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Two integrating spheres placed so that the exit port of one and the entry port of the other are adjacent, with
only a sample intervening, will permit the simultaneous determination of the reflectance and the transmit-
tance of the sample. Such a geometry permits measurements to be made as the sample undergoes some exter-
nal stimulation, such as heat, pressure, or a chemical change. To determine the sample reflectance and the
transmittance from the measured values of irradiance within each sphere requires the calculation of the ex-
change of light through the sample between the spheres. First the power collected by a detector situated in the
wall of an integrating sphere is calculated as a function of the area and the reflectance of the wall, the holes,
the sample, and the detector for both diffuse and collimated light incident upon the sample and for a sample
located at either the exit port (reflectance) or the entry port (transmittance) of the sphere. Next, by using the
single-sphere equations, we calculate the effect of the multiple exchange of light between two integrating
spheres arranged so that the sample is placed between them. In all the cases of two integrating spheres the
power detected is greater than or equal to that for the single sphere and depends on both the reflection and the
transmission properties of the sample. Additionally, the effect of a baffle placed between the sample and
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the detector or of a nonisotropic detector is to reduce the power detected.

1. INTRODUCTION

Use of an integrating sphere as a means to measure the
reflectance or the transmittance of a sample is an estab-
lished technique. Calculations have been made that give
the power detected or the radiance of the sphere as a func-
tion of the geometry of the sphere (wall area, hole area,
sample area), the reflectance of the sphere, and the reflec-
tance of the sample.’®

Usually the sample is placed at an exit port of the
sphere and is illuminated directly. Another measure-
ment may be made by first illuminating the sphere wall or
a standard placed at another port within the sphere wall.
The transmittance of a sample is also measurable with the
integrating sphere by placing the sample at the port of en-
trance to the sphere.

Our particular interest is the optics of biological tissue,
with dosimetry in laser-assisted medicine and surgery be-
ing the end product of our investigations. The measure-
ment of the total reflectance, the total transmittance, and
the thickness of a sample permits the determination of the
absorbing and the scattering properties of tissue under
the assumption of some model of radiative transfer.®’
The most accurate model for the slab geometry used
in integrating-sphere measurements appears to be the
adding-doubling method,*® which, with the addition of a
collimated transmission measurement, permits the deter-
mination of the absorption coefficient, the scattering coef-
ficient, and the average cosine of the scattering angle.
With these three parameters other radiative transfer
models more suitable to the geometries involved in laser
surgery, such as Monte Carlo simulations, permit the de-
termination of the light distribution within biological tis-
sue during laser surgery.'

Since a temperature rise is the initial response of all
tissue to laser light it is desirable to know the change in
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optical properties as a function of the temperature. This
requires the simultaneous measurement of reflectance
and transmittance (preferably both diffuse and collimated
transmittance) as the tissue is being heated. This is
achievable through the placement of the sample between
two integrating spheres.

Such an arrangement of the spheres will permit some of
the light that is initially reflected from the sample to be
transmitted back through the sample and add to the sig-
nal in the second sphere (measuring transmittance).
Furthermore, some of the transmitted light will be re-
transmitted back to the first sphere (measuring reflec-
tion), thus adding to the signal in the first sphere. This
exchange of light will continue until all the light is ab-
sorbed by the sample, the walls, or the detector or is lost
through the holes.

Not only are the double integrating spheres required for
the simultaneous measurement of reflectance and trans-
mittance during the heating of biological tissue but they
have also been used purely for convenience.""* Unfor-
tunately, neither Ref. 11 nor Ref. 12 appeared to take into
account the multiple exchange of light between the
spheres. Furthermore, this technique of communicating
spheres may conceivably be used in many other areas of
optical measurements, particularly when a sample is un-
dergoing changes resulting from, for example, heat or
chemical reactions.

