SEVEN

THE DIFFUSION APPROXIMATION
IN THREE DIMENSIONS

Scott A. Prahl

7.1. INTRODUCTION AND OVERVIEW

The diffusion approximation of the radiative transport equation is used exten-
sively because closed-form analytical solutions can be obtained. The previous
chapter gave closed-form solutions to the one-dimensional diffusion equation.
In this chapter, the classic searchlight problem of a finite beam of light nor-
mally incident on a slab or semi-infinite medium will be solved in the time-
independent diffusion approximation. The solution follows naturally once the
Green’s function for the problem is known, and so the Green’s function subject
to homogeneous Robin boundary conditions will be given for semi-infinite and
slab geometries. The diffuse radiant fluence rates are then found for impulse,
flat (constant), and Gaussian shaped finite beam irradiances.

How do Green’s functions help solve the problem of a finite beam incident
on a turbid medium? As unscattered light propagates through the medium, it is
scattered and becomes diffuse. This initial scattering event acts as a source of
diffuse light. The Green’s function describes the distribution resulting from a
point source of diffuse light. Since the unscattered light decays exponentially
with increasing depth in the slab, the Green’s function for an irradiation point
on the surface may be obtained by convolving the Green’s function with the
proper exponential function. Again using superposition, the response for an
arbitrary source distribution is obtained by adding the contributions of all point
irradiances. This description is not quite complete because it neglects the con-
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tribution from boundary conditions, however the analytic derivation in this
chapter is complete.

The solutions for the searchlight problem are expressed as definite inte-
grals or infinite series. There are a number of possible ways of obtaining solu-
tions to the diffusion equation. Green’s functions for a slab geometry' have
been known for some time. Somewhat surprisingly, the Green’s function for a
semi-infinite medium is not readily available in the literature and is included for
completeness. The solutions for the semi-infinite and slab geometries are ex-
tended to include exponentially attenuating line sources. Finally, we present
equations for calculating the internal fluence rates for finite beam irradiances
(flat top and Gaussian) on slab and semi-infinite media with inhomogeneous
Robin boundary conditions.

To avoid the usually complicated expressions that arise in solutions for a
semi-infinite geometry, some authors use monopole and dipole methods. Both
techniques generate solutions that satisfy the diffusion equation at the expense
of satisfying the boundary conditions. The solutions and compromises inherent
in using the dipole and monopole techniques are briefly discussed.

7.2. THE PROBLEM

The problem is to find the internal distribution of light (as well as reflec-
tion and transmission) for a cylindrically symmetric beam with finite radius
oriented normal to the surface of a slab or semi-infinite medium. The total
power of the beam is P and the radius is w;. The surface of the slab is flat and
is unbounded in directions perpendicular to the axis of the beam. Specular
reflection of the unscattered beam from the top surface is designated r., and
from the bottom surface by r.,. The sample is characterized by a scattering
coefficient p,, an absorption coefficient p,, and an average cosine of the phase
function of g. The thickness of the slab is d. The irradiance is denoted by E(r)
where the cylindrical coordinate system is used r = (r, z, 0):

E(r) = E(r) exp(— i) (1.1)

The attenuation coefficient w, = p, + R, is the reciprocal of the average
distance light travels before being scattered or absorbed by the medium. The
diffuse radiant fluence rate &,(r) for this irradiance is the solution to the diffu-
sion equation

V2oy(r) — pnopbr) = —3p(p, + gra)E(r) exp(— i) (7.2)

where W4 = \/3puap,,, is the effective attenuation coefficient and p,, = W, —
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gM. The z direction coincides with the inward normal to the top surface of the
slab and the boundary condition for the top boundary is

byr) —A—— 34%() = —3ugAEr) atz =0 (7.3)

where the boundary coefficient A is defined as

2 1+ r 21
A=——— (7.4)
3per I = ray
The reflection factor r,; is discussed in the previous chapter, and represents the
ratio of upward and downward hemispherical fluxes at a boundary in the diffu-
sion approximation. The bottom boundary condition has a sign change because
the inward normal is in the opposite direction,

or) + A/ a(bf( ) _ = 3ugAE(r) atz=4d (1.5)

To obtain the diffuse radiant fluence rate, the inhomogeneous diffusion equa-
tion (7.2) must be solved subject to the inhomogeneous Robin boundary condi-
tions (7.3) and (7.5). For an infinite medium, the boundary conditions are not
applicable. In a semi-infinite medium (7.5) does not apply and the boundary
condition instead requires that the diffuse radiant fluence rate must remain
bounded at large depths.

