Monte Carlo ssmulations of light transport

in turbid media.

http:// omlc.ogi.edu/classroom/ece580CL T/mc/classl/howtomesub/index.html
Steven L. Jacques
January, 2002

Table of Contents

=

Introduction

2. Theprogram ntnai n. ¢
2.1 Header
22main()
2.3Cdl ntcsub()
2.4 Savefiles

3. The subroutines
3.1ntsub()
3.2Rfresnel ()
3.3SaveFi | es()
3.4 RandomNunber ()
3.5 Memory allocation routines

4. Listing of ntmai n. ¢

1. Introduction

This chapter presents a Monte Carlo program written in ANSI Standard C that
simulates the penetration of light into a light-scattering medium such as biological tissue.

The program uses a simple steady-state Monte Carlo subroutine, ncsub() , that
launches photons as either (1) a collimated beam of variable beam radius, (2) a focused
Gaussian beam with variable beam radius, focal depth, and focal waist radius, or (3) an
isotropic point source at a chosen depth. The results returned by the subroutine are the
concentration of light within the tissue and the escaping light at the tissue surface.

The concentration of light within the tissue is reported as the “fluence rate” F(z,r)
in units of [W/cm?] per W of incident power, which equals the energy density of lightin a
local volume, [Jecm?], times the speed of light, [cm/s]. The escaping light is reported as
the “flux density” J(r) in units of [W/cm?] per W of incident power, which equals the
power per unit surface area escaping the medium across a local area of the air/medium
surface. The parameters z and r indicate depth and radial position [cm], respectively.

The program ncmai n() uses the subroutine ncsub() to execute the Monte
Carlo smulation. Thentsub() isaconcise implementation of the Monte Carlo method.
The subroutine utilizes several other subroutines which are also listed within ncmai n()
and explained later.

The history of this Monte Carlo simulation began with a simple Monte Carlo
simulation written by the author that implemented the Henyey-Greenstein scattering
function and a mismatched air/tissue boundary. The program was improved by
incorporating the step size selection based on a random number as used by Wilson and
Adam 1983 ['] who first applied a Monte Carlo method to light transport in biological
tissues using isotropic scattering. Keijzer et al. 1989 [?] improved on the tracking of
photon trajectories during simulations of transport in tissue. Keijzer et al. 1989 []applied
Monte Carlo to tissue autofluorescence. Drawing from the work of Witt 1977 [*] who
provided the basics of Monte Carlo modeling, Prahl et al. 1989 [°]translated Keijzer's
work from cylindrical coordinates to Cartesian coordinates that yielded ssmpler code, and
and implemented the selection of deflection angles using random numbers for Henyey-
Greenstein scattering. Wang et al. (1992) [°] and (1995) []converted Prahl’s work into
modularized ANSI Standard C code for multilayered tissues called MCML which has
been widely promulgated. Jacques (1998) [] reduced the MCML code to its simplest
form, called mc321.c, to provide a simple simulation of light propagation from point,
line, and planar sources of light. For this chapter, the mc321.c code was converted to a
subroutine called ntcsub() that provides for three dimensional photon propagation from
a collimated beam, a focused Gaussian beam, or an isotropic point source with a surface
boundary with mismatch refractive indices such as an air/tissue surface.

In summary, this chapter illustrates the use of the Monte Carlo method to model
the transport of light within a light-scattering light-absorbing tissue. A listing of
ncmai n. ¢ with al the required subroutinesis provided.

2. The program ntmai n. C

The overall organization of the program ncai n. ¢ is shown below. Each part is
discussed in more detail in the following sections. The mai n() routine within
ncmai n. ¢ calsaMonte Carlo subroutine, ncsub() that encapsulates the basic Monte
Carlo algorithm. The program ntcmai n. ¢ sets up the desired simulation parameters and
calsncsub() toexecutethe desired Monte Carlo ssmulation.

/* ncmain.c */
header
decl are subroutines
mai n() {
Set up variables and arrays.
Call Monte Carlo subroutine
Save escaping flux J,(r) and fluence rate distribution F(z,r).

| i st subroutines

2.1 Header

Theinitial header portion of ncmai n. ¢ setsup thenai n() program. The initial
#1 ncl ude commands incorporate supporting standard C program files that are needed
by the program. The #def i ne commands cause global substitutions of the first
argument by the second argument, i.e. USERLABEL is replaced by the string “an
exanpl e Monte Carlo simulation” and Bl NS isreplaced by the value 101. Thus the
user can conveniently change the number of bins used by arrays in the program, and can
specify alabel that prints out during the run.

The subroutine declarations inform mai n() of the availability of subroutines
listed at the end of the ntcmai n. c:

ncsub() executes amodular Monte Carlo simulation,

RFr esnel () evauatesthe value of internal reflectance at the tissue/air surface,

SaveFi | e() savesthe escaping flux density J(r) and fluence rate F(z,r) to afile,

RandonGen() isthe random number generator,

and four subroutines for allocation of memory:
nrerror () usedif error encountered during memory allocation,
*Al | ocVect or () alocates memory for al-D array,
**All ocMatri x() alocatesmemory for a2-D array,
FreeVect or () freesthe memory allocated for a1-D array,
FreeMatri x() freesthe memory allocated for a2-D array.

2.2 mai n()

The mai n() program organizes the user’s problem, calls the modular subroutine
ncsub(), interprets the results, and saves the results to files.

The mai n() program begins with declarations of the variables used in mai n() .
The first set of variables are USER CHOICES where the user can specify the optical
properties of the medium at a particular wavelength.

The parameter ncf | ag determines whether photons will be launched as a
collimated flat-field beam (ncf |l ag = 0), as an approximation to a focused Gaussian
beam (ncflag = 1), or as an isotropic point source (ncflag = 2). For flat or
Gaussian beams, the parameter r adi us determines the radius of the beam incident at the
surface. In the case of the focused Gaussian beam, r adi us isthe 1/e point radius of the
beam at the surface of the medium. For the focused Gaussian beam, an additional pair of
parameters describes the focus point under conditions of matched boundary conditions.
The parameter wai st isthe 1/e radius of the Gaussian beam at the focal point, and the
parameter zf ocus is the depth position of the focal point, both for a matched boundary
condition. However, when a Gaussian beam is launched into a tissue with a mismatched
boundary condition, ncsub() will calculate the specular reflectance and the refraction
of the beam at the external medium/internal medium interface. The parametersxs, vys,

zs areused when ncf |l ag = 2 to describe the position of isotropic launching. When
ncf | ag equals O, 1 or 2, the subroutine ncsub () will printout progress reports to the
user during the Monte Carlo simulation. If ncfl ag > 2, thenncsub() will behave as
if ncflag = 2 but will omit any printouts. The number of photons to be launched by
ncsub() isset by Nphot ons. In summary,

ncfl ag Radi us wai st zfocus xs ys Zs

Col I'i mat ed 0 +
Focused Gaussi an 1 + + + - - -
| sotropi c point >2 - - - + o+ +

where + means “uses’ and — means “ignores.”

The user chooses the number of photons to be launched by ncsub() by
specifying the parameter Nphot ons.