Therefore, the purpose of this paper is to determine the
power collected by detectors in the sphere walls as a func-
tion of the spheres’ geometric and reflection parameters
and the reflectance and the transmittance of the sample
in the double-integrating-sphere system. Initially we cal-
culate the detected power for a single sphere with diffuse
light incident upon the sample (Section 2). From this cal-
culation we are able to deduce the equations for collimated
incident light and for transmittance measurements. The
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Table 1. Nomenclature

Nomenclature® Definition

P Power of the light entering the sphere

Py Power collected by the detector

m Reflection factor of the sphere wall

r Reflection factor of the detector

R, Diffuse reflection factor of the sample with diffuse incident light

R, Collimated (specular) reflection factor of the sample with collimated incident light
Ry Diffuse reflection factor of the sample with collimated incident light

Ts Diffuse transmission factor of the sample with diffuse incident light

T: Collimated transmission factor of the sample with collimated incident light
Tea Diffuse transmission factor of the sample with collimated incident light

N Radius of the sphere

A = 47h? Total sphere area

aA Area of the sphere wall

8 Area of the detector

S

Area of the sample
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a=1- (§/A + s/A + h/A)
h Area of the holes

Area of the sphere wall relative to the total sphere area

“When a second sphere is introduced the properties of this sphere are labeled with a prime (e.g., m', A’).

method of calculation is similar to that of Miller and
Sant,* in which no sample was present, and to that of
Goebel,® in which the calculations were made for a sphere
with a nonuniform coating.

With the equations for a single integrating sphere we
calculate the effect of the multiple exchange of light be-
tween two adjacent spheres (Section 3). This gives the
power detected in each sphere as a function of the reflec-
tance and the transmittance of the sample. In addition
we briefly consider the effects of a baffle between the
sample and the detector (Section 4) and of a nonisotropic
detector (Section 5).

2. SINGLE SPHERES

The signal given by a detector within an integrating
sphere depends on the total power incident upon the detec-
tor and on the detector’s response to that power. In
Section 4 we consider the influence of a nonisotropic de-
tector that responds to the light as a function of the angle
at which the light is incident upon the detector. However,
in this section and in Section 3 we assume that the detec-
tor collects light with the same efficiency over all the
angles of incidence. Therefore the voltage given by the
detector ouput will be directly proportional to the total
light power incident upon the detector. The nomencla-
ture used is summarized in Table 1.

A. Light Incident upon the Sphere Wall

Light enters the sphere and is incident upon the sphere
wall with power P, as in Fig. 1A. The total power re-
flected (first reflection) is

mP, )

where m is the coefficient of reflectance of the sphere
wall. Since the wall is a Lambertian surface, the re-
flected power is distributed uniformly over the sphere
wall. Therefore the power collected over a given area is
proportional to the total power emitted (m P) and the frac-
tional area of the sphere that this area represents. Hence

for the first reflection a detector of surface area & will
collect
2mP, @)
where A is the total inner surface area of the sphere, in-
cluding the sphere wall, the detector, the sample, and the
holes.
Similarly the total light from the first reflection col-
lected by the walls of the sphere is

amP, (3)
the total light collected by the sample is

%mP, @
and the total light (lost through) the holes is
~mP, ®

where @ = 1 — (§/A + s/A + h/A) is the area of the actual
sphere wall relative to the surface area of the whole sphere
(A), s is the area of the sample, and 4 is the sum of the
areas of all the holes (ports) in the sphere.

Of the total power from the first reflection incident
upon the detector [expression (2)], a fraction r, where r is
the coefficient of reflection for the detector, will be re-
flected. Similarly, for the wall [expression (3)] a fraction
m will be reflected, and for the sample [expression (4)] a
fraction R, will be reflected (R, is the coefficient of dif-
fuse reflection of the sample). Thus the total reflected
light of the second reflection will be

é s
erP + mamP + RdZ

mP = mPF, (6)
where

é
A

represents the fraction of the total incident light that is
diffusely reflected by all the components of the sphere.