7.2.1. Finite Beam Profiles

The functional representation for the irradiance of an impulse ring with
total power P and specular reflectance r., from the surface is

d(r — r' 3(r — r
E(r') = E,-m,,u,se(r—,r—) (= gpr =) (1.6)
r r
The irradiance for a Gaussian beam with an e~ 2 radius of w, is
4P(1 — r,, ,
E(r') = Egauss exp(—2r"Iwj) = S = e 5 ) exp(—2r"2w?) 1.7
wL

The irradiance of a flat beam with radius w; is

2P(1 —
By = [ By = oo i
fla w2 (7.8)

0 otherwise.

The centerline fluence rate of a Gaussian beam is twice that of a flat beam
with the same total power. Furthermore, the total power
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2 [
J f E)yrdr'dd = (1 — rg)P 1.9
0o Jo

entering the slab is equal for each of the beams [integration over azimuthal
angles is not necessary since E(r') is a ring source]. These irradiance expres-
sions neglect specular reflection from the bottom boundary.

7.3. THE SOLUTION

To obtain solutions for the cylindrically symmetric three-dimensional dif-
fusion equation in semi-infinite and slab geometries, the Green’s functions are
found first. This involves solving a diffusion equation with homogeneous
boundary conditions and a Dirac delta function as the source term. This solu-
tion can then be used to obtain the solution for an arbitrary (cylindrically sym-
metric) beam profile subject to inhomogeneous boundary conditions.

7.3.1. The Green’s Function

The Green’s function for the diffusion equation with homogeneous bound-
ary conditions is described by

VZG@rir') — pegGirr') = =8 — 1) (7.10)

where 8,(r — r') is understood to be a ring source,
6 — ’
3,(r — r) ELr—r—) 3z — 2) (7.11)
The boundary condition for the top boundary is
oG(r;r')
0z

Gr,r') — A 0 atz =0 (7.12)

and the condition for the bottom boundary is

aG(r; r") _
az

Gr;r) + A 0 atz = d (7.13)
The next section shows how this Green’s function is related to the solution of
the inhomogeneous diffusion equation (7.2) subject to inhomogeneous bound-
ary conditions.
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7.3.2. The Diffuse Radiant Fluence Rate

Green’s second identity is
a9 0 7.14
f(quv—vvzu)dV'=J'(ual—v—ﬁ) (7.14)
n

where n is the outward normal to the surface S’ enclosing the volume V' con-
taining all the sources. If u = G(ryr') and v = &4('), then this equation be-
comes

f [G(r; F)V2by(r') — &y(r)V?G(r; r)] dV'
- f(G(r; )2 g DD ) g

Adding and subtracting [ G(r;r’)p,?ﬁd)s (r')dV' from the left-hand side of this
equation and then simplifying yields

(7.15)

LHS = &) — 3ps(p, + 8o J G(rirE(r') exp(—pg') dV' (7.16)

The integral on the right-hand side can be rewritten with the stipulation that on
the top surface of the slab

) 9

— ) i, tz=20 7.17

on 0z az ( )
and

8.4 atz = d 7.18

on 9z ‘= (1.18)

because z increases with depth in the slab and » is an outward normal to the
slab. Upon substituting these expressions in the right-hand side we obtain

¢S< r) 8G(r; r)) 5

RHS = — J. (G(r' — 0,

=0

(7.19)
j G( ¢s(r o )aG(r r))dS’

which simplifies, using the inhomogeneous boundary conditons (7.3), (7.5),
(7.12), and (7.13), to

RHS = 3p,g J E(r)G(r; r') dS' — 3.8 exp(— wd) J. E(r")G(r; r') ds’
Z'=0 =d

(7.20)



212 S. A. PRAHL

Equating the left-hand side, (7.16), with the right-hand side, (7.20), gives

0sr) = 3py (1 + 8Ra) '[ G(r; r"E(r') exp(— pz') dV'
+ 3,8 j G(r; r'YE(r') dS' — 3p,g exp(— . d) | G(r; r')E(r') dS’
2<0 &=d (7.21)

The volume integral accounts for the inhomogeneous (source) term on the
right-hand side of the diffusion equation, and the last two integrals arise from
inhomogeneous boundary conditions at the top and bottom surfaces of the slab.

The expression for a semi-infinite medium does not have the integral for
the bottom boundary

o) = (e + ge) J G(r, rE(r') exp(—wz') dV' + 2 p,g JL G(r; rE(r)

=0
(7.22)

When scattering is isotropic, the result is
0,(r) = ey f G(r, rE(r') exp(—pz) dV' (7.23)

because the boundary conditions become homogeneous and w,, = ., when g
= 0. Once the Green’s function G(r; r') is known, it can be substituted into Eq.
(7.21), (7.22), or (7.23) as appropriate, and the diffuse radiant fluence rate fol-
lows immediately.

7.3.3. Reflection and Transmission

Reflection and transmission are the normalized fluxes of light exiting the
sample from the top and bottom. They have components consisting of unscat-
tered (collimated) light and backscattered (diffuse) light,

R(r) = Ryr) + R.(r) and T(r) = THr) + TA(r) (7.24)

This section gives expressions for the unscattered terms explicitly and the ex-
pressions for the diffuse terms in terms of the diffuse radiant fluence rate.

The unscattered reflection from a slab with specular reflection on the top
surface of r., and specular reflection at the bottom surface of r, is

Tee T rcb(l - zrc‘e) CXP("ZP«KD Egr_)
1 = reerep eXP(_zler) P

R.(r) = (7.25)
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The unscattered transmission is

(I = re)d — ry) exp(—pd) E(r)
1 - Teeleh exp(_zp‘ld) P

The backscattered light neglecting any internal reflection of unscattered

light is the net diffuse flux at the surface normalized by the amount of light
entering from the top,

T.(r) = (7.26)

F(rnz=0)-2
(1 - rce)P
The negative sign ensures that the reflection is positive for light travelling in

the —z direction. This definition is consistent with the expression given in the
previous chapter for the reflected flux (not the reflection) because

Ry(r) = (7.27)

~F(r0)-2=F_(0) = FL(0) = F_(0) —r,F_(0)

where the definition F(0) = F +(0) — F_(0) for the net flux and the boundary
condition F, (0) = r,,F_(0) at the surface were used. The transmitted diffuse
light when internal reflection of unscattered light is ignored is

o _Flrz=4d %
Ta(r) = Ty (7.29)

Since a small fraction of the unscattered light can be reflected internally at
the boundaries, the total diffuse reflection and transmission may differ from R},
r and T4(r) given above. The backscattered light from the second pass (i.e.,
anising only from unscattered light reflected once by only the bottom surface) is

Ra(r) = rep exp(—wd)Ty(r) (7.30)
Similarly, the transmitted light from the second pass is
Ta(r) = rep exp(— wd)R}(r) (7.31)

The backscattered light from the third pass (i.e., arising only from unscattered
light reflected once by the bottom surface and then by the top surface) is

R;}/(r) = FYeelen eXp( - 2p.,d)R;(r) (732)
Similarly, the transmitted light from the second pass is

TI(r) = rera exp(— 2w, d)T(r) (7.33)
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Adding these and all higher-order terms yields
Ry(r) + T4(r)re, exp(— pd)

R = 7.34
) 1 = reere exp( - 2|L,d) ( )
Similarly, the total diffuse transmission is
T, + R, -
T, = () 2(N7rep eXp(— 1) (7.35)

1 = reeres eXP(—zp«zd)
To relate the diffuse reflection and transmission to the diffuse radiant flu-
ence rate &(r), recall that the diffuse flux (in the diffusion approximation) is

L Vo) + 8

tr tr

Fo) = -3 Er) 2 (7.36)

for light incident normal to the surface. The radiant flux in the z direction is

Fa)- 2= — i%:’) + %&E(r) (1.37)

If the boundary condition for the surface (7.3) is used to eliminate the partial
derivative, then

R ¢(r,0)
Fir,z=0)-4 = ——> 7.38
(r, z ) - 2 34w, (7.38)
and therefore the first-order diffuse reflection is
9(r,0) 1 ( 1 —ry ) ¢(r,0)
R! = = = 7.39
d(r) 3Ap‘tr(1 - rce)P 2\1 + r (1 - rce)P ( )

If the bottom boundary condition is used, then the first-order diffuse transmis-
sion is

; 1(1 - ;
T = o(r,d) _ _( r21) o(r,d) (7.40)
3Ap,(1 — re )P 2\1 + 1y / (1 — 1P
The total diffuse reflection for a slab is

R, — .1.( 1 — ) 0(r,0) + o(r.d)re, exp(— pd) (7.41)

211 + &3] (1 - rce)P[l — Teel'ch exP(—zled)]

The total diffuse transmissicn is
- ] + ) Ci

T,(r) = 1( ! r2,) 0(rd) + O(rO)rep explurd) (7.42)

201 + ry a - rce)P[l — Teeleh exp(—2p.,d)

Typically, the corrections resulting from including multiple internal reflections
are small since r,, and r,, are on the order of 4%. It is noteworthy that if d —
(semi-infinite medium) or if r., = 0, then
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1 - r21) o, 0) (7.43)

1
Rar) = 5(1 + 1y ) (I = 1P

Once an expression for the diffuse radiant flux has been obtained, then the
reflection and transmission follow immediately from the above relations.

7.4. DIFFUSE RADIANT FLUENCE RATE IN A SEMI-INFINITE
MEDIUM

Two different methods of obtaining the diffuse radiant fluence rate in a
semi-infinite medium are presented here. The first finds the Green’s function
and convolves this with the incident beam distribution to get the diffuse radiant
fluence rate. The second method uses monopole and dipole sources to obtain
solutions to the diffusion equation that approximately satisfy the boundary con-
ditions.

7.4.1. The Green’s Function for a Ring Source

The Green’s functions for a ring source in a semi-infinite medium are
found by first solving the radial part of the problem and then proceeding to
extract the axial component of the solution. This Green’s function is then con-
volved to obtain solutions for a ring impulse, a flat beam, and a Gaussian beam.

7.4.1.1. Radial Solution

Assume that the Green’s function will have the form (in what is essentially
a Hankel transform)

G(r,z;r', Z') = rsJO(rs)g(s,z; r',z')ds (7.44)
0

Substituting this expression into the diffusion equation yields

10 0
-— ( r— rsJO(rs)g(s,z; r', 7)) ds )
ror\ orjo

d3r —r) 5¢ — 2)
r

(7.45)

5
-+-' sJo(rs [—— 3] 5,2, r,7)ds = —
0 o(rs) 622 P 8( )

The definition of the zero-order Bessel function can be used to obtain
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14 ad

-— ( r— Jo(rs) ) = —s2Jy(rs) (7.46)
ror\ or

Using this result, the diffusion equation simplifies to

2

o0 a 8 — r
J sJo(r.s) [_2 = & * uiff)]g(s,z; ¥, g)ds = = LQS(Z — )
0 0z r
(7.47)
The orthogonality relation of Bessel functions
oo 8 -
J sJo(rs) Jo(r's) ds = Br—7) (7.48)
0 r
When this is multiplied by —8(z — z'),
°° , , 3r — r') ,
sJo(rs) [—=8(z — 2)Jo(r' 9] ds = — ——r—S(z -2 (7.49)
0
By equating Egs. (7.47) and (7.49), we obtain
rsu (5 - @+ wip stz ro o) | s
r. — — (s 2 T, =
o olrs 622 Weg g(5,2 Z
j sdo(rs) [ —8(z — 2') Jo(r's)] ds (7.50)
0

Now since these must be satisfied for all positive s, the bracketed quantities
must be equal and the following differential equation in z is obtained:

2

a—zzg(s,z; roz) — (2 + plpeGsz v, 7)) = =8z — )Jo(r's) (75D

7.4.1.2. Axial Solution
To simplify notation, let

fiz;2) = gz ', 2) = —Jo(r's)fiz; z')  and o = 5+ ply

(7.52)

Substituting this into Eq. (7.51) yields the following one-dimensional differen-
tial equation:

2 — &*f(z;2) = ¥z — 7)) (7.53)

that must be solved subject to the homogeneous Robin boundary condition,
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fz7) —Af'@ =0 atz =0 (7.54)

We assume a solution of the form

AeC =D 4 BT D, ifr> 7

f(Z;Z) = {Azea(z -z + Bze—a(z - z’)’ le < Zr (755)

We observe that both solutions satisfy the homogeneous differential equation
f@7) - fiz2) =0 (7.56)

when z # z'. To find the undetermined coefficients we use the restrictions of the
Green’s functions and the boundary conditions.
The requirement for continuity at z = z’ requires that

Al + Bl = A2 + B2 (757)

The jump requirement in the first derivative of the one-dimensional Green’s
function f(z;z")

dfiz; 2) |7

4 s) =1 (7.58)
dz z—> "

results from the delta-function source at z' and requires

1
Al - Bl = A2 + Bz = a (7.59)

The requirement that the solution is bounded at z —  requires

A =0 (7.60)

The boundary condition at z = 0 requires

Are™ % + Bye™ — aAAe ™ + aABye™ =0 (7.61)

Three equations in three unknowns are solved to get the final solution,
3 1 (1 — ad)e %) — (1 + aA)e ™) ifz>7
- 2a(1 + ad) a- aA)e—tx(z+z) -+ 0LA)e—oz(z—z’) ifz <z
(7.62)

fiz?)
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7.4.1.3. The Solution

The Green’s function for a ring of sources with radius 7’ at a depth z' in a
semi-infinite medium with homogeneous boundary conditions is

G(rz; r'z) = J Jo(rs)g(s,z; r',2') s ds (7.63)
0
where g(s,z; r', Z') can be expressed explicitly using Egs. (7.52) and (7.62) as

—Jo(r' $) {(1 — oA T D (1 + ad)e D ifz>7

B SR ) = 20l + o) (1 — o)™ " Do+ ad)e @D ifz<Z
(7.64)
where o = s> + pig
Recall that the normalization for this Green’s function is
J. J G(rz; r',Z) r'dr'dZ (7.65)
0Jo

and integration about the azimuthal angle is not necessary.

7.4.1.4. The Green’s Function for an Extended Ring Source

The Green’s function for an exponentially decaying line of sources located
at r' and extending perpendicular to the surface of the semi-infinite medium can
be expressed as

Ge(rzir') = j G(r,z; r',7') exp(—p2') dz’ (7.66)

where the subscript € indicates that this is the Green’s function for a “line” of
sources (actually, a cylindrical shell of sources). This may be rewritten as

Ge(rzr') = I Jo(rs)g(s,z; r') s ds (7.67)
0
where

g(s,zr') = J g(rz; r', Z') exp(—p2') dz’ (7.68)
0

Substituting Eq. (7.64) into (7.68) and integrating over z' gives

, Jo(r's)
glsz 1) = —“——2[ exp(— i) —
+ p‘eﬁ" My

1 + pA

—— exp(—az)] (7.69)
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where
2 2

s = — py (7.70)

The Green’s function for a ring of exponentially decaying sources is

’ = JO(r7S)JO(rIs) + ’.LA
Ge(riz; r') = fo m [ exp(— w,2) — m exp(—agz) | sds

(7.71)

7.4.2. Diffuse Radiant Fluence Rates for Finite Beams

To find the diffuse radiant fluence rate in a semi-infinite medium we must
evaluate Eq. (7.22),

0,(r2) = 3p(u, + gy f G(r; r)E(r) exp(—wz") dV' + 3u,g f Gr; r)E(r') dS’
g=0 (7.72)

For convenience this will be rewritten as

ds(r2) = 3l — re )Pl + gu)lfrz) + glg(r,2)] (7.73)
where /y is the volume integral and I is the surface (boundary condition) inte-
gr2l. The volume integral is dimensionless, but the surface integral has dimen-

ssons of inverse length.
The volume integral is

birz) = JlG(r;r’)%dV’
f f G(r.z;r' ,z)%exp(—p,z’) r'dr'dy’
f Gutra) 2
| U
[CXP(—M,Z) — lli—tfexp(—az) ] sds
= J.:sﬁ)(r:%[exm M2) — :';fexP(—az)]sds (7.74)
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where the integral in braces has been denoted by

® = | BT

r'dr' (7.75)

The surface integral is

E 1
Ifr2) = J. Gr;r') B ds’ atz =0
(1 — re)P 176
= J.wG(r g =0 — v ar 7
o TTETE = H — r )P
Now z' = 0 implies z > z', and therefore g(s,z; r',2") in Eq. (7.64) is
) _ Jo(r’S) _
gs,z;r'0) = A T+ oA exp(—az) 7.7
The surface integral is
oo ooJ J / E !
Irz) = A J. j O(lrsl ();;s) a ) P exp(—az) r'dr' sds
— T,
e e (1.78)

_ * Jo(rs)H(s) exp(— az)
= I 0 1+ A sds

In the next three sections, impulse, flat, Gaussian profiles for E(r') will be
substituted into Eq. (7.75) to obtain explicit expressions for Iy and Is.