The user also chooses the size of the bins for depth, dz, and radial position, dr,
appropriate for the cylindrical coordinates used to record escaping flux density J(r) and
fluence rate F(z,r). The values (Bl NS- 1) *dz and (BI NS- 1) *dr specify the total
depth and radial extent over which results are stored. Thelast bins,i z = BINSandi r
= BI NS, are used to collect any overflow consisting of photons that migrate beyond the
extet of the bins.

The remaining variables are determined by the program and the user need not
specify their values. All units are in [cm] or variations such as [cm™] or [cm?]. The
declaration and memory allocation of the 1D array (Jx) and the 2D array (Fx) employ
memory allocation subroutines described in section 6.5.

Thereisaprintout of the USER CHOICES so that the user can be reminded of the
conditions of a simulation when reviewing a printout. A fina initialization step setsall to
arraysto zero. Theindices[i z] [i r] specify the particular z and r bins, respectively.

2.3 Call ncsub()

The first part of program considers the penetration of excitation light into the
tissue or medium. The control parameters for the Monte Carlo subroutine to be used for
the excitation were already set in the USER CHOICES section above. The ntsub()
routine is called. The arguments of the subroutine include the optical properties of the
medium at the excitation wavelength (muax, nusx, gx, nl, n2),the number of r
and z bins and their bin sizes and the number of photonsto be launched (NR, NZ, dr,
dz, Nphotons), the control parameters (ncfl ag, xs, ys, zs, radius,
wai st, zfocus), and the array pointers Jx[] and Fx[][] which will hold the
results for escaping flux density J(r) [W/cm?W] and fluence rate F,(z,r) [W/cm*W]. The
subroutine ncsub() recordsitsresultsin cylindrically symmetric radial coordinates of z
and r. The results have been normalized by Nphot ons so the same answer is obtained
regardless of the value of Nphot ons used, although for alow choice of Nphot ons the
results are more noisy.

2.4 Save files

Findly, the flux density Jx[i r] andfluencerate Fx[i z][ir] aresenttothe
subroutine SaveFi | e() that savesthe data aong with the appropriate r and z positions
of each bin based on the function arguments (NR, NZ, dr, dz). The parameter
ncf | ag isalso an argument of SaveFi | e() and specifies the name of the files to be
saved. For the case of ncflag = O the saved files are called “J0. dat ” and
“FO. dat ”, for the case of ncfl ag = 1 the saved files are called “J1. dat ” and
“F1. dat ", and so forth.

3. The subroutines

3.1ntsub()

The Monte Carlo simulation is executed using a subroutine called ncsub() that
considers a semi-infinite medium with an upper surface boundary. The subroutine has the

arguments:
mua absorption coefficient
mus scattering coefficient
g anisotropy of scattering
nl refractive index of internal medium
n2 refractive index of external medium
NR number of r bins
NZ number of z bins
dr incremental size of r bins
dz incremental size of r bins
Nphotons number of photonsto be launched
mcflag control of the launch as collimated, focused, or isotropic
XS, ys,zs location of isotropic launching
radius radius of collimated beam or 1/e radius of focused Gaussian beam
waist radius of Gaussian beam at the focal point
zfocus depth position of the focal point for Gaussian beam
*J pointer to 1D array of flux density escaping at surface, Jjir]
**E pointer to 2D array of fluence rate, F[iz][ir]

The subroutine follows an algorithm that is depicted in Figure 1. The program
begins with SETUP, declaring and initializing the various variables. In particular, J[i r]
andF[iz][ir] aesetinitialy to values of zero.

[Setup

v

¥ Ny

-l
Launch ‘\

F b

/—bh Hop ,

hi Escape
= J
N
[Drop
, %’F
(Spin]

Roulette

[Normalize]

v

return{ J, F)
Figure 1: Algorithm for the Monte Carlo subroutine ncsub() .

The LAUNCH do-loop proceeds to launch the requested number of photons,
Nphot ons. If a photon escapes at the surface or is terminated by the ROULETTE
procedure, then a new photon is launched. Each photon launching sets the initial photon
weight Wto avalue 1. 0 - rsp wherer sp isthe specular reflectance at the air/tissue
surface. The escaping flux density J[i r] returned by ncsub() doesnotincluder sp.
The photon launching is executed as either a collimated beam (ntfl ag = 0), afocused
Gaussian beam (ncf |l ag = 1), or anisotropic point source (ncfl ag = 2).

For a collimated beam, the radial position r of launch is selected based on a
random number, r nd, and is assigned to the coordinate x whiley and z are assigned the
value O:

X = radius*sqgrt(rnd);
y =0;
z = 0,

where r adi us is the beam radius provided as an argument of ncsub() . The photon
trajectory is specified by the cosine of the angle of the trgjectory relative to each of the x,
y, and z axes, and these cosine(angle) values are called ux, uy, and uz, respectively. A
collimated beam would have uz equal to 1 whileux and uy are assigned the value O:

ux = 0;
uy = 0;
uz =1

’

The value of the specular reflectance, r sp, is calculated based on the refractive indices
nl and n2:

_ _nzg

r =
[+, 0

Y

For afocused Gaussian beam, the radial position of launch is determined:

X = radius*sqgrt(-log(rnd));
y =0;
z = 0;

where r adi us isthe 1/e radius of the Gaussian beam at the tissue surface. Note that
| og() isabase e logarithm function. The focus of the Gaussian beam for a matched
boundary condition is specifed by zf ocus and broadness of the focus is specified
wai st which isthe 1/e radius of the beam at zf ocus. Theratiowai st/ radi us is
used to scale the launch position x at the surface to yield aradial position xf ocus at the
depth zf ocus, and the trgjectory is oriented inward toward the central axis pointing to
the position (xf ocus, 0, zf ocus) :

xfocus = x*wai st/ radi us;

The program then computes the trajectory required for launching at the surface at
position (x, 0, 0) toward the focus at position (xf ocus, 0, zf ocus), characterized by
ux, uy, uz. Thistrgectory isfor the case of matched boundary conditions.

temp = sqrt((x - xfocus)*(x - xfocus) + zfocus*zfocus);

sintheta = -(x - xfocus)/tenp
costheta = zfocus/tenp;

ux = sintheta;

uy = 0.0;

uz = costheta;

Thisincident trgjectory isthen modified if there is a mismatched boundary condition. The
refractive indices of the internal medium (the tissue), n1, and the external medium (the
air), n2, determine the amount of specular reflectance that occurs upon entry into the
tissue and the refraction that changes the photon trajectory. The subroutine
RFr esnel () determines the r sp for the angle of launch that is selected. The angle of
transmission is returned as the variable uz.

rsp = RFresnel (n2, nl, costheta, &uz);
sintheta = sqrt(1.0 - uz*uz);

ux = -sintheta;
uy = 0.0;
uz = costheta;

Each photon is launched at a different angle and experiences a different r sp. The
refraction at the mismatched boundary where n1 > n2 causes the focal point to move
deeper into the tissue. Figure 2 illustrates the launching of a Gaussian beam that would
focusat zf ocus = 0.0300 cm under matched boundary.

Zlocus

0 002 00 006 008 0.1

X [cm]

Figure 2: lllustration of launching photons as a focused Gaussian beam. Example has
radi us =0.0300 cm, wai st =0.0030 cm, zf ocus = 0.0300 cm, and matched
boundary conditions. Ten launching trajectories are shown as lines.

For an isotropic point source, the position of launch is specified by xs, ys, zs
in the argument for ncsub() . The tragjectory is isotropic and so has no preferential
direction, and is specified:

costheta = 1.0 - 2.0*Randontzen(1, 0, NULL);
sintheta = sqrt(1.0 - costheta*costheta);
psi = 2. 0*Pl *Randontzen(1, 0, NULL) ;
cospsi = cos(psi);
if (psi < Pl)
sinpsi = sqrt(1.0 - cospsi*cospsi);
el se
sinpsi = -sqrt(1.0 - cospsi*cospsi);
ux = sintheta*cospsi;
uy = sintheta*sinpsi;
uz = costheta;

The value sin(psi) is calculated as si npsi = sqrt (1.0 - cospsi *cospsi)
sincethesqrt () functionisfaster than thesi n() function. Because the launch point
iswithin the tissue, there is no specular reflectance and r sp is set equal to zero.

For each photon launched, the specular reflectance r sp is calculated by one of
the three methods above. Then the initial weight of that photonissetto1l. 0 — rsp.
Hence, a total weight of W= 1.0 isdelivered to the tissuebut only 1. 0 - r sp actualy
enters the tissue. The resulting J[] therefore does not include specular reflectance. The
photon’s status is initiated as phot on_status = ALI VE where ALI VE has a
Boolean value of 1.

Once a photon is launched, it enters the PROPAGATION CYCLE. The HOP
section sets the stepsize s of that the photon takes and updates the current photon
position (x, y, z) based on the current trgjectory (ux, uy, uz):

s = -log(rnd)/ nut;
X += S*ux;
y += s*uy;
Z += s*uz;

The ESCAPE? step asks i f (z <= 0) and if yes then the photon is attempting to
escape out the top surface of the medium. Then the ESCAPE section checks for total
internal reflectance by calling a random number rnd and asking

if (rnd > RFresnel (nl, n2, -uz, &uzl))

If yes, then the photon has escaped the tissue and its weight Wis added to the current
escaping flux J[i r]. The ESCAPE section resets the photon position then takes a
partial step size to just reach the surface. The radial position r is calculated based on the X
and y positions and the choice of i r is made by the equivalent of an absolute value
function,ir = (long)(r/dr) + 1, withthe minimum value being 1 to indicate the
first bin. Then the photon is terminated by setting phot on_st at us = DEAD, where
DEAD has a Boolean value of 0. The photon will bypass the following DROP-SPIN-
ROULETTE section and reaches the end of the PROPAGATION CY CLE. Because the
phot on_st at us = DEAD anew photon is launched.

If no, then the photon does not escape but is internally reflected, accomplished by
setting z = -z. The phot on_st at us remains ALI VE so the photon can enter the
DROP-SPIN-ROULETTE section. The DROP section causes the current weight W to
decrement by an amount that depends on the al bedo = nus/ (nua + nus):

absorb = W (1 - al bedo);
W -= absor b;

Then the value absor b is added to the current bin F[i z] [i r]. The SPIN section
causes the trajectory of the photon to deviate by an angle theta specified as cost het a =

cos(theta) based on sampling the Henyey-Greenstein scattering function using a random
number r nd:

temp = (1.0 - g*g)/ (1.0 - g + 2*g*rnd);
costheta = (1.0 + g*g - tenp*tenmp)/(2.0*Q);

Also, an azimuthal angle psi for the trajectory change is chosen:
psi = 2.0*Pl *Randontzen(1, 0, NULL) ;

These angles of deviation are used to calculate a new trajectory assigned to
(ux, uy, uz).

The ROULETTE section provides a means of terminating a photon based on
absorption. A value THRESHOLD was set equal to le-4 at the beginning of the
subroutine. If the weight W drops below THRESHOLD, then the photon is either
terminated or its weight W is increased and propagation continues. A random number rnd
is obtained and compared with a value CHANCE set to 0.1 in this program. The program
asks i f rnd < CHANCE, and if yes then the weight is increased by a factor
1/ CHANCE or 10-fold. Propagation continues and the photon returns to the top of the
PROPAGATION CYCLE. If no, then the photon is terminated by setting
phot on_st at us = DEAD. At the end of the PROPAGATION CYCLE a new photon
is launched. This method statistically conserves photon energy but allows for a means to
terminate photons.

After the PROPAGATION CYCLE has launched Nphot ons, the simulation is
complete. The subroutine now normalizes the values in J[i r'| by the area of the [i r]
bins to yield the escaping flux density [W/cm*/W]. The subroutine normalizes the values
in F[i z] [ir] by the bin volumes to yield the density of power deposition [W/cm?/W].
Further normalization by the absorption coefficient mua [cm™'] yields the fluence rate
[W/cm?/W]. The subroutine returns J[] and F[] [] to the calling program ncnai n() .

To test ncsub(), an example problem was run which could be compared with
diffusion theory. The optical properties were mua = 1 cm™, mus = 100 cm™, g = 0.90.
The refractive indices of the internal and external media were 1.33 and 1.00, respectively,
simulating a water/air interface. An isotropic point source was launched at a depth of zs
= 1/ (mua + nus*(1-g)) or0.09091 cm.

Figure 3 shows the comparison of the ncsub() result and diffusion theory as
outlined by Farrel et al. (1992) [’] using the extrapolated boundary condition:

(n = %& SLO(019 _ (. +4AD)G—+1LXp(”‘»E

where

r,=+/r?+(z, +4AD)?
z, =1(k, +p(1-9))
D=2z/3
_1+7
1-r,
rr=0.668 + 0.0636n + 0.710/n - 1.440n°

where 1; is the total internal reflectance at the tissue surface. The difference between
Monte Carlo and diffusion theory is characterized by the ratio (DT — MC)/MC where DT
is the J(r) calculated by diffusion theory and MC is the J(r) calculated by ncsub() . The
ratio is in the range of —0.20 to 0.10, except near r = 0 where DT is far too low. This is
basically the same behavior predicted by the MCML code [6].

Escaping flux density [chmEfW]

107

'!.'*.F:IIIII'IT1 ||||rIT1 ||||mT| ||||mT| |||||rl'| TTTIm)

oDiffusion Theory (DT}
—Monte Carlo (MG)

-1 0 1
r [cm]

0.5

(DT - MC)MC
IIIIIIIII|:IrIIIIIII
éff

g%;' -

-1|||||||||||||||||||

-1 0 1
r [cmy]

Figure 6: Testing ncsub() versus diffusion theory. (TOP) Escaping flux density J(r)
versus radial positionr. (BOTTOM) Ratio (DT —MC)/MC where DT is J(r) calculated by
diffusion theory and MC is J(r) calculated by ntcsub() . Optical properties: g, =1 cm™,
K =100 cm™, g=0.90, n, = 1.33, n, = 1.00. Isotropic point source at 1 mean free path
below surface, i.e. zs = 1/(u, + U(1-0)).

Another test was to compute the total escaping flux, Jit [W/W],

Nr
Ji = D Jir]4m(ir -0.5)dr?

ir=1

for the optical properties: Ja =1 cm™, hs =9 cm™, g = 0.0, yielding an albedo = 0.90. The
medium was semi-infinite and the surface boundary condition was matched. This
problem has been simulated by Prahl (1988) ['°] who reported in his Table 3-1 the result
to be 0.4149 and that this value matched the published value of van de Hulst (1980) [''].
The ncsub() was run ten times with ten different Seed values to yield a mean and
standard deviation of 0.41507 — 0.00018 (n = 10).

3.2RFresnel ()

The subroutine RFr esnel () was prepared by Lihong Wang as part of the
MCML code [6]. The subroutine computes the Fresnel reflectance at an interface
between two media with refractive indices ni and nt where ni is the medium from
which the incident photon arrivesand nt is the medium into which the photon transmits.
The angle of incidence is specifed as cal = cos(angle of incidence). The angle of
transmission is calculated based on Snell’s Law by the subroutine and the cos(angle of
transmission) is returned as the value of the variableca2 Ptr:

RFresnel (ni, nt, cal, *ca2 Ptr)

During photon launch as a focused Gaussian beam, the incident medium
refractive index is assigned the value of the external medium (ni =n2) and the
transmitted medium refractive index is assigned the value of the internal medium (nt =
nl). The specular reflectance r sp and the cos(angle of transmission), uz, are calculated
by the subroutine call:

rsp = RFresnel (n2, nl, costheta, &uz);

During photon propagation as photons attempt to escape the medium, they are
tested for the occurence of total internal reflectance. In this case, the incident medium
refractive index is the value of the internal medium (ni =n1) and the transmitted
medium refractive index is assigned the value of the external medium (nt =n2). The
incident cos(angle) is the negative of the current value uz which is negative because the
photon is escaping, so - uz is positive. The transmitted angle uz 1 is not used, but does
specify the cos(angle of transmission) for the escaping photon and could be used to
document the angle of escape. The test for photon escape is phrased:

if (rnd > RFresnel (nl, n2, -uz, &uzl))

and if true then there is escape and if false then there is total internal reflectance.

3.3SaveFi | es()

The SaveFi | es() subroutinesavestwofiles, J[ir] andF[iz][ir],aong
with the appropriate valuesof r [1 r] andz[i z] . The names of the files depends on
the values of theargument Nf i | e:

SaveFile(*J, **F, Nfile, NR Nz, dr, dz)
where NR and NZ are the number of binsand dr and dz aretheincremental bin sizes.

If Nfi | e equals 1, thenthe names of thefilesareJ1. dat andF1. dat . If Nfi |l e
eguals 2, then the names of thefilesare J2. dat and F2. dat , and so on.

Thevaluesof r[ir] andz[ir] arecaculated:

rfir] = (ir = 0.5)*dr

z[i z] (iz — 0.5)*dz

which are the midpoints of each bin. The calculation for r [i r] is based on the
expectation value for r within the [i r] bin, assuming that the general form of the
J[lir] andF[iz][ir] responsesversusrisl/r. Then the expectationvaueis:

b
ri2mdr
_-! ' _mb*-a’®) _b+a
ST " 2mb-a) 2
J'%andr mb-a)

a

which is the midpoint of the[ir] bin. A more correct assignment of r [i r] would
involve using the true behavior of J and F versus r, but this leads to iteratively
reconsidering an assignment after an initial determination of the behavior. The user is
better advised to ssimply run the ncsub() with smaller valuesof dr and dz if the user
wishesto refine the estimate of behavior Jand F at small r.

The file J. dat is afile with two columns and NR rows. The first column is
r{ir].ThesecondcolumnisJ[ir]. ThefileF. dat isafilewith NR+1 columnsand
NZ+1 rows. The first element (1,1) isignored, and is set equal to 0. The first column,
rows 2 to NZ+1, lists the values of z[i z] . The first row, columns 2 to NR+1, lists the
valuesof r [1 r] . The remaining array, rows 2 to NZ+1, columns 2 to NR+1, holds the
vauesof F[i z][ir].

3.4 RandomNunber ()

The random number generator subroutine was prepared by Lihong Wang as part
of the MCML code [6]:

RandonGen(Type, Seed, *Status)

The generator isinitialized by the call with Type set to 0 and Seed set to along
integer (0 < Seed < 32000), for example set equal to 1:

RandonmGen(0, 1, NULL) ;
Subsequently, arandom number r nd is generated by the call with Type set to 1.
rnd = RandonmGen(1, 0, NULL);

In some cases, such as when the acommand must evaluate | og(r nd) , it isimportant to
excludethevaluer nd = 0. In such cases, the call is phrased:

while ((rnd = Randonen(1, 0, NULL)) <= 0.0);

3.5 Memory allocation routines

The memory allocation routines were also prepared by Lihong Wang as part of
the MCML code [6]. Theroutines are

nrerror(error_text[]);

*Al l ocVector(nl, nh);
**Al'locMatrix(nrl, nrh, ncl, nch);
FreeVector(*v, nl, nh);
FreeMatrix(**m nrl, nrh, ncl, nch);

They are used in declaring 1D and 2D arrays at the beginning of the program ntmai n()
and in freeing the memory allocated for these arrays at the end of ncmai n() . They
allow the arraysto be addressed by indices ranging from 1 to NRand 1 to NZ. Their useis
shownin ncmai n().

4. Listing of ncmai n. ¢

/*************

* ncmain. c
*************/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <mat h. h>
#i ncl ude <tine. h>

/*************************/

/**** USERC'_OCES ******/
/*************************/

#define USER LABEL "ntrmain.c for class"
#defi ne BI NS 101

/*************************/

/*************************/

/**********************

* DECLARE SUBROUTI NES

*********************/

/* The Monte Carl o subroutine */

voi d nctsub(doubl e nmua, doubl e nus, double g, double nl, double n2
long NR, long NZ, double dr, double dz, double Nphotons,
int ncflag, double xs, double ys, double zs,
doubl e radi us, double waist, double zfocus,
doubl e *J, double **F);

/* Conputes internal reflectance at tissue/air interface */
doubl e RFresnel (doubl e nl1, double n2, double cal, double *ca2 Ptr);

/* Saves surface escape R(r) and fluence rate distribution F(z,r) */
voi d SaveFil e(double *J, double **F, int Nfile,
long NR, long NZ, double dr, double dz);

/* Random nunber generat or
Initiate by Randonten(0, 1, NULL)
Use as rnd = Randonteen(1, O, NULL) */
doubl e RandonGen(char Type, |ong Seed, |ong *Status);

/* Menory allocation routines

* fromMOM ver. 1.0, 1992 L. V. Wang, S. L. Jacques,

* which are nodified versions from Nunerical Recipes in C */
voi d nrerror(char error_text[]);

doubl e *Al'l ocVector(short nl, short nh);

double **All ocMatri x(short nrl,short nrh,short ncl,short nch);
voi d FreeVect or (doubl e *v, short nl,short nh);

voi d FreeMatri x(doubl e **m short nrl,short nrh,short ncl,short nch);

/**********************

* MAI'N PROGRAM

*********************/

int min() {

[**** Declare variabl es ****x%*/

doubl e nmia; /* excitation absorption coeff. [cmt-1] */

doubl e nmus; /* excitation scattering coeff. [cmt-1] */

doubl e o; /* excitation anisotropy [dinensionless] */

doubl e ni; /* refractive index of medium*/

doubl e n2; /* refractive index outside nedium */

short ncflag; /* 0 = collimted, 1 = focused Gaussi an
2 = isotropic pt */

doubl e radius; /* used if ncflag = 0 or 1 */

doubl e waist; /* used if ncflag = 1 */

doubl e zfocus; /* used if ncflag = 1 */

double xs; /* used if ncflag = 2 */

double ys; /* used if ncflag = 2 */

doubl e zs; /* used if ncflag = 2 */

/* other paranmeters */
doubl e Nruns; /* nunmber photons | aunched = Nruns x 1e6 */

doubl e dr; /* radial bin size [cm */
doubl e dz; /* depth bin size [cn] */
char | abel [1];

doubl e Nphot ons;

| ong ir, iz;

double tenp; /* dummy variables */

doubl e start _time, finish_timel;, /* for clock() */
doubl e timeA tinmeB,

time_t now,

doubl e *JX;

doubl e **EX;

| ong NR = BINS; /* nunber of radial bins */

| ong NZ = BINS; /* nunber of depth bins */

Jx = All ocVector (1, BINS);

Fx = AllocMatrix(1, BINS, 1, BINS); /* for absorbed excitation */
strcpy(l abel, USER_LABEL);

printf("\n[|--------------""eo - \n");

printf("|| %\n",|abel);

printf("|]------m-me oo \n\n");

start _tine = clock();
now = ti me(NULL);
printf("%\n", ctime(&ow));

/*************************/

/**** USERC'_OCES ******/

/*************************/

nmua = 1.0; /* excitation absorption coeff. [cm-1] */
nus = 100.0;/* excitation scattering coeff. [cmt-1] */
g = 0.90; /* excitation anisotropy [dinmensionless] */
nl = 1.33; /* refractive index of medium*/
n2 = 1.00; /* refractive index outside nedium*/
ncflag = O; /* 0 = collimated, 1 = focused Gaussi an

2 = isotropic pt */
radius = 0.0; /* used if ncflag = 0 or 1 */
waist = 0.0; /* used if ncflag = 1 */
zfocus = 0.0; /* used if ncflag = 1 */
XS =0.0; /* used if ncflag = 2 */
ys =0.0; /* used if ncflag = 2 */
zs = 0.090909; /* used if ncflag = 2 */

/* other paranmeters */

Nruns = 0.01; /* nunber photons | aunched = Nruns x 1e6 */
dr = 0.0100; /* radial bin size [cn] */
dz = 0.0100; /* depth bin size [cm] */

if (1) { /* Switch printout ON=1 or OFF=0 */
/* print out sunmary of paraneters to user */
printf("----- USER CHO CES ----- \n");
printf("nmua = 9. 3f\n", nua) ;
printf("nmus %d. 3f\ n", nus) ;

printf("g %. 3f\n", g);
printf("nl %d. 3f\n", nl);
printf("n2 %. 3f\ n", n2);

printf("ncflag
printf("radius
printf("waist

printf("zfocus

%\ n" , ncflag);
%. 4f\ n", radi us);
%. 4f\ n", wai st);

%. 4f\ n", radi us);

printf("xs %. 4f\ n", xs);
printf("ys %. 4f\ n",ys);
printf("zs %. 4f\ n", zs);

printf("OrHER n"
printf("Nruns

%. le\ n", Nruns);

{1 e 1 I 1 1 I O | A VO |

printf("dr %. 4e\ n",dr);
printf("dz %. 4e\ n", dz);
printf("--------------- \n\n");
}

/* Initialize arrays */
for (ir=1; ir<=NR; ir++) {
Jx[ir] = 0.0;
for (iz=1; iz<=NR, iz++) {
Fx[iz][ir] = 0.0;
}

}

/* Time conpletion estimate */
timeA = clock();
ncsub(mua, mus, g, nl, n2, /* CALL THE MONTE CARLO SUBROUTI NE
*/
NR, Nz, dr, dz, 1000,
ncfl ag, xs, ys, zs,
radi us, waist, zfocus,
Jx, FX); /* returns J, F */
timeB = clock();
tenp = (timeB - tinmeA)/CLOCKS _PER SEC/ 60/ 1000; /* min per photon */
printf("%.3e mn/photon \n", tenp);
printf("estimted conpletion tines = %%.2f mn\n", tenp*le6*Nruns);

/*********************

* CALL ntsub()

*********************/

Nphot ons = 1e6*Nruns;

ncsub(mua, mus, g, nl, n2, /* CALL THE MONTE CARLO SUBROUTI NE
*/
NR, Nz, dr, dz, Nphotons,

ncflag, Xxs, ys, zs,
radi us, wai st, zfocus,

Jx, Fx); /* returns J, F */
/* Save results to files Ji.dat and Fi.dat, where i = ntflag. */
SaveFi |l e(Jx, Fx, ntflag, NR, Nz, dr, dz);
[1 B (R i e \n");
finish_ tinmel = clock();
[1 G e e
\n");

printf("El apsed Tinme for excitation = %.2f nmin\n",

(doubl e) (finish tinel-start _tine)/CLOCKS PER SEC 60);
now = time(NULL);
printf("%\n", ctime(&ow));

FreeVector (Jx, 1, BINS)
FreeMvatrix(Fx, 1, BINS, 1, BINS);
return(0);

/**

* SUBRCOUTI NES

**/

/**

* The Monte Carl o SUBROUTI NE

**/

voi d ntsub(doubl e nmua, doubl e nus, double g, double nl, double n2
long NR, long NZ, double dr, double dz, double Nphotons,
int ncflag, double xs, double ys, double zs,
doubl e radi us, double waist, double zfocus,
doubl e *J, double **F)

{

/* Constants */

doubl e Pl = 3. 1415926

short ALl VE =1, /[* if photon not yet terminated */
short DEAD = 0; /* if photon is to be term nated */
doubl e THRESHOLD = 0. 0001; /* used in roulette */
doubl e CHANCE = 0.1, /* used in roulette */

/* Variable parameters */

doubl e mut, al bedo, absorb, rsp, Rsptot, Atot;

doubl e rnd, xfocus;

doubl e X,¥,Z, UX,Uy,uz,uzl, uxx,uyy,uzz, s,r,Wtenp;

doubl e psi, cost het a, si nt het a, cospsi, si npsi

| ong i photon, ir, iz, CNT

short phot on_st at us;

[**** | NI TI ALl ZATI ONS *****/
RandonGen(0, 1, NULL); /* initiate with seed = 1, or any |long integer
CNT = 0;

mut = mua + nus;

al bedo = nus/ mut;

Rsptot = 0.0; /* accunul ate absorbed photon wei ght */

At ot = 0.0; /* accumul ate specul ar refl ectance per photon */

/* initialize arrays to zero */
for (ir=1; ir<=NR;, ir++) {
J[ir] = 0.0;
for (iz=1; iz<=NZ; iz++)
F[iz][ir] = 0.0;

—=—=—=—=—=——=—=—=———=—=—=—=—=—===== RUN N phot ONS =====—===—=—==—=—=—=—====—=—==
* Launch N photons, initializing each one before progation

for (iphoton=1; iphoton<=Nphotons; iphoton++) {

/* Print out progress for user if ntflag < 3 */
tenmp = (doubl e)i photon;
if ((ncflag < 3) & (tenmp >= 1000)) {
if (tenp<10000) {
i f (frnod(tenp, 1000)==0)
printf("od. Of phot ons\ n", tenp);
}

else if (tenp<100000) {
i f (frnod(tenp, 10000)==0)
printf("od. Of phot ons\ n", tenp);
}

else if (tenp<l1000000) {
i f (fnod(tenp, 100000) ==0)
printf("od. Of phot ons\ n", t enp) ;

}
else if (tenp<l10000000) ({
i f (fnod(tenp, 1000000)==0)
printf("9%.0f photons\n",tenp);
}

else if (tenp<l100000000) ({
i f (fnod(tenp,10000000) ==0)
printf("%.0f photons\n",tenp);
}

}

[**** | AUNCH
Initialize photon position and trajectory.
| npl ements an i sotropic point source.

*****/

if (ncflag == 0)

/* UNI FORM COLLI MATED BEAM | NCI DENT AT SURFACE */

/* Launch at (r,z) = (radius*sqgrt(rnd), 0).
* Due to cylindrical symretry, radial |aunch position is
* assigned to x while y = 0.

* radius = radius of uniformbeam */

/* Initial position */

rnd = RandomGen(1, 0, NULL);

x = radius*sqrt(rnd);

y =0;

z =0

/* Initial trajectory as cosines */
ux = 0;

uy = 0;

uz = 1;
/* specul ar reflectance */

tenp = nl/n2; /* refractive index m smatch, internal/externa
*/
temp = (1.0 - tenmp)/ (1.0 + temp);
rsp = tenp*tenp; /* specul ar reflectance at boundary */
else if (ncflag == 1)
[* GAUSSI AN BEAM AT SURFACE */
/* Launch at (r,z) = (radius*sgrt(-log(rnd)), 0).
* Due to cylindrical symretry, radial |aunch position is
* assigned to x while y = 0.
* radius = 1/e radius of Gaussian beam at surface.
* waist = 1/e radius of CGaussian focus.
* zfocus = depth of focal point. */
/* Initial position */
while ((rnd = Randontzen(1,0,NULL)) <= 0.0); /* avoids rnd = 0 */
x = radius*sqgrt(-log(rnd));
y = 0.0;
z = 0.0;
/* Initial trajectory as cosines */
/* Due to cylindrical symetry, radial |aunch trajectory is
* assigned to ux and uz while uy = 0. */
xfocus = wai st/ beantx;
tenmp = sqrt((x - xfocus)*(x - xfocus) + zfocus*zfocus);
sintheta = -(x - xfocus)/tenp;
cost heta = zfocus/tenp;
ux = sintheta;
uy = 0.0;
uz = costheta;
/* specul ar reflectance and diffraction */
rsp = RFresnel (n2, nl, costheta, &uz); /* new uz */
ux = -sqrt(1.0 - uz*uz); /[* new ux */
}
else {
/* | SOTROPI C PO NT SOURCE AT POSI Tl ON xs,ys, zs */
/* Initial position */
X = XS;
y = YsS;
z = zs;
/* Initial trajectory as cosines */
costheta = 1.0 - 2. 0*RandomGen(1, 0, NULL);
sintheta = sqrt(1.0 - costheta*costheta);
psi = 2.0*PlI *Randomen(1, 0, NULL);
cospsi = cos(psi);
if (psi < PI)
sinpsi = sqrt(1.0 - cospsi*cospsi);
el se
sinpsi = -sqrt(1.0 - cospsi*cospsi);
ux = sintheta*cospsi;
uy = sintheta*sinpsi;
uz = costheta;
/* specul ar reflectance */
rsp = 0.0;
}
W =1.0 - rsp; [/* set photon initial weight */

Rspt ot += rsp; /* accunul ate specul ar refl ectance per photon */

photon_status = ALI VE;

/**

*k Kk Kk k% |_D:) ESCAPE SPI NCYCLE EIE R SR b S b I I
* Propagate one photon until it dies by ESCAPE or ROULETTE

***/

do {

/**** |_O:)

* Take step to new position

* s = stepsize

* ux, uy, uz are cosines of current photon trajectory

*****/

while ((rnd = Randonten(1,0,NULL)) <= 0.0); /* avoids rnd = 0

*/
s = -log(rnd)/ mut; /* Step size. Note: log() is base e */
X += s*ux; /* Update positions. */
y += s*uy;
zZ += s*uz,
/* Does photon ESCAPE at surface? ... z <= 0? */
if (z <=0) {
rnd = RandontGen(1, 0, NULL);
/* Check Fresnel reflectance at surface boundary */
if (rnd > RFresnel (nl1, n2, -uz, &uzl)) {
/* Photon escapes at external angle, uzl = cos(angle)
*/
X -= s*ux; /* return to original position */
y -= s*uy,
z -= s*uz,
s = fabs(z/uz); /* calculate stepsize to reach
surface*/
X += s*ux; /* partial step to reach surface */
y += s*uy;
ro=sqrt(x*x + y*y); /* find radial positionr */
ir = (long)(r/dr) + 1; /* round to 1 <=ir */
if (ir >NR) ir = NR /* ir = NRis overflow bin */
J[lir] += W /* increnment escaping flux */
phot on_st at us = DEAD;
}
else z = -z; /* Total internal reflection. */
}
if (photon_status == ALIVE) {
/***
*xx%kxx SP| NCYCLE = DROP_SPI N _ROULETTE ******
***/
[**** DROP
* Drop photon weight (W into l|ocal bin.
*****/
absorb = W(1 - albedo); /* photon weight absorbed at this step
*/
W - = absorb; /* decrenment WEI GHT by anount absorbed
*/
At ot += absorb; /* accunul at e absorbed photon wei ght */

/* deposit power in cylindrical coordinates z,r */

_.‘
1

sgrt(x*x + y*y); /* current cylindrical radial position

*/
ir = (long)(r/dr) + 1; [* round to 1 <= ir */
iz = (long)(fabs(z)/dz) + 1; /* round to 1 <= iz */
if (ir >>NR) ir = NR /* last binis for overflow */
if (iz >=N2) iz = Nz /* last binis for overflow */
F[iz][ir] += absorhb; /* DROP absorbed weight into bin */
[**** SPI N

* Scatter photon into new trajectory defined by theta and psi
* Theta is specified by cos(theta), which is determ ned
* based on the Henyey-Greenstein scattering function.
* Convert theta and psi into cosines ux, uy, uz.
*****/
/* Sanple for costheta */
rnd = RandontGen(1, 0, NULL);
if (g ==0.0)
costheta = 2.0*rnd - 1.0;
else if (g == 1.0)
costheta = 1.0;
el se {
temp = (1.0 - g*g)/(1.0 - g + 2*g*rnd);
costheta = (1.0 + g*g - tenmp*tenp)/(2.0*Q);
}
sintheta = sqrt(1.0 - costheta*costheta);/*sqrt faster than
sin()*/

/* Sample psi. */
psi = 2.0*Pl *RandonGen(1, 0, NULL) ;

cospsi = cos(psi);
if (psi < PI)

sinpsi = sqrt(1.0 - cospsi*cospsi); /*sqrt faster */
el se

sinpsi = -sqrt(1.0 - cospsi*cospsi);

/* New trajectory. */

if (1 - fabs(uz) <= 1.0e-12) { /* close to perpendicular. */
uxx = sintheta*cospsi;
uyy si nt het a*si npsi ;
uzz costheta*((uz)>=0 ? 1:-1);

el se { [* usually use this option */
tenp = sqrt(1.0 - uz*uz);

uxx = sintheta*(ux*uz*cospsi - uy*sinpsi)/tenmp +
ux*cost het a;
uyy = sintheta*(uy*uz*cospsi + ux*sinpsi)/tenmp +
uy*cost het a;
uzz = -sintheta*cospsi*tenp + uz*costhet a;
}
/* Update trajectory */
ux = Uuxx;
uy = uyy,
uz = uzz;

[**** CHECK ROULETTE
* | f photon wei ght bel ow THRESHOLD, then terninate photon using

* Roul ette technique. Photon has CHANCE probability of having

* wei ght increased by factor of 1/ CHANCE,
* and 1- CHANCE probability of term nating
*****/
if (W< THRESHOLD) ({
rnd = RandontGen(1, O, NULL);
if (rnd <= CHANCE)
W/ = CHANCE
el se photon_status = DEAD
}

}/**

****x END of SPI NCYCLE = DROP_SPI N_ROULETTE *

**/

}

whil e (photon_status == ALl VE);

/**
xxx% END of HOP_ESCAPE_SPI NCYCLE ****
*xxkxx when photon_status == DEAD) ******

**/

/* |f photon dead, then | aunch new photon. */
} | * ======================= End RUN N phot ONS ============—=========

/************************

* NORMALI ZE
* Jlir] escaping flux density [Wcm'2 per Wincident]
* where bin = 2. 0*Pl*r[ir]*dr [cm2].
* F[iz][ir] fluence rate [Wcn'2 per Wi ncident]
* where bin = 2. 0*Pl*r[ir]*dr*dz [cn3].
************************/
temp = 0.0;
for (ir=1; ir<=NR; ir++) {
r = (ir - 0.5)*dr;
tenp += J[ir]; [/* accunulate total escaped photon wei ght */
J[ir] /= 2.0*Pl *r*dr*Nphot ons; /* flux density */
for (iz=1; iz<=NZ;, iz++)
F[iz][ir] /= 2.0*Pl*r*dr*dz*Nphotons*nua; /* fluence rate
*/
}

if (ncflag < 2) {
printf("Specul ar
printf("Absorbed
printf("Escaped
printf("total
}

} /******** END SUBROJTI NE **********/

%.6f\n", Rsptot/Nphotons);

9. 6f\n", Atot/Nphotons);

9%.6f\n", tenp/ Nphotons);

9%.6f\n", (Rsptot + Atot + tenp)/Nphotons);

/***

* FRESNEL REFLECTANCE
* Computes refl ectance as photon passes fromnmedium1 to
* medium 2 with refractive indices nl,n2. |ncident

* angle al is specified by cosine value cal = cos(al).
* Programreturns value of transnmitted angle al as
* value in *ca2_ Ptr = cos(a2).

****/
doubl e RFresnel (double n1, /* incident refractive index.*/
doubl e n2, /[* transmt refractive index.*/
doubl e cal, /* cosine of the incident */
/* angle al, 0<al<90 degrees. */
doubl e *ca2 Ptr) /* pointer to the cosine */
/* of the transm ssion */
/* angle a2, a2>0. */
{
doubl e r;

i f(nl==n2) { /** matched boundary. **/
*ca2_Ptr cal;
r = 0.0;

else if(cal>(1.0 - 1.0e-12)) { /** normal incidence. **/
*ca2_Ptr = cal
r = (n2-nl)/(n2+nl);
r*=r;

else if(cal< 1.0e-6) { /** very slanted. **/
*ca2_Ptr = 0.0;

r = 1.0;
}
el se { /** general . **/
doubl e sal, sa2; /* sine of incident and transm ssion angles. */
doubl e caz; /* cosine of transm ssion angle. */

sal = sqrt(1-cal*cal);

sa2 = nl*sal/n2

i f(sa2>=1.0) {
/* doubl e check for total internal reflection. */
*ca2_Ptr = 0.0;

r = 1.0;
el se {
doubl e cap, cam /* cosines of sumap or diff amof the
two */
/* angles: ap = al + a2, am= al - a2. */
doubl e sap, sam /* sines. */
*ca2_Ptr = ca2 = sqrt(1l-sa2*sa?);
cap = cal*ca2 - sal*sa2; /* c+ = cc - ss. */
cam = cal*ca2 + sal*sa2; /* c¢c- = cc + ss. */
sap = sal*ca2 + cal*sa2; /* s+ = sc + cs. */
sam = sal*ca2 - cal*sa2; /* s- = sc - cs. */
r = 0.5*sanfsant(cantcamrcap*cap)/ (sap*sap*cantcan)
/* rearranged for speed. */
}
}
return(r);

} /******** END SUBROJTI NE **********/

/***

* SAVE RESULTS TO FI LES
* to files naned =Ji.dat< and =Fi .dat< where i = ntflag

Saves =Ji.dat< in follow ng fornmat:
Saves r[ir] wvalues in first colum, (2:NR 1)
Saves Ji[ir] values in second columm, (2:NR, 2)
Saves =Fi.dat< in followi ng fornmat:

*

* (rows, col s).
*

*

* The upper element (1,1) is filled with zero, and ignored.
*

*

*

*

(rows, col s).

Saves z[iz] values in first colum, (2:Nz 1) (rows, col s).
Saves r[ir] values in first row, (1, 2: N2) (rows, cols).
Saves Fi[iz][ir] in (2:NZ, 2:NR).
* ***/
voi d SaveFi | e(double *R, double **F, int Nfile,
long NR, long NZ, double dr, double dz)
{

doubl e r, z, rl, r2;
| ong ir, iz;

char nane[20];

FI LE* target,;

/* SAVE flux density J(r) */
sprintf(nanme, "ncJ%l. dat",Nfile);
target = fopen(nane, "wW');
for (ir=1; ir<=NR ir++) {
r2 ir*dr;
ri (ir-21)*dr;
r=2.0/3*(r2*r2 + r2*rl + r1*r1)/(rl + r2);
fprintf(target, "9%.5f \t%.12f\n", r, Rir]);

fclose(target);

/* SAVE fluence rate F(z,r) */
sprintf(name, "ncF%. dat", Nfile);
target = fopen(nanme, "wW');
fprintf(target, "9%.5f", 0.0); /* ignore upperleft elenent of matrix */
for (ir=1; ir<=NR; ir++) {
r2 ir*dr;
ri (ir-21)*dr;
r=2.0/3*(r2*r2 + r2*rl + r1*r1)/(rl + r2);
fprintf(target, "\t 9.5f", r);

fprintf(target, "\n");
for (iz=1; iz<=Nz; iz++) {

z = (iz - 0.5)*dz; /* z values for depth position in 1st col um
*/

fprintf(target, "9%.5f", z);

for (ir=1; ir<=NR ir++)

fprintf(target, "\t 9. 12f", F[iz][ir]);
fprintf(target, "\n");

fclose(target);

} /******** END SUBRQJTI NE **********/

/***

RANDOM NUMBER GENERATOR

A random nunber generator that generates unifornmy

di stributed random nunbers between 0 and 1 inclusive.
The algorithmis based on

WH. Press, S.A Teukolsky, WT. Vetterling, and B.P.

L

* Fl annery, "Numerical Recipes in C" Canbridge University
* Press, 2nd edition, (1992).
* and
* D.E. Knuth, "Sem nunerical Al gorithns," 2nd edition, vol. 2
* of "The Art of Conputer Progranm ng", Addison-Wesley, (1981).
* VWhen Type is 0, sets Seed as the seed. Make sure 0<Seed<32000.
* When Type is 1, returns a random nunber
* VWen Type is 2, gets the status of the generator.
* VWen Type is 3, restores the status of the generator
* The status of the generator is represented by Status[O0..56].
* Make sure you initialize the seed before you get random
* number s.
****/
#define MBI G 1000000000
#define MSEED 161803398
#define MZ O
#define FAC 1. 0E-9
doubl e RandomGen(char Type, |ong Seed, |ong *Status)
static long i1, i2, m[56]; /* ma[0] is not used. */
| ong nj, ;
short i, i
if (Type == 0) { /* set seed. */
nj = MSEED - (Seed < 0 ? -Seed : Seed);
n % MBIG
ma[55] = nj;
nk = 1;
for (i =1; i <= 54; i++) {
ii =(21 * i) %55
ma[ii] = nk;
nmk = nm - nk;
if (nk < M)
nk += MBI G
N = mfii];
}
for (ii =1; i1 <=4; ii++)
for (i =1; i <= 55; i++) {
ma[i] -= ma[1 + (i + 30) % 55];
if (m[i] < M2)
ma[i] += MBI G
}
il =0;
i2 = 31,
}
else if (Type == 1) { /* get a nunber. */
if (++i1 == 56)
i1 =1;
if (++i 2 == 56)
i2=1;
nm = m[il] - ma[i2];
if (m < M)
I‘Tj += IVB|G,
ma[i 1] = nj;
return (n * FAQC);

}
else if (Type == 2) { /* get status. */
for (i = 0; i <55, i++)
Status[i] = ma[i + 1];

Status[55] = i1;
Status[56] = i2;
}
else if (Type == 3) { /* restore status. */

for (i = 0; i < 55; i++)
ma[i + 1] = Status[i];

il = Status[55];
i2 = Status[56];
}

el se
puts("Wong paraneter to RandomGen().");

return (0);

}

#undef MBI G

#undef MSEED

#undef M

#undef FAC

[****x*%*x and subroutine **x***/

/***

* MEMORY ALLCOCATI ON
* REPORT ERROR MESSAGE to stderr, then exit the program
* with signal 1.

****/

void nrerror(char error_text[])

fprintf(stderr,"%\n",error_text);
fprintf(stderr,"...now exiting to system..\n");
exit(1);

/***

* MEMORY ALLOCATI ON

* by Lihong Wang for MCM. version 1.0 code, 1992.

* ALLOCATE A 1D ARRAY with index fromnl to nh inclusive.
* Oiginal matrix and vector from Nunerical Recipes in C
* don't initialize the elenents to zero. This will

* be acconplished by the follow ng functions.

****/

doubl e *All ocVector(short nl, short nh)

doubl e *v;

short i;

v=(doubl e *)nmal | oc((unsi gned) (nh-nl+1)*sizeof(double));
if ('v) nrerror("allocation failure in vector()");

v -=nl;

for(i=nl;i<=nh;i++) v[i] = 0.0; [* init. */

return v;

}

/***

* MEMORY ALLOCATI ON
* ALLOCATE A 2D ARRAY with row index fromnrl to nrh

* i nclusive, and columm index fromncl to nch inclusive.
****/
double **Al l ocMatri x(short nrl,short nrh,
short ncl, short nch)

short i,j;

doubl e **m

m=(doubl e **) nall oc((unsigned) (nrh-nrl+1) *sizeof (double*));

if (!m nrerror("allocation failure 1 in matrix()");
m-= nrl;

for(i=nrl;i<=nrh;i++) {
nfi]=(double *) malloc((unsigned) (nch-ncl+1) *sizeof (double));
if (!ni]) nrerror("allocation failure 2 in matrix()");

ni] -= ncl;

for(i=nrl;i<=nrh;i++)
for(j=ncl;j<=nch;j++) nfi][j] = 0.0
return m

}

/***

* MEMORY ALLOCATI ON
* RELEASE MEMORY FOR 1D ARRAY.

****/

voi d FreeVector(double *v,short nl,short nh)

free((char*) (v+nl));

/***

* MEMORY ALLOCATI ON
* RELEASE MEMORY FOR 2D ARRAY.

****/

voi d FreeMatri x(double **m short nrl,short nrh, short ncl,short nch)
short i;

for(i=nrh;i>=nrl;i--) free((char*) (n{i]+ncl));
free((char*) (mnrl));

5. References

! B.C. Wilson, G. Adam, “A Monte Carlo model fo rthe absorption and flux distributions
of light in tissue,” Medical Physics 10:824-830 (1983).

?Keijzer M, SL Jacques, SA Prahl, AJWelch: Light distributionsin artery tissue: Monte
Carlo simulations for finite-diameter laser beams. Lasers Surg.Med. 9:148-154, (1989)

® Keijzer M, R Richards-K ortum, SL Jacques, MS Feld: Fluorescence spectroscopy of
turbid media: autofluorescence of the human aorta. Applied Optics 28:4286-4292, (1989)

* A.N. Witt, “Multiple scattering in reflection nebulae |. A Monte Carlo approach,” The
Astrophysical Journal Supplement Series 35:1-6 (1977).

®S.A. Prahl, M. Keijzer, S.L. Jacques, A.J. Welch, “A Monte Carlo model of light
propagation in tissue.,” in “Dosimetry of laser radiation in medicine and biology,” SPIE
Institute Series Vol 1S5:102-111, ed. G.J. Miiller, D.H. Sliney (1989).

®L.-H. Wang, S.L. Jacques, “Monte Carlo modeling of light transport in multi-layered
tissuesin Standard C,”, publ. Univ. of Texas M. D. Anderson Cancer Center (1992).
Download from http://

"L.-H. Wang, S. L. Jacques, L.-Q. Zheng: MCML - Monte Carlo modeling of photon
transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 47,
131-146, 1995.

8 S. L. Jacques: Light distributions from point, line, and plane sources for photochemical
reactions and fluorescence in turbid biological tissues. Photochem. Photobiol. 67:23-32
(1998)

°T.J. Farrel, M.S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved,
steadh-state diffuse reflectance for the noninvasive determination of tissue optical
propertiesin vivo,” Med. Phys. 19:881-888 (1992).

S A. Prahl, “Light Transport in Tissue,” Ph.D. dissertation, Univ. of Texas at Austin,
Texas, (1988).

' H.C. van de Hulst, “Multiple Light Scattering Volume I1,” Academic Press, New Y ork
(1980)