F=r—+ma+ Rdi (7
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From this second reflection the power is distributed
uniformly around the sphere so that the detector collects

—z— mPF, 8)

the wall collects
amPF, 9)

and the sample collects

s
1 mPF. (10)

In a similar manner the next (the third) reflection
yields a power incident upon the detector of

%mPFF, (11)

and in general the detector collects from the nth reflec-
tion a power of

o
ZmPF"“l. (12)

Summing expression (12) for n = 1 to «, we have the
total power collected by the detector

Pd=§mP(1+ F+F*+F+. ..+ F7'+..). (13

Detector

Sample

Scattered

light

Sphere

Detector

Sample

Laser

Power

Sphere

B

Vol. 9, No. 4/April 1992/J. Opt. Soc. Am. A 623

AsF <1,

& m o m
p=2_" p_2 _
4= AT F Al—[ma+Rd(s/A)+r(5/A]P

(14)

The equations of this section are summarized in
Table 2. Note that, for any one reflection, energy is con-
served. That is, the sum of the light reflected (columns 2
and 3) is equal to the sum of the light collected and lost
(columns 4-7). A summation of the detected powers in
column 7 yields Eq. (14). Since the source of the light
incident upon the sample is diffuse, we refer to this case
as diffuse incidence, as opposed to collimated incidence, in
which the light is incident directly upon the sample.

Equation (14) is compatible with those of Miller and
Sant* (no sample) and Goebel® (general theory), which
were calculated in a similar manner, and with those of
Jacquez and Kuppenheim,? who used an integral equation
of the Fredholm type, and O’Brein,® who used network
representation.

B. Light Incident upon the Sample

Collimated light is incident upon the sample with power P,
as in Fig. 1B. The power reflected consists of two parts,
a collimated specular part,

R.P (15)

Detector

Sphere
C
Detector
Sample
Laser
Power
P
Sphere
D

Fig. 1. Single-sphere geometries. Measurements of reflectance are made when the light enters through a port and is incident either
upon the sphere wall (A) or directly upon the sample (B). In the latter case the light is incident perpendicularly to the sample, and there-
fore the specularly reflected light exits the sphere through the entrance port. Transmittance measurements may be made with either a
diffuse (C) or a collimated (D) source incident upon the sample. In the latter case the light that is not scattered within the sample is then

incident upon the far sphere wall, where it is diffusely reflected.
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and a diffuse part
R, P, (16)

where R, is the coefficient for the collimated (specular)
reflection of collimated incident light and R, is the coeffi-
cient for the diffuse reflection of collimated incident light.

If the collimated part [expression (15)] is incident upon
the sphere wall (such as may be the case when the incom-
ing light is not incident perpendicularly upon the sample),
then there will be generation of diffuse light reflected
from the sphere wall with a power of

mR.P. amn

Therefore there are two diffuse sources of light [expres-
sions (16) and (17)], each of which behaves in a manner
similar to that of the diffuse source discussed in Subsec-
tion 2.A [expression (1)]. The power collected by the de-
tector will be the sum of the multiply reflected light, as in
Eg. (14), for each of the two sources. That is,

é ch + Rcd

Pa= A T lma + Rue/A) + r@/A]

(18)

This equation was verified by the process described in
Subsection 2.A and in Table 2.

C. Transmission
To measure transmittance we place the sample at the en-
trance port of a sphere, as in Figs. 1C and 1D. The sample
may be illuminated with either diffuse or collimated light
of power P.

Once again the problem reduces to that of one or two
diffuse sources, the first being the light from the sample.
This source is for diffuse light incident upon the sample,

T,P, (19)
or for collimated light incident upon the sample,
TP, (20)

where T and T, are the diffuse transmission coefficients
for diffuse and collimated incident light, respectively.

If the light incident upon the sample is collimated and
the collimated transmitted light does not leave the sphere
through a hole, then there is a second source of diffuse
light where the collimated transmitted light strikes the
sphere (Fig. 1D),

m'T.P, (21)

where m' is the coefficient of diffuse reflection from the
sphere wall. We introduce the prime notation here since
we will use it below to distinguish between the sphere col-
lecting primarily transmitted light (prime, transmittance
sphere) and that collecting primarily reflected light (no
prime, reflectance sphere).

Therefore, through the same procedure as in Subsec-
tion 2.A, we obtain the total power collected by the detec-
tor for diffuse light incident upon the sample,

- Ty :
Pi=a1= [ma + Ry(s/A) + r’(b"/A’)]P ’

(22)

Vol. 9, No. 4/April 1992/J. Opt. Soc. Am. A~ 625

for collimated light incident upon the sample, the detected
power is

i Ty + m'T,

P = T [mid + Ra(s/A) + F0/A)]

P. (23)

3. DOUBLE SPHERES

The simultaneous measurement of the reflectance and
the transmittance of the sample requires that the sample
be placed between two spheres, as in Fig. 2. The sample
is then at the exit port of the first sphere measuring re-
flectance (referred to as the reflectance sphere) and at
the entrance port of the second sphere measuring trans-
mittance (referred to as the transmittance sphere). We
require only that these two ports be identical in size. If
they are not, some of the light transmitted by the sample
will not be collected within the spheres. The spheres may
have different wall, hole, and detector areas and different
wall reflectances. We assume that the transmittance and
the reflectance of light are homogeneous with respect to
which side of the sample the light is incident upon.

Detector 2

Detector 1

Reflectance

Sphere Transmittance
A Sphere

Detector 2
Detector 1

Reflectance

B Sphere Transmittance
Sphere

Fig. 2. Double-sphere geometries. Light may enter the system
through the entrance port of the reflectance sphere and be in-
cident upon the wall (A), the so-called diffuse case, or upon the
sample (B), the collimated case. There is a multiple exchange of
light between the spheres, and in the collimated case some of the
light transmitted through the sample without scattering may be
incident upon the far sphere wall, where it is diffusely reflected.
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A. Diffuse Light
Consider light incident upon the side of the wall of the
reflectance sphere (Fig. 2A) as in Subsection 2.A and
rewrite Eq. (14) as

dm
Pu=3 TP, (24)
where
V—l—(m +R£+r£) (25)
- aT Ry Ty

and where the subscript 1 has been added to P, to indicate
that this power is only part of the total power detected. It
is the power incident upon the detector surface within the
reflectance sphere that is due only to the light generated
within the reflectance sphere that has not traveled
through the sample from the transmittance sphere.

Since Py is the power incident upon the detector of sur-
face area 8, we may deduce that

s m

P, =
'1TAV

P (26)

is the power incident upon the sample.

We know that this power (P,;) multiplied by the coeffi-
cient for the diffuse transmission of diffuse incident light
(T4) will provide a source for the transmittance sphere, as
in expression (19), such that there is a power incident upon
the detector in the transmittance sphere of

&1

Py' = X FTdPsl

O Tasmy @7)

where V' is identical to V in nomenclature except that it
and the other appropriate sphere parameters have been
changed (prime added) to account for the possibility of the
transmittance sphere’s being different from the reflec-
tance sphere.

A fraction of light transmitted into the transmittance
sphere is incident back upon the sample,

s 1

Pl=gv

TyPy, (28)

and acts as a second source for the reflectance sphere
(Ps1'Ty) such that the detector detects an additional
power of

61
Py = y ";posll

=——424p (29)

Similarly some of this second source is incident back
upon the sample and is transmitted. This light acts as a
second source in the transmittance sphere.

This process of the exchange of light between the two
spheres continues ad infinitum, and the total light inci-
dent upon the detectors may be calculated as a sum of a

Pickering et al.

geometric series of the power detected for each source
(each exchange of light) within each sphere to give, for the
reflectance sphere, a total detected power of

sm 1

Fo= v 1-77F

(30)
and, for the transmittance sphere, a total detected

power of

' Ty 1
Pd:_iiw_ 1 P (31)

where
S Td
=—— 2
T AV (82)
and
5T
T'=zv (33)

The calculations described here are summarized in
Table 3, where Eqgs. (30) and (31) may be calculated by
summing columns 3 and 5, respectively.

B. Collimated Light
If collimated light is first incident upon the sample within
the reflectance sphere, then we may calculate the power
detected in each sphere by using procedure identical to
that in Subsection 3.A but now with two initial sources in
the reflectance sphere [expressions (16) and (17)] and two
in the transmittance sphere [expressions (20) and (21)].
Combining these expressions with Eqgs. (30) and (31) yields
the following results.

For the reflectance sphere the total detected power will
be

_ 3[Ret + mRB. + T'(Tog + m'T))]

Fa=4 V(- TT)

P, (34)

and for the transmittance sphere the total detected power
will be

_ 8 [T + mT. + T(Res + mR.)]
A V'a - TT)

)X P. (35)

C. Discussion of the Sphere Equations
The equations for the power detected in the double-sphere
system [Egs. (30), (31), (34), and (35)] may be understood
in terms of the equations for the single-sphere systems
[Egs. (14), (18), (22), and (23)] and in terms of the sources
of diffuse light.

To explain the equations, we use the example of a colli-
mated source. In the single- and the double-sphere cases
for reflected light there are two diffuse-light sources,

RyP, (36)
mR.P. (37)

In the double-sphere case there is a third source of dif-
fuse light that is due to a proportion of the collimated light
first incident upon the sample that is transmitted through
the sample into the transmittance sphere. Some of this
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light is again transmitted through the sample, this time
back into the reflectance sphere to act as the third diffuse
source:

i Td(Tcd + mch)

X o7 P =TTy + m'T,)P. (38)

Within the reflectance sphere these three diffuse
sources will undergo multiple reflections, and some light
will be lost to absorption by the wall, through the holes,
and to absorption and transmission by the sample, in the
same fashion as was discussed in Subsection 2.A. The
power detected in the reflectance sphere is then

_ 3B+ mRe + T(Ty + mT)
-2 = .

However, the presence of the transmittance sphere
means that some of the light incident upon the sample will
be transmitted into the transmittance sphere, and some of
this light will then be transmitted back into the reflec-
tance sphere. The factor 1/(1 — T'T’) in Eq. (35) accounts
for the increase in the detected power that is due to this
multiple exchange of light between the spheres.

Similarly in the transmittance sphere there are three
diffuse sources:

Py

(39)

TP, (40)
mT,P, (41)

s Ty(Reg + mR,)
A 14

The first two sources arise from the transmission of
some of the collimated light directly incident upon the
sample, and the third arises from the transmission of
some of the diffuse light generated within the reflectance
sphere. Once again the light is attenuated by losses
within the sphere proportional to 1/V’, and the signal is
increased by the factor 1/(1 — T'T') because of the multi-
ple exchange of light between the spheres.

P =TTy + mT,)P. 42)

4. INFLUENCE OF A BAFFLE

Often within integrating spheres a baffle is placed be-
tween the sample and the detector to avoid the collection
of specularly reflected light from the sample. If we as-
sume that the baffle is small and acts as a diffuse reflec-
tor placed in the sphere wall at the position of the detector
with the same reflectance as the sphere wall, then the
light emitted from the sample in the direction of the de-
tector, less that lost through absorption by the baffle, will
be returned to the sphere. Therefore we neglect the term
r8/A that is due to the reflection of light from the detec-
tor. This is reasonable since this reflection is small com-
pared with the reflections by the wall and the sample.

For diffuse incident light the calculations proceed in
the same manner as in Subsection 2.A except that ex-
pression (8), the power detected from the second reflec-
tion, becomes

8
~ mamP, (43)

which is a factor 8/A[R.(s/A)mP] less than expres-
sion (8) owing to the detector’s not collecting the light
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directly reflected from the sample. As a further conse-
quence, expression (11), the power detected from the third
reflection, becomes

é

XmamP(ma + Rd%)s (44)
and expression (12), the power detected from the nth re-
flection, becomes

3 p( +Riy{ (45)
A am mo d A

Finally the equation for the total detected power re-
duces to

p, = 3 _[1= Rog/A)m

T A1l-[ma+ Rys/A)] (46)

For collimated incident light a similar argument applies
to the first diffuse source (R4 P), taking into account the
nondetection of light from the first reflection. The con-
tribution from the second diffuse source (mR,) is calcu-
lated in a manner identical to that used above. For double
spheres, a similar argument applies, with the exchange of
light between the spheres being identical to that discussed
in Section 3. Table 4 summarizes the equations for single
and double spheres with and without baffles.

5. INFLUENCE OF A NONISOTROPIC
DETECTOR

An alternative to a baffle is a nonisotropic detector, in
particular, a detector that sees only the opposite sphere
wall. This is the case in Fig. 3, in which the detector sees
a fractional area B of the sphere wall and absorbs light
with an efficiency E(6, ¢), where 8 and ¢ are the two defin-
ing angles of any direction in the incoming hemisphere
and E <1V, ¢. E is zero at  and ¢ where the light
does not emanate from the wall area defined by .

Since the area B8 does not contain the sample, the analy-
sis proceeds in a manner identical to that of the analysis
for a baffle, except that the detector now detects only a
fraction of the light incident upon it, this fraction being

f=8 j E(6, ¢)sin 6dode . (47)
w2 727

The power detected will also depend on the point of inci-
dence of the collimated light. Thus for diffuse light
Eq. (46) becomes

) fmam
= 1=
Fa=7 {E "t I [ma + Rys/A) + r(B/A)]}P ’
(48)
where
B = 0 if point of incidence €& B ]
B E(0% &%) (6%, ¢*) define the point of incidence

relative to the detector

(49)

Once again, similar equations may be formed for the
collimated incidence, the transmitted light, and the double
integrating spheres.
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Table 4. Summary of Detector Power*

Geometry No Baffle

Baffle

Single spheres
Diffuse incident light

»

o m P
A 1 - [ma + Ry(s/A) + r(5/4)]

Reflectance

Collimated incident light

é mR, + R
Reflect — P
ectance A 1- [ma + Ra(s/A) + r3/A)]
Diffuse incident light
. &' Ty
Transmittance —

Collimated incident light
8’ m'T, + Teq

AT [ma + Ras/A) + G /AN

Transmittance —

Double spheres

A"l - [m'a' + Ry(s/A") + r'(6’/A’)]P

5 _mll = Ra(s/A)
A 1 - [ma + Ru(s/A)]

8 mRJ1 - Ry(s/A)] + Rama
A 1 — [ma + R4(s/A)]

z Tdm'a' P
A'1—[m'a’ + Ra(s/A)]

8 m'Tf1 = Ra(s/A")] + Team'a’
A 1-[m'a + Ras/A)]

Diffuse incident light
é m & m[l — Ra(s/A 1
Reflectance sphere 31 A T r@A L - TT' L A1- Ema +d}(2:(s)/]A)] 1-TT
Transmittance sphere s mTs 2s mlum'o
A' A 1 - [ma + Ra(s/A) + r(5/A)] A’ A 1 - [ma + Ra(s/A)]
1 1 1
T m'a + Rag/A) + F (5 /AN 1 - Tt T e+ Ry(s/AN] 1 — T
Collimated incident light
Reflectance sphere 2 mBe + Beg + T'(Tea + m'T) P 8 mR.[1 — Ry(s/A)] + Reama + T'(Tea + m'Te)ma P
A {1 — [ma + Ra(s/A) + r(/ATA - TT") A {1 - [ma + Ra(s/ATQA - TT")
&' m'T, + Teg + T(Rea + mR,) &' m'T[1 — Ry(s/A")] + Team'a’ + T(Reg + mR)m'a’

— P

Transmittance sphere

A {1 - [m'a’ + Ra(s/A") + r'(3' /A — P @

{1-[m'e’ + Ra(s/AN}(L - TT")

%For the sake of simplicity the equations for the baffle neglect the small contribution to the power of the sphere that is due to the reflected light from the
detector since this light {r(§/A)] is negligible relative to the light reflected by the wall or sample. Also note that T = (s/A){Ty/1 — [ma + Ra(s/A) + r(8/A)]}

and 7" = (s/A") {Ta/1 — [m'a’ + Ra(s/A") + r'(8'/A"]}.

6. DISCUSSION

The equations calculated for the power measured with the
double integrating spheres are required for the simulta-
neous measurement of the reflection and the transmis-
sion properties of the sample. With these properties a
suitable model of radiative transfer within the sample
may be applied to deduce the absorption and the scatter-
ing characteristics of the sample. Such calculations and
simultaneous measurements are particularly relevant to
the field of laser surgery since they permit measurements
to be made during the heating of the tissue and ultimately
permit more precise dosimetry. This is by no means the
only application of the double integrating sphere; for ex-
ample, measurements of materials under cooling, under
pressure, and during chemical change may be made.

The power measured in each sphere is a product of the
sum of the diffuse sources within the sphere with a func-
tion (greater than 1) that accounts for the multiple reflec-
tions within that sphere and, in the case of the double
spheres, a function (also greater than 1) that accounts for
an increase in the detected intensity that is due to the
multiple exchange of light between the spheres.

The first function for multiple reflections within the
sphere {1/[1 — (ma + Rss/A + rd/A)]} takes into account
the losses within the sphere resulting from absorption by
the sphere wall and the sample and from light’s exiting the

sphere through holes. This function is related to the
sphere efficiency® since it describes the deviation from a
perfect sphere in which there are no light losses.

Detector

Fig. 3. Nonisotropic detector in the sphere wall sees only the
light that is reflected from the portion of the sphere wall marked
B. Furthermore, the detector efficiency may vary as to the di-
rection (0, ¢) of the incoming light from g.
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0.2
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0.25 0.5 0.75 1 1.25 1.5

Angle from normal (radians)

Fig. 4. Inthe case of a flat sample, as opposed to a curved sample
that fits the circumference of the sphere wall, the power collected
within the sphere from a diffusely emitting element depends on
the angle between the emittor and the collecting portion of the
sphere (angle from normal) and on the sample area relative to the
total sphere surface area (1-16%).

10.
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-~ 8.
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4
Z 6.
=7
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9 Collimated
S 2.
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0.2 0.4 0.6 0.8 1.
Fraction reflected
(@)
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R 5.
5 Collimated
Z 6.
(]
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9 4
g —
g 2.1 i
= Diffuse

0.2 0.4 0.6 0.8 1.

Fraction transmitted

(b)

Fig. 5. Percentage of detected power in (a) the reflectance
sphere and (b) the transmittance sphere relative to the total inci-
dent power (for the double-sphere geometry). Shown are the
powers for diffuse light collected without a baffle (solid thick
curves) and with a baffle (dotted thick curves) and for collimated
light without a baffle (solid thin curves) and with a baffle (dotted
thin curves). In these examples the sphere-wall reflectance (m)
is 0.98, the relative sample area (s/A) is 0.03, the relative hole area
(h/A) is 0.025, and the relative detector area (8/4) is 0.005. There
is assumed to be no collimated reflectance or transmittance
(Rc = Tc = 0), and Rmv = Rd, Tcd = Td =1- Rd.

The calculations presented in this paper have assumed
that the sample area is small compared with the sphere
area and that the sample is curved to fit the sphere sur-
face. However, in practice most samples are flat, and
therefore the power diffusely reflected from them can no
longer be considered to be evenly distributed over the

Pickering et al.

sphere wall. Figure 4 illustrates the influence of a flat
sample on the distribution of power on the sphere wall as a
function of the angle from normal. For small areas (less
than 4%) this influence may often be neglected. Jacquez
and Kuppenheim® considered the flat sample in detail for
the single integrating sphere.

For two communicating spheres the function describing
the exchange of light between the spheres [1/(1 — T'T")]
depends on the efficiency of each sphere, on the sample
size, and on the transmittance of the sample. For smaller
samples (relative to the total sphere area), samples that
transmit less, and less-efficient spheres (greater light
losses), the exchange of light between the spheres is
reduced.

The differences in the detected power for collimated
and diffuse incident light and for spheres with and with-
out baffles are illustrated in Fig. 5. In this example the
sample is assumed to be nonabsorbing, and there is as-
sumed to be no collimated transmitted light and no specu-
lar reflectance. Thatis, T, = R, = 0,R.; = Ry, and T,y =
T; =1~ R,;. Figure 5 assumes identical spheres with a
sphere-wall reflectance (m) of 0.98, a relative sample area
(s/A) of 0.03, a relative hole area (h/A) of 0.025, and a rela-
tive detector area (§/A) of 0.005. There is always a
greater change in the collimated signal than in the diffuse
signal for a small change in the reflectance or the trans-
mittance. This suggests that collimated light is likely to

15
—

0.05

=]

Detected power (%)

<>

s/A

Fraction
Reflected

Detected power (%)

Fraction
Reflected

1.0

(b)
Fig. 6. Under the same conditions as in Fig. 5, the percentage of
detected power in the reflectance sphere (double-sphere geome-
try) as a function of the sample reflectance and as a function of
(a) the relative sample area (s/A) for a constant relative hole area
(R/A) of 0.025 or (b) the relative hole area (%/A) for a constant
relative sample area (s/A) of 0.03.
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make a more accurate measurement of reflectance and/or
transmittance. For 0 reflectance there is a signal in the
reflectance sphere even for collimated light. This is
because the sphere receives some light from the transmit-
tance sphere. For the example given this signal is a maxi-
mum because all the light is assumed to be transmitted
(diffusely). For a sample that absorbs or that is less scat-
tering, this 0 reflectance signal will be relatively smaller.
To illustrate the effect of changing the sample size or the
size of the holes, Figs. 6(a) and 6(b) show the signal in the
reflectance sphere as a function of the reflectance for a
relative sample area of 0 to 0.05 for a constant relative
hole area (0.025) and for a relative hole area of 0 to 0.05 for
a constant relative sample area (0.03), respectively.

Overall, six coefficients of sample reflectance and
transmittance have been presented. Six measurements
must be made to deduce all these parameters. The dif-
fuse reflectance (R;) and transmittance (T;) of diffuse in-
cident light may be calculated from the power measured in
the two spheres [Egs. (30) and (31), respectively] when the
light is initially incident upon the wall of the reflectance
sphere. These values and the power measured in each of
the spheres for collimated incident light [Egs. (34) and
(85)] will yield the diffuse reflectance (R,;) and transmit-
tance (T,y) of collimated incident light if the specular re-
flectance and the collimated transmitted light are allowed
to leave the sphere system. The measurement of the
power of the collimated specular reflectance and the colli-
mated transmitted light by two other detectors outside
the spheres will yield R, and T-.

All six measurements need not be made if only certain
information is required. For example, for the calculation
of radiative-transfer-theory scattering and absorption co-
efficients and the average of the cosine of the scattering
angle, only three light measurements (diffuse reflectance
and diffuse and collimated transmittance) are required.
An appropriate radiative transfer model® will relate the
coefficient of diffuse reflectance for diffuse incident light
(Rg) with the coefficient for collimated incident light (R.4)
and similarly will relate T; and T.4.
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