7.4.2.1. Impulse Beam

The integral H(s) for an impulse ring located at a radius wy is

E; * dSw, — 1)
H — zmgulse j ] ’ ’ d ’
© =T = roPlo or's) — (1.79)

= Jo(wrs)

The volume integral Iy(r.z) is then

. J()(YS)]()(WLS) 1+ V8 A
Iy(rz) = .[o ———————s2 ¥ 12— 2 exp(— pz) — _1_4-—0:74_ exp(—az) | sds (7.80)
The surface integral Is(r,z) is given by

wJo(rS)Jo(WLS)

I = = 7.81
s(r,2) A.[() 1+ o exp(—az) sds (7.81)
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7.4.2.2. Flat Beam

The inner integral for a flat beam with radius wy is

E L
H(s) = —22— | Jo(r's) r'dr’
(s) a=r.Plo o(r's)
_ 2]1(WLS)

(7.82)
wis

using equation 6.561.5 from Gradshteyn and Ryzhik.” The volume integral for a
flat beam is

= Jo(rs)dy(wis) [ 1 + pA
Iy(r,z) = 2 — 2 e = d
v(r2) fo Wi + 2 — 1D exp(—p2) — T rexp(—az) |ds
(7.83)
The surface integral is
* Jo(rs) J1(wrs)
Irz) =2 | ——— —az) d 7.84
s(r,2) Jo Wil + Aa) exp(—az) ds (7.84)
7.4.2.3. Gaussian Beam
The inner integral for a Gaussian beam with radius wy is
E Uuss =
H(s) = —LJ Jo(r's) exp[ —2(r' Iwp)?1r' dr’
(I = re)Plo
(7.85)

= exp(— s*wji/8)

using equation 6.631.5 from Gradshteyn and Ryzhik.’ The volume integral for a
Gaussian beam is

= Jo(rs) exp(— s*wi/8) 1 + pA
I 4 — _— —_—_—_—_—_—_—_— — d
v(r2) ,[o 2 2 2 exp(— w2) ] exp(—az) | sds

(7.86)

We note in passing that this result is identical to that obtained by Grossweiner
et al.,* who do not include the surface term since homogeneous boundary con-
ditions were used. The surface integral is

* Jo(rs) exp(— szw%/8)
I(rz) = A
5(r.2) fo i+ ol

exp(—az) sds (7.87)
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The difficulty with these approaches is that the proper boundary conditions
for light transport in a turbid medium in the diffusion approximation require
that homogeneous Robin boundary conditions, Eq. (3), must be satisfied. Nei-
ther of the simple techniques described above can be extended to the Robin
boundary condition case. This is readily shown using the explicit forms for the
unbounded Green’s functions.

The boundary condition at the surface

Gr;r')y =A 3G r) atz = 0 (7.99)
0z
states that the first derivative of the desired Green’s function is proportional to
itself. The first derivative of G,,(r; r') can be written

3G, (r; r’) z—-zZ z'
— 1+ AnNG 7.100
a2 (A 2 ( NG r’) ( )
If the first derivative is evaluated at 7 = 0,
3G,,(r,0,0; r',z',0") 1+ Ar]
=7 | —— | G,(0,0; r,7,0 7.101
P Z a2 _ r',z',8") ( )

we find that the first derivative and the function itself are not related by a
constant factor. Therefore, no finite linear combination of virtual image sources
will suffice to satisfy the homogeneous Robin boundary conditions that arise in
this problem.

There have been a few attempts at resolving this problem. The first is to
ignore the Robin conditions and use Dirichlet boundary conditions. In this case,
monopoles are located at =z’ as proposed by Patterson et al..!

Gr;r") = G,(rz9; 0,1/n,0) — G, (r,2,0; 0,— Up0)  (7.102)

where the sources are located on the centerline of the beam at a depth of z' =
1/p... Later, Farrell et al. moved the sources slightly to obtain

Gr;r') = G,(rz90; 0,1/n,0) — G,(r,2.8; 0,— 1/p;,0) (7.103)

An equivalent technique involving dipoles is to simply place the dipole on the :
= ( plane,

G(r,z.9; r',2'.0") = Gu(r.2,6; 0,0,0) (7.104)
This was the early approach by Fretterd and Longini.’

A better approximation of the Robin boundary conditions results when the
external source is placed at a point other than the mirror image of the internal
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source. This approach was used by Farