
the x axis according to Eq. (5.10) withy =0,z = 0.

5.3.2.2 Isotropic Point Source

To launch a photon isotropically, i.e., with no preferential direction, at a position
located within the tissue, for example at x = 0, y = 0, and z = 0.1 cm, the launch
specification is:

o=
Il

(5.25a)

&~
i
coo
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and

cosf =2RND — 1

si‘n9=‘/‘ (1 —cos?9) ,

©=27 RND (5.25b)

if (p <)

sing =,/(1 — cos? p) :
else e

sing = —/(1 — cos? ¢)

such that

ux = sinf cosg
uy = sinf sin g
uz = cos@

(5.25¢)

'omly selected such that

Ju +up? +u? Z1 (5.26)

It is necessary for the total length of the___trajecf%ry vector to be unity.

‘The photon is launched at x = 0 and y ='@-because we wish to retain cylindrical

symmetry. If one launched at any other:x,y position the cylindrical symmetry would

be broken. Then the results would have:te etecorded as A[iz] [ix][iy]. The results
recorded as A[iz][#r] would respond 45

JEER

5.3.2.3 Collimated GaussianBeam

L opn=" (5.27)
i T

r = by/— In(RND) (5.28)

To launch a Mw beam when using cylindrically symmetric results, one can
launch the photon at x = r. The launch parameters are:




542
543
544
545
546
347
548
549
550
551
552
553
354
555
556
357
558
559
360
561
562
563
564
565
566
567
568
369
510
51

572
573
574
575
576
377
578
519
380
581

582
583
584

585

5 Monte Carlo Modeling of Light Transport in Tissue 121

x = b/— In(RND)

y=0
z=0
and
ux =190
uy=0 (5.29b)
uz =1

5.3.2.4 Focused Gaussian Beam

Consider the same Gaussian beam but focused to a focal ééinfwithin the tissue at
depth zfocus. Let the focus have a radial Gaussian distribution with a 1/e radius of w.
Then the launch parameters are calculated:

y= - (5.30a)
=0
and A T,
Xfocus = W/ — ln(@@m) sigﬁi@MD -0
temp = x— = ; gﬁ:; 2
p \/(( g 392 focus™) (5.30b)
sinf = —(x — x,
cost = Zfoc.gfftemp
such that ; .
(5.30¢)

There is a tendency in Mo“"ﬁate Carlo simulations using cylindrical coordinates to
not get sufficient photons-in-the bins along the z axis, because the size of each bin
is 27r drdz), so the size of bins near » = 0 is very small, and the likelihood of
photon deposition-in_such a small bin is quite low. During this focused Gaussian
launch, one should:laurich toward both +xocys and —Xfocus POSitions, which forces
the photons to cross the z axis. Doing this causes the bins along the central axis to
not be so neglected, and is accomplished by the extra term sign (2 RND-1) in the
expression for xfoeys. The function sign () has a value of +1 or —1.
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5.3.3 Hop

Now the photon is launched along a trajectory, and takes a step along this trajectory.
The standard procedure for taking the step is described as the “Standard Hop” in
Section 5.3.3.1. But if the tissue has a front and/or rear boundary, then a second step
to “Check boundaries” is taken, as described in Section 5.3.3.2, and if the photon
is attempting to escape the tissue, a procedure is used to decide whether the photon
escapes or is reflected back into the tissue.

5.3.3.1 Standard Hop

The step size of the photon’s step (or hop) must be determined. The step size is
calculated:

s = —In(RND)/ 11, (5.31)
as was described in Section 3.2.1. Now the position of the photon is updated:

XxX=x-+Ssux
y=y+suy (5.32)

Z2=z+Ss5uz

5.3.3.2 Check Boundaries

As part of the Hop step, there is a side box labeled “check boundaries” in Fig. 5.5,
which is used when there are front and surface boundaries in the problem. This
boundary check is denoted by a side box to emphasize that it is part of the Hop step.

As the photon moves toward the front surface of the tissue and attempts to
cross the boundary to escape the tissue, there is a possibility that the photon will
be reflected by the surface boundary where the air/tissue interface (or external
medium/tissue interface) presents a mismatch in refractive indices (nf # nor
ny # n, for front and rear boundaries, respectively). The method chosen here for
handling the boundary is to let a fraction of the photon weight escape the tissue as
observable reflectance, and let the remaining fraction of photon weight reflect back
into the tissue and continue to propagate.

After taking the step, the position of the photon is checked to see if the photon is
still within the tissue or has escaped the tissue:

Ifz<0
hoton is trying to escape
else P . ’ (5.33)

photon still within tissue

If the photon is trying to escape, then a partial step is taken along the escaping
trajectory that will just reach the boundary surface. The size of the partial step s is
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51 = abs(z/uz) (5.34)

where abs() denotes the absolute value function. First, the photon retracts the full
step it took in Hop, which led to escape,

X=X—5Ux
y=y—swy (5.35a)
I=Z— SUuz

and then the photon takes the partial step s,

x=x+4 85 ux
y=y+siuy (5.35b)
Z=z+suz

Now the photon is located at the boundary surface. Next, a decision is made about
how much of the photon weight escapes or how much is reflected.

The probability of reflectance at the boundary is a function of the angle of inci-
dence, encoded as the value uz, and the refractive indices n; and n, where n; denotes
the external medium and equals either n¢ or n, for the front and rear boundaries,
respectively. Consider a photon striking the front surface. The internal reflectance,
R;, is calculated using the Fresnel reflection equation:

__ sin@2 (sin ) cos By — cos B sin6;)?

R;
2 : 5.36)
((cos 8, cos b + sin ) sin ;)2 + (cos 6 cos by — sinfy siny)?) O
((sin 8 cos@; + cos 6 sin 6)% (cos 8) cos 6 + sin 8 sin 02)2)
Whel'e =
n refractive index of incident medium = Nyissue
na refractive index of transmitted medium =Ny
cost incident trajectory =uz
sin6; incident trajectory = (1 —uz?)!/?
sin &, transmitted trajectory = sin6(n /n3)
cos6, transmitted trajectory = (1 —sin6?)!/2

Once the reflectance R; is computed, a fraction (1 — R;) of the current pho-
ton weight is allowed to escape and the remaining fraction of weight is reflected
back into the tissue to continue propagating. The escape is recorded by placing its
remaining weight in the reflectance array bin, R,[ir],

Ry =R, [ir] + (1 — Rj)w (5.37)
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where the radial position of escape is r:

= V& +y (5.38)

ir = round(r/dr) + 1

The function round(#/dr) denotes taking the 1nteger value of the value r/df,gomd

Not mentioned here but 1mportant in programmmg isthata checlc%hould%e made
that ir does not exceed Nr, the allocated size of Rr[ir].)
The remaining fraction of the photon weight is reflected by the Boundary,

w= Ryw (5.39)
and the trajectory with respect to the z axis is reversed,
I = —uz (5.40)

The ux and uy components of the trajectory are ngimégffﬁiged Then the photon
position is updated by taking the remaining portnog fﬁle engmal step, which equals
s — 1

y =(s— g;a)ux
(s - S'l)uy““ (5.41)

Some of the photon weight has escaged the boundary and some has been reflected
by the boundary back into the tissue to continue propagating.

The procedure for testing if the photon is attempting to escape the tissue through
its rear surface boundary and contributing to 71iz]lir], and for modifying the posi-
tion and trajectory accordingly,:is very similar to the above procedure for the front
surface, and is not outlined lﬁrc If one wished to pIace other boundaries in the

534 Drop -

Arriving at its new-position, the photon must interact with the tissue. Upon interac-
tion, a fraction Mal&;g of the photon’s weight is absorbed and the remaining g/,
fraction of the photon’s weight is scattered and continues to propagate. The absorbed
fraction is placed:in-the bin that encloses the current photon position. This process
is summarized by the following calculation steps:
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r=,/x2+y2

ir=round(r/dr) + 1

iz=round(z/dz) + 1 (5.42)
Aliz)[ir] = Aliz]lir] + w(pa/pe)
w=w(fLs/pr)

where ir and iz are index values and dr and dz are bin width and depth, respectively.
This finishes the absorption event.

Note that ir and iz should not be allowed to exceed N, and N, respectively, lest
one exceed the allocated size of A[iz][ir]. Always check this. Often, the last bin is
used as an overflow bin and any photon weight that is deposited outside the array is
simply accumulated in the last iz,ir bin. At the end of the simulation, the values of
weigth in Rr{ir], Trlir] and A[iz][ir] are the fraction of total delivered photon weight.
The sum of Rr{ir], Tr{ir] and Aliz][ir] over all bins divided by Nphotons Will equal
unity. In Section 5.3.7, the proper normalization of these fractional weights by the
size of the bins will convert Rr and 77 into the fraction of delivered power or energy
escaping per unit surface area and convert A into the fraction of delivered power or
energy deposited per unit volume. But the values of Rr, Tr and A determined from
the overflow bins are meaningless after normalization.

Next, is the scattering event.

5.3.5 Spin

The photon is scattered into a new trajectory according to some scattering func-
tion. The two angles of scatter are 6 and ¢ , the deflection and azimuthal scattering
angles, respectively. This section describes how to calculate the new trajectory after
sampling the probabilities for # and .

The most commonly used function for the deflection angle 6 is the Henyey-
Greenstein (HG) function (1941), which was proposed for describing the scattering
of light from distant galaxies by galactic dust. The original paper does not offer
any explanation for the function, but simply asserts its use. But the HG function
is actually very interesting. The function is here expressed as a function of the
angle of deflection, @, and the anisotropy of scattering, g. Using the definitions in
Chapter 3 (Section 3.4.3.1) where the probability density functions for p(¢) and p(6)
are considered independently:

Yoo — - 1-g (5.43)
2(l+gz—2gc059)3/2 ‘

which has the properties that

b 4
[p(@) 2w sinfdf = 1 (5.44a)
0
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and

b/ 1

fp(@)cos 02 sinfdf =g (5.44b)
0

The last equation is the definition of g. Hence, the HG function is an identity with
respect to the definition of g. If you choose a value g to define p(@) using Eq. (5.43),
the definition of g in Eq. (5.44b) will yield exactly g.

The Monte Carlo sampling of the HG function is specified by the following
sequence of calculations:

2

1 + g2 ( Sk )
¢ (1 — g + 2gRND)3/2
2g

cos(f) = (5.45)

If g is 0, then use cos = 2 RND — 1. If g is 1.0, then simply let cos8 = 1.0.
Otherwise, use the Monte Carlo sampling in Eq. (5.45).
The azimuthal angle is calculated:

¢ = 2RND (5.46)

To update the trajectory based on the values of cosf and ¢ specified using random
numbers, use the following calculations:

sinf = (l — cos 62)

temp= /(1 — uz?)
. " 5.47
uxx = sin6 (uxuz cos ¢ — uysin ¢)/temp + uxcosf ; 2
uyy = sin 6 (uy uz cos ¢ — uxsin ¢)/temp + uy cos 6

uzz= —sinf cos ¢ temp + uz cosf

If the trajectory is extremely close to alignment with the z axis, i.e. nearly
(uz, uy, uz) = (0,0,%1), do not use Eq. (5.24) above, but instead use:

uxx = sinf cos ¢

uyy = sinf sin ¢
ifuz>0

uzz = cost (5.47h)
else

uzz= —cosf@
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Finally, one updates the trajectory:

UX = UXX
uy = uyy
Uz = Uz

The photon is now oriented along a new trajectory, and ready to take a new step
s (see Fig. 5.5).

There are alternative scattering functions. Mie theory is an important scattering
function to consider. Perhaps an experiment has yielded a particular scattering func-
tion, and one wishes to run a simulation using this function. This chapter will not
discuss these alternatives, but as long as the criteria of Eqs. (5.44a, b) are followed,
most any scattering function for the deflection angle # can be used. Sometimes
the scattering function does not lend itself to a solution of cosf in terms of a ran-
dom number, as in Eq. (5.3). Also, sometimes one wishes to consider an azimuthal
scattering angle ¢ that depends on the deflection angle 6, as in Mie scattering of
polarized light. In such cases, the “rejection method” is a useful approach [10].

5.3.6 Terminate?

The photon will continue propagating as its weight becomes progressively smaller.
How can one stop the photon yet properly conserve energy? The “Roulette Method”
is used to terminate the photon. A threshold value (THRESHOLD) is chosen, typi-
cally 10~*. When the photon’s weight drops below this threshold value, the roulette
procedure is employed. A random number (RND) is generated; and if this random
number is less than a small fraction called CHANCE, typically 0.10, then the photon
weight is increased by dividing w by CHANCE. For CHANCE = 0.10, this would
be a 10-fold increase in w. Otherwise, the photon is terminated. Consequently, 9
out of 10 times the photon is terminated, but 1 out of 10 times the photons weight
is increased 10-fold and the photon continues to propagate. The result is that pho-
tons are usually terminated, but energy is conserved by the occasional surviving
photon being given extra weight. Since millions of photons are run, the statistically
averaged result is correct. In summary, the roulette method is implemented by the
following:

if(w < THRESHOLD)
if(RND <= CHANCE)
w = w/CHANCE (5.49)
else
terminate the photon

Once the photon is terminated, a new photon can be launched. One checks
to see if the total number of photons has already reached the maximum number
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(Nphotons) requested by the input file. If not, then a new photon is launched. If yes,
the simulation is complete, and it is time to prepare the results for output.

5.3.7 Normalizing Results for Output

Now, all the photons (Nphotons) have been run, and it is time to save the output
of the simulation. The data has been stored in the array A, as A[iz][ir] or perhaps
Aliz][ix][iy], in units of [photon weight/bin]. Either way, the key parameter is the
volume V [cm?] associated with each bin. For Aliz][ir], the volumes vary with the
value of ir,

V = 2x(ir — 0.5)dr?dz (5.50a)
and for A[iz][ix][iy], the volumes are all equal,
V =dxdydz (5.50b)

Then the values A [photon weight/bin] are normalized by the appropriate V and
by the value Nphotons to yield the absorbed fraction, A [1/cm?], for each pixel:

A ir, iz]
Alir, iz] = 5.51
i V lir, iz] Nphotons ( )

The fractional transport, T [1/cm?], is then calculated as

T=— (5.52)
Ha

Recall from Eqs. (5.12a, b) that fluence rate ¢ [W/cm?] equals the incident power
P [W] times T, ¢ = PT, and the fluence v [J/cm?] equals the incident energy Q [J]
times T, ¢ = QT.

Keep in mind that the values of A, V and p, are specific to each bin, when calcu-
lating T [iz][ir] or T [iz][ix][iy]. In this summary of a simple implementation of the
Monte Carlo method, the u, was assumed to be uniform, as well as the scattering
properties, so every bin had the same value of j,. But in MCML, for example, bins
at different depths can have different values of .

The light fluxes that have escaped at the front and rear surface boundaries are
similarly normalized, but in this case the surface area AREA rather than the volume
Vis used. The value of AREA[ir] is 27 (ir — 0.5)dr?. The array of escaping pho-
tons, R,[ir] [photon weight/bin], is converted to the fractional escaping flux density,
R/ [ir][1 /cmz], by the expression:

R,

=— (5.53
AREA N, photons )

r

This completes the discussion of the steady-state Monte Carlo simulation. The
output is the fractional transport, T [iz][ir][1/cm?], and the fractional escaping flux
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2
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Fig. 5.6 Example steady-state Monte Carlo simulation. The optical properties were
ta = lem™!, pg = 100cm™!, g = 0.90, n = 1.4, for a 1-mm-thick tissue slab with air/tissue
boundaries at front and rear surfaces. There were 10° photons propagated during a run time of
3 min 49 s on a laptop computer (2 GHz processor). (a) Iso-T contours for 20, 30, 40, 100, 200
and 10% 1/cm?], T denotes the fractional transport, The noise is evident along the central axis near
r = 0 because the bins are smaller and collect fewer photons. Running more photons improves the
signal-to-noise. (b) The reflectance (R,) and transmission (7,) as flux densities of escape [1/cm?]
versus radial position r at front and rear surfaces, respectively

densities, R,[ir][l/cmZ] and T, [ir][1 /cmz]. This discussion ends with one example
calculation shown in Fig. 5.6, showing 7, R, and T, for a 1-mm-thick slab of tissue,
with light delivered as a pencil beam of collimated light at the origin: (x,y,z) =
(0,0,0), (ux, uy, uz) = (0,0, 1).

5.4 Time Resolved Monte Carlo Propagation

Time-resolved Monte Carlo simulation is almost identical to the steady-state simu-
lation discussed above, except for some minor changes. There are actually several
ways to implement time-resolved Monte Carlo, and this section shows one approach
that illustrates the basic idea.

In this example, the photon is allowed to propagate with no absorption, and the
total path of the photon is accumulated after each step s throughout the propagation:

L=L+s (5.54)
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Since there is no absorption, i, = 0 and u; = u;. Since the speed of light is c,
the time duration of the propagation is:

=

Y v

(5.55)

where ¢ is the speed of light in the tissue, ¢ = ¢,/n where ¢, is the speed of light in
vacuo. The time for a photon to escape out the front surface is determined from its
total pathlength L at the moment of escape divided by c.

Assume that one is interested in a set of 10 time-points, #{if], whére it =1 — 10 is
an index that refers to the desired time-point. Let the first time-point, #{1], be 100 ps.
Propagation is allowed to continue until the next photon step causes L to exceed the
pathlength corresponding to 100 ps,

L+ s> tlit]/c (5.56)
where #[1] = 100 ps for this example. At this point, a partial step size, 51, is taken,
sy = tit]fc — L T . (5.57)

The photon is now located exactly at the time-point of 100 ps. The current photon
weight w is deposited in the bin A[iz][ir][it], where [if} selects a full 2-D A[iz][ir]
array associated with each particular time point. The entire photon weight (w = 1)
is placed in the local bin, but the weight of the photon is not decremented, The bin
Aliz][ir][it] takes a snapshot of the photon’s location and weight, but does not affect
the photon. There is no absorption. The photon is allowed to continue propagating.
The remainder of the step size, s — 51, is taken by the photon. The photon continues
to propagate as usual, until a next step causes L to exceed the 2nd time point, {2].
The process of taking a partial step, depositing w into A[ir]{iz][if] without changing
the w of the photon, completing the step, and resuming propagation is executed.
The process continues until L passes the last desired time point, then the photon is
terminated and a second photon is launched.

During propagation, when a photon strikes one of the boundaries, a fraction
(1 — R;) of the current photpn weight will escape, and the photon weight will decre-
ment. The new photon weight, R;w, will internally reflect and continue propagating.
The escaping photon weight will be placed in the bin R, [ir][jt],

R [irlljil = R [irl(ji] + (1 — Rw (5.58)
where jt is an index that encodes the time of escape, and may be divided into

equal time steps, dt [s], that cover the time duration of interest. The current jt is
computed:

Jt=round(t/dt) + 1 (5.59)
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As an example of evenly divided time bins, if the time duration of interest was
from 10 ps to 1 ns, then dt would be 10 ps and jt would extend from 1 to 100. An
alternative approach is to have progressively larger dt bin sizes, so the time base can
extend from very short times to very long times, which is not discussed here.

Finally, after Nphotons have been launched and terminated, it is time to normalize
the bins A and R, for final output. For each time point, [if], conservatlon of energy
in terms of photon weight is summarized:

it
1 Y3 ALl + Y RAirlli) | =1 (5.60)

N,
photons | 3" ji=1

The above calculation is not routinely needed, but is only a chﬁck that energy is
conserved. The final normalization is

A
T=¢c—m— e (5.61)
14 Nphotons

which has units of [1/(cm? s)]. The time-resolved fluence rate, [W/cm?] in response
to an impulse of energy Q [J] delivered at time zero is:

¢ =0T (5.62)
The escaping flux density, R,[1/(cm? s)], is normalized:

R,
R, = 5.63
"7 AREA Npnguons df (5.63)

Both A[iz][ir][it] and R,[ir][it) wilk have good signal-to-noise in regions near the
source where most photons spend their time, and poor signal-to-noise in regions far
from the source. It is difficult to get good results far from the source even when a
large number of photons are lannched. Usually, time-resolved Monte Carlo simula-
tion is used to specify results close to a source, and time-resolved diffusion theory
is used to specify results at far distances from the source.

Now that the Monte Carlo simulation is completed, absorption can be added to
the problem. The attenuation due to absorption is specified by Beer’s law which
says that photon survival equals exp(—p4cr), since the cf equals the photon’s total
pathiength L at any particular time ¢. Therefore,

(1) = QT(ne (5.64)

and

R (1) _
R.(t) = HeaCt X
") = 2REA Nonotons 4t (3.65)
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Fig. 5.7 Time-resolved propagation of a collimated laser impulse launched at » = 0, z = 0 into
a 1-mm thickness of a standard tissue. The thickness represents ~10 optical depths for optical
properties of y, = 1 cm™!, p; = 100 cm™!, g = 0.90, n = 1.4. The four time points are 1, 2, 3
and 4 ps. The maps are iso-T contours, where T is the time-resolved fractional transport [1/(cm? s)).
The influence of u, is minor, for example, exp(—p4cr) is only 0.92 when 1 = 4 ps

In this way, any value of i, can be introduced to learn its influence on the time-
resolved distribution of 7(¢) or R.(1).

To illustrate time-resolved Monte Carlo, an example of snapshots of T [iz][ir] at
4 time-points is presented in Fig. 5.7, which illustrates the early movement of an
incident laser pulse into a tissue. The narrow beam laser pulse broadens with time
due to scattering.

Figure 5.8 shows an optical fiber embedded within a tissue and terminating at
a depth of 500 wm, delivering light toward the surface. As the light reaches the
surface, the time-resolved escape of fractional flux density, R,(t,7)[1/(cm? s) is
shown.

0

0.02+
= 0.04}
5
~ 0.06}

0.08+
at2.0ps

i TR

0 200 400 800 800
rlem]

X [cm]

Flg 5.8 Time- resolvcd escape of a laser pulse from within tissue. The optical properties were

= 100ecm™", g = 0.90, ngssye = 1.33. The impulse is delivered toward the surface from an
optlcal fiber terminated at a depth of 500 pm within the tissue and pointed toward the surface. (a)
Impulse at time 2 ps, shown as 7 [1/(cm?s)], maximum is 1.27 x 10, (b) The escaping fractional
flux density versus radial position at different times, R.(t, 7)[1/(cm? s)]




1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1097

1098

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

i

1112

1113

1114

1115

1116

1117

1119

1120

1121

1122

1123

1124

1125
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5.5 Converting Time-Resolved Results to Frequency-Domain

When the intensity of a light source is modulated at very high frequencies, the abil-
ity of the frequency of modulation to transport to some position of observation is
described as frequency domain light transport. Time-resolved information generated
by a time-resolved Monte Carlo simulation can be converted by Fourier Transform
into frequency domain information. '

Consider the time-resolved escape of fractional flux density, R.(¢, r)[1/ (cm? s)],
when light is delivered as a collimated impulse to position (r, z) = (0,0) on a tissue
surface. The light enters the tissue, but due to scattering begins to escape from the
tissue after some delay. This time-resolved R,(t, r) is shown in Fig. 5.9a, for a typical
tissue. As the position of observation moves from 1 mm to 6 mm distance from the
source, the time delay before onset of escaping flux increases, and the amount of
light escaping decreases.

1 mm B

1 ‘“)a 2 mm

10 3Imm

= 05 L[4 mm

o =10 |5mm
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Fig. 5.9 Frequency domain light transport, showing how light modulated at different frequencies
and delivered as a collimated beam to position (r,z) = (0,0), will escape from the tissue as a
function of radial position. (a) The time-resolved escape of light from the tissue, R,[1/ (cm2 s)] for
r = 1 — 6 mm. (b) The fractional power spectrum [1/cm?] versus frequency f [1/s]. The optical
properties of the tissue were u, = lem™!, ugy = 100cm™!, g = 090, n = 1.4, and 107
photons were launched during a 35-min simulation. The data at the higher frequencies for the most
distant radial positions were based on low photon weights and show artifactual oscillations. (¢)
Normalized fractional power versus frequency
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The corresponding frequency domain information is obtained by using a Fast
Fourier Transform (fff) to convert the time-resolved R,(z, r) escaping at a particular
radial position r, denoted as R,(t), into the frequency domain:

F(f) = abs(fft (R,(1)d)) (5.66)

where dt is the time-step of the time-resolved data. The absolute value converts the
imaginary values generated by the ff#() into real values that correspond to the power
spectrum, expressed as the fractional power F [1/cm?]. In other words, if the source
was modulated at a frequency f [1/s], the function F would specify the fractional
escaping flux, R,[1/cm?], that was still modulated at frequency f. Figure 5.9b shows
this power spectrum. The limiting values toward low frequencies of modulation
correspond to the steady-state reflectance R,(r)[1 /cm2], which is why the factor dt
was included in the above equation.

To illustrate the above equation more specifically, the equivalent programming
code written in MATLAB™ notation is listed:

mua = 1; % absorption coefficient [em™-1]

mus = 100; % scattering coefficient [cm"-1]

g = 0.90; % anisotropy of scattering [dimensionless]
n = 1.5; % refractive index [dimensionless]

dt = le-12; % time step of time-resolved data [s], in this case dt = 1 ps.
t = (1:100)'%dt; % time base of Monte Carlo data [s], up to 100 ps
r = (1:100)*/100+1.0; % radial position of Monte Carlo data [cm], up to 1 cm
Rr = getRrMonteCarlo(t,r,mua,mus,g,n); % get Monte Carlo data [1l/cm2/s],
not shown

N = 2048; % adds zeros to end of time-resolved data, for padding the transform

f = (1:N/2)'/N/dt; % the x-axis frequency of the power spectrum
ir = 10; % selects one radial position r(ir)
F = abs(fft(Rr(:,ir)+dt, N)); % Rr(:,ir) is the time-resolved Rr(t) at r(ir)

plot(f, F) % the plot command yields the power spectrum in [1/cm”™2]

The original data R,(t, r) has 100 time-points, but the ff1() operates best when the
number of data points is a multiple of 2. Therefore, zeros are added to the end of
the data, which is called padding. Adding more zeros causes the result to have more
points, so the curves look smoother. In this case 1948 zeros were added to yield a
final 2048 data points. The above program yielded Fig. 5.9b. Figure 5.9c normalizes
the data by the DC value of Ry, so as to emphasize the shape of the power spectra.

Note in this example that light escaping at 1 mm from the source has higher
frequency content than light escaping at 6 mm from the source. In practical fre-
quency domain measurements, the detection of light transport is usually made at
least 10 mm from the source, where diffusion theory suffices to describe light
transport, and the frequency content of interest is in the hundreds of MHz [1/s].
This example shows how time-resolved Monte Carlo data can be converted to the
frequency domain to address questions where diffusion theory is inadequate.
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5.6 Summary

Monte Carlo simulations are a relatively simple and flexible method for exploring
the behavior of light transport in biological tissues or other media with average
absorption and scattering properties. The simulations are like experiments involving
a number of photons (Nphotons) and hence the simulations take time to execute. Some
simulations take only a minute, and others take hours or even days. If you are trying
to fill small bins with rare photons, the simulations take a lot of time. But common
problems take about 10 min or less to get a good result.

The strength of Monte Carlo simulations is to treat situations where diffusion
theory, or some other analytic expression of light transport, fails. It is not the proper
tool for every job.

5.7 Appendix: mc321.c

A simplest version of a Monte Carlo simulation, called mc321 . c, is listed below.
The program can be downloaded from the web [8], but since websites may change,
the program is listed here as an archival example, and as an easy reference while
reading this chapter. This program does not consider escape across boundaries, but
shows the basic format of photon propagation, recording and normalization. The
output of this program is plotted in Fig. 5.10:

Fig. 5.10 The data in
mc321.out, produced by
mc321. ¢, plotted using a
separate graphics program.
The spherical transport from
a point source, the cylindrical
transport from a line source,
and the planar transport from
a planar source are shown
versus the distance, r, from
the source

rfem]

'/*i*tt*****t*t**i***tt*t**i**t**\'********t*t*

* mc32l.c , in ANSI Standard C programming language

*

* Monte Carlo simulation yielding spherical, cylindrical, and planar

* responses to an isotropic point source (equivalent to a plane source,
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1216 - line source, and point scurce, respectively) in an infinite homogeneous
1217 - medium with no boundaries, This program is a minimal Monte Carlo
1218 * program scoring photon distributions in spherical, ¢ylindrical,
1219 * and planar shells. 3
1220 *
1221 * by Steven L. Jacques based on prior collaborative work i
1232 ” with Lihong Wang, Scott Prahl, and Marleen Keijzer.

1223 * partially funded by the NIH (R29-HL45045, 1991-19%7}) and

1224 * the DOE (DE-FG05-91ER617226, DE-FG(03-95ER61971, 1991-1999).

1225 *

1226 * A published report illustrates use of the program:

1227 * 2., L. Jacques: °"Light distributions from point, line, and plane
1228 * gources for photochemical reactions and fluorescence in turbid
19 +  biological tissues,® Photochem. Photobiol. 67:23-32, 1998.

1230 FwE kR hown )

1231

1232  #include <math.h>

1233 #include <stdio.h>

1234

1235 #define Nbinsg 500

1236 #define Nbinspl 501

1237 #define PI 31.1415928

1238 #define LIGHTSPEED 2.997925E10 /+ in vacﬁo'speed of light [cm/s] =/

1239 #define ALIVE /+ if photon not yet terminated +/

1240 #define DEAD /+ if photon is to be terminated =/

1
¢
1241  #define THRESHOLD 0.01 /% used in roulette »/
]
1

1242 #define CHANCE W1 /+ used in roulette «/

1243 #define COS90D .QE-6

1244 /+ If cos{theta) <= CO0S8%0D, theta >= PI/2 - le-6 rad. w/

1245  #define ONE_MINUS_COSZERQO 1.0E-12

1246 /= If l-cos{theta) <= ONE_MINUS COSZERO, fabs(theta) <= le-6 rad. =*/
1247 /+ If l+cos(theta) <= ONE_MINUS_COSZERO, fabs(PI-theta) <= le-6 rad. =/
1248 #define SIGN{x) ({x)>=0 ?.1:—1}

1249 #define InitRandomGen {double} RandomGen(0, 1, NULL)

1250 /+ Initializes the seed for the random number generator. +/

1261  #define RandomNum {double} RandomGen{l, 0, NULL)

1282 /* Calls for a random number from the randum number generator. =/

1253

1254/« DECLARE FUNCTION =/

1255 double RandomGen(char Type, long Seed, long sStatus);:
1256 /+ Random number generator w/

1257 main() {

1258

1259 /+ Propagation parameters «/

1260 double x, v, z; /+ photon position =/
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double ux, uy, uz; /+» photon trajectory as cosines =/

double wuxx, uyy, uzz; /* temporary values used during SPIN =/

double s; /+ step sizes. s = -log(RND)/mus [cm] »/

double costheta; /* cos(theta) =/

double sintheta; /+ sin(theta) =/

double cospsi; /* cos{psi) x/

double sinpsi; /v sin(psi) =/

double psi; /+ azimuthal angle +«/

douk:le i_photon; /* current photon */

double W; /+ photon weight «/

double absorb; /* weighted deposited in a step due to absorption +/
short photon_status; [+ flag = ALIVE=1 or DEAD=0 +/

/+ other variables =/

double Csph[Nbinspll; /* spherical photon concentration CC[ir=0..100] =*/
double Coyl[Nbinspll; /* cylindrical photon concentration CC[ir=0..100] «/
double Cpla[Nbinspll; /* planar photon concentration CC[ir=0..100] =/
double Fsph; /*» fluence in spherical shell =/

double Fcyl; /+ fluence in cylindrical shell +/

double Fpla; /* fluence in planar shell =«/

double mua; /+ absorption coefficient [em™-1] =/

double mus; /+ scattering coefficient [cm™=-17*/

double g; /f anisotropy [-] */

double albedo; /+ albedo of tissue +/

double mnt; /+ tissue index of refraction «/

double Nphotons; /+ number of photons in simuplation =*/

short NR; /+ number of radial positions =+/

double radial_size; /+ maximum radial size «/

double x;: /+ radial positdon ~/

double dr; /+ radial bin size +/

short ir; /* index to radial position =/

double shellvolume; /+ volume of shell at radial position ¢ =/

double CNT; /+ total count of photon weight summed over all bins +/

/+ durmy variables «/

double rnd; f*
short i, Js FA
double wu, temp; FA
FILEw target; [/
/*xw+ INPUT

assigned random value 0-1 =/
durmy indices «/
dummf%variables -/

point to output file =/

Input the optical properties

Input the bin and array sizes

Input the number of photons

*w ko /

137
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mua = 1.673; /+* cm™-1 */

mus = 312.0; /+ em™-1 «/

g = 0.90;

nt = 1.33;

Nphotons = 10000; /» set number of photons in simulation «/

radial_gize = 2.0; /* cm, total range over which bins extend */

NR = Nbins; /+* set number of bins. «/

/% IF NR IS ALTERED, THEN USER MUST ALSC ALTER THE ARRAY DECLARATION TO A

SIZE = NR+1. +/
dr = radial_size/NR; /+* cm */

albedo = mus/,/ {mus + mua) ;

fxx+x INITIALIZATIONS
.y

i_photon = 0;
InitRandomGen;

for (ir=0; ir<=NR; ir++) {

Csphlir] = 0;

Ceoyllir] = 0;
Cplalir] = 0;
}

/*¥*xx RUN

Launch N photons, initializing each o

*kEkhk )

do {

/* %%+ LAUNCH k
Initialize photon position and traﬁ”%ry.

Implements an isotropic point sScurce.

kdkkw ]

i_photon += 1; /* increment phot'bn cbunt */
if ( fmod(i_photon, Nphotong/id) “== )
printf("%0.0f%% done\#", i_photon/Nphotens=100)

V'/* set photon weight to cne «/

W=1.0;
photon_status = ALIVEj /* Launch an ALIVE photon #/
= 0; /+ Set photon position to origin,
0;
= 0;

«/

/* Randomly set ﬁhﬁton trajectory to yield an isotropic source, =/

costheta = 2.(0+RandomNum - 1.0;
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1351 sintheta = sagrt({l.9 - costhetascostheta); /+ sintheta is always positive =/
1352 pai = 2,0+PI+RandomNum;
1333  ux = sinthetavcos{psi};

1384 uy sinthetaxsin{psi);

1335  uZ costheta;

1356
1337 /+ HOP_DROP_SPIN_CHECK

1358 Propagate one photon until it dies as determined by ROULETTE.
1350 wawkwenx/

1360 do {

1361

1362 /*wxw HOP

1363 Take step to new position
1364 8 = step size
1365 ux, uy, uz are cosines of current photon trajectory

1366 dok e

1367 while ({(rnd = RandomNum) <= (.0}; J* yields 0 < rnd <= 1 +/

1368 s = -log{rnd)/i{mua + mus); /* Step size. Note: log{) is base e «/
1369 X += 5 * ux; /+ Update positions., «/

1370 Y += 5 *» uy;

1371 Z += 8 * Uz;

1372 /x%x»» DROP

13713 Drop photon weight (W) into local bin.

1374 kwhk ]

1375 absorb = Wr (1 - albedo); /* photon weight absorbed at this step =/
1376 W -= absorb:; /* decrement WQIGHT by amount absorbed «/
1377

1378 /+ spherical +/

1379 r = sgqrt(x»x + ywy + zwz); /= current spherical radial position «/
1380 ir = (short) {r/dr); /* ir = index to spatial bin =/

1381 if {(ir >= NR) ir = NR: /. last bin is for overflow w/

1382 Caph(ir] += absorb; Z#:DROP absorbed weight into bin «/

1383 ‘

1384 /* cylindrical «/

1385 r = sqgrtixex + ywy}; ¥ /* current cylindrical radial position =/
1386 ir = (short) (r/dr); /+ ir = index to spatial bin +/

1387 if (ir »= NR} ir = NR; /* last bin is for overflow =/

1333 Ceyllir] += absorb; /* DROP absorbed weight into bin «/

1389

1390 /+ planar =/

1391 r = fabsi{z): /+ current planar radial position »/

1392 ir = (short} (r/dxr); /+* ir = index to spatial bin =/

1393 if {ir >= NR} ir = NR; /+ last bin is for overflow */

1394 Cplalir] += absorb; /+ DROP absorbed weight into bin =/
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1396 /+xxx SPIN

1397 Scatter photon into new trajectory defined by theta and psi.
1393 Theta is specified by cos{theta), which is determined

1399 based on the Henyey-Greenstein scattering function.

1400 Convert theta and psi into cosines ux, uy, uz.

1401 kxkwkKh/
1402 /+ Sample for costheta «/
1403 rnd = RandomNum;

1404 if (g == 0.0)

1405 costheta = 2.0»rnd - 1.0;

1408 else {

1407 double temp = (1.0 - g»g} /(1.0 - g + 2+g~rnd};

1408 costheta = (1.0 + grg - temprtemp)/(2.0%g);

1409 }

1410 sintheta = sgrt(l.0 - costhetarcostheta); /+ sgrt{) is faster than sin{). =/
1411 /* Sample psi. »/ e

1412 psi = 2.0+PI+RandomNum;

1413 cospsi = cos{psi):

1414 if (psi < PI)

1415 sinpsi = sqgrt(l.0 - cospsi+cospsi); /*= aqgrt() is faster than sin{). =/
1416 else

1417 sinpsi = -sqrt(l.0 - cospsircospsi);

1418

1419 /+* New trajectory. «/

1420 i€ (1 - fabs{uz) <= ONE_MINUS_COSZERO) { /* close to perpendicular. «/
1421 uxx = sintheta + cospsi;

1422 uyy = sintheta « sinpsi;

1423 uzz = costheta ~ SIGN(uz}; /+ SIGN(} is faster than division. =/

1424 }

1425 else { /+ usually use this option «/
1426 temp = sqgrt{l.0 - uz = uz);

1427 uxx = sintheta » {ux » uz cé@;:gi - uy » sinpsi) / temp + ux + costheta;
1428 uyy = sintheta  (uy + uz » cospsi + ux » sinpsi) / temp + uy * costheta;
1429 uzz = -sintheta » cospsi » temp + uz * costheta;

1430 }

143t

1432 /+ Update trajectory +/

1433 UX = uxx;

1434 uy = uyy;

1435 uz = uzz;

1436

1437 /++xw CHECK ROULETTE
1438 If photon weight below THRESHOLD, then terminate photon using Roulette
1439 technique.
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Photon has CHANCE probability of having its weight increased by factor of

1/CHANCE,

and 1-CHANCE probability of terminating.

kkhw )

if (W < THRESHOLD) {
if (RandomNum <= CHANCE)
W /= CHANCE;

else photon_status = DEAD;

}

} /+ end STEP_CHECK_HOQP_SPIN «/

while (photon_status == ALIVE):

/+ If photon dead, then launch new photon. +/

} /+ end RON «/
while (i_photon

/wkwx SAVE
Convert data

< Nphotons) ;

to relative fluence rate [cm™-2] and save to file called

"mcmin32l.out".

I TTET Y

target = fopen|

/* print header
fprintf (target,
fprintf (target,
fprintf (target,

/+ print column

fprintf (target,

/+ print data:

mc32l.out”, "wh);

*/
"number of photons = %f\n“, Nphotons);
*"bin size = %5.5f [cm] \n", dr}:

"last row is overflow. Ignore.\n");

titles =/
"r [em] \t Fsph [l/em2] \t Fcyl [l/cm2] \t Fpla [l/cm2l\n"};

radial position, fluence rates for 3D, 2D, 1D geometries =/

for (ir=0; ir<=NR; ir++) {

f+* r = sqro(l.0/3 - {ir+l} + (ir+l)«(ir+1})+dx; =/
r = {ir + 0.5} +dr;

shellvolume

= 4.0+PIx¥+r«dr; /* per spherical shell «/

Fsph = Csph[ir]/Nphotons/shellveolume/tua;

shellvolume

= 2.0*PIxr«dr; /+ per c¢m length of cylinder =/

Foyl = Ceyl!lir] /Nphotons#shellvolume/mua;

shellvolume = dr;

/+ per cm2 area of plane »/

Fpla =Cplalir) /Nphotons/shellvolume/mua;

fprintf (target,

)

fclose(target};

141

"%5.5f \t %4.3e \t %¥4.3e \t %4.3e \n", r, Fsph, Fcyl, Fpla);




1486

1487

1488

1489

14%0

1491

143

1493

1454

1495

1496

1497

1498

1499

1500

1501

1502

1503

1304

1505

1508

1509

1510

151

1512

1513

13514

1515

1516

1517

1518

1519

1320

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

142

S.L. Jacques

} /« end of main */

fxxhkkn
*
*

*

*
W f
#define
#define
tdefine

#define

double
stati
long
short

/+ SUBRQUTINES +/

tiritt*wit**ititt****it*************tt***titt*t**t‘a**t*i*i******;’t*t
RandomGen

A random number generator that generates uniformly

distributed random numbers between 0 and 1 inclusive.

The algorithm is based on:

W.E. Press, S.A. Teukolsky, W.T. Vetterling, and B.P,

Flannery, °Numerical Recipes in C," Cambridge University

Press, 2nd edition, (1992).

and

D.E. Knuth, "Seminumerical Algorithms,®” 2nd editiomn, vol. .2

of °The Art of Computer Programming®, Addiscn-Wesley, (1981),

When Type is 0, sets Seed as the seed. Make sure 0<Seed<32000,
When Type is 1, returns a random number.
When Type is 2, gets the status of the generator.

When Type is 3, restores the status of the generator.

The status of the generator is represgénted by Status[0..56].

Make sure you initialize the seed before you get random
numbers,

MBIG 1000000000
MSEED 161803398
MZ 0

FAC 1.0E-9

RandomGen{char Type, long Seed, long +Status)({
c long il, i2, ma[56);: /+* ma[0] is not used. =/
mj, mk;

i, ii;

if (Type == 0) { /> set seed. =/

mj
mj
ma [
mk
for

i

= MSEED - (Seed < 0 ?°.-Seed : Seed);
%= MBIG:
55] = mj;
= 1;: ]
(i =1; 1 <= S54; i++)} {

i = {21 ~ i) % 55;

malii] = mk;
mk = mj - mk;

i

f (mk < MZ)
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mk += MBIG;
mj = mal[ii];
}
for {ii = 1; 1ii <= 4; ii++)
for (i = 1; 1 <= 55; i++) {
mali] -=mall + {1 + 30) % 55];
if (mal[i] < MZ)
mal[i] += MBIG;

}
il = 0;
iz = 31;
} else if (Type == 1) { /* get a number.
if {(++il == 56)
il = 1;
if (++i2 == 56}
iz = 1;

mj = malil] - mal(i2];

if (mj < M2)
mj += MBIG;

ma(il]l = mj;

return {mj * FAC};

} else if (Type == 2} {( /+ get status. */

for {i = 0; i < 55; i++) ’
Status([i] = mal(i + 1);

Status[55) = il;

Status[56] = i2;

} else if (Type == 3) { /+ restore status.

for (i = 0; i < 55; i+4+)
ma[i + 1] = Status([i]:

il = Status[55]);

i2 = Status[56];

} else -
puts ("Wrong parameter to RandomGen().");
return {(0);
}
#undef MBIG
#undef MSEED
#undef MZ
#undef FAC

References

143

1. Wilson BC and Adam G. A Monte Carlo model for the absorption and flux distributions of

light in tissue. Med. Phys. 10:824-830 (1983).

2. Keijzer M, Jacques SL, Prahl SA, and Welch AJ. Light distributions in artery tissue: Monte
Carlo simulations for finite-diameter laser beams. Lasers Surg. Med. 9:148-154 (1989),




1576

15m

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

10.

11.

S.L. Jacques

Prahl, SA, Keijzer, Jacques SL, and Welch AJ. A Monte Carlo model of light propagation in
tissue. In: G Miiller and D Sliney (eds) Dosimetry of laser radiation in medicine and biology,
SPIE Series, Vol. IS 5, pp. 102-111 (1989).

Wang L-H, Jacques SL, and Zheng L-Q. MCML — Monte Carlo modeling of photon transport
in multi-layered tissues. Comput. Methods Programs Biomed., 47:131-146 (1995).

Jacques, SL, http://omlc.ogi.edu/software/mc/meml, Oregon Health & Science University,
2010. This site includes a 178-page manual on MCML. Also, a convolution program, CONYV,
is available for convolving the point spread functions generated by MCML.

Wang, LV, http://labs.seas.wustl.edu/bme/Wang/mc.html, Washington University in St. Louis,
2010. Alternative site for obtaining MCML, CONV and the manual.

Jacques SL. Light distributions from point, line, and plane sources for photochemical
reactions and fluorescence in turbid biological tissues. Photochem. Photobiol. 67:23-32
(1998).

Jacques, SL, http://omlc.ogi.edu/software/mc/mc321, Oregon Health & Science University,
2010. This site lists the minimal Monte Carlo program mc321.m, used in Ref. 7.

Jacques SL. Monte Carlo simulations of fluorescence in turbid media, Ch. 6. In: MA Mycek
and BW Pogue (eds) Handbook of biomedical fluorescence. Marcel-Dekker, New York, NY
(2003).

Jacques, SL, http://omlc.ogi.edu/software/mc/mcsub, Oregon Health & Science University,
2010. This site lists the subroutine mesub() that can be called by ¢ programs to run a Monte
Carlo simulation.

Ramella-Roman JC, Prahl SA, and Jacques SL. Three Monte Carlo programs of polarized
light transport into scattering media: part I. Opt. Express 13(12):4420-4438(2005).
Ramella-Roman JC, Prahl SA, and Jacques SL, http://omlc.ogi.edu/software/mc/polarizedlight,
Oregon Health & Science University, 2010. This site lists the program for Monte Carlo
simulation of polarized light, reported in Ref. 11.




+ Ashley J. Welch - Martin J.C. van Gemert
Editors

- Optical-Thermal Response '
- of Laser-Irradiated Tissue

8

Second Edition

§ 8§88 8 8

¥ 2 8

@ Springer

5



137
138
139
140
141
142

143

147
148

149

151
152
153
154
155
156
157
158

159

161
162

163

163
166

167

m
172
173
174
175

176

Editors

Dr. Ashley J. Welch Dr. Martin J.C. van Gemert

University of Texas, Austin University of Amsterdam

Dept. Biomedical Engineering Academic Medical Centre

University Station 1 Laser Centre

78712 Austin Texas Meibergdreef 9

ENS12, Campus Code CO800 1105 AZ Amsterdam

USA Netherlands 3
Welch@mail.utexas.edu m.j.vangemert@amc.uva.nl = E

ISBN 978-90-481-8830-7 :
DOI 10.1007/978-90-481-8831-4 =
Springer Dordrecht Heidelberg Londf.m New York

Library of Congress Control Numbm XXXXX

e-ISBN 978-90-481-8831-4

gl

© Springer Science+Business Medm“’B V. 2011

No part of this work may be reproduced stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanigal, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and mcufe%n a computer system, for exclusive use by the purchaser of the work.

Printed on ac1d-ﬂmsgaper :

Springer is part of Springer Science+Business Media (www.springer.com)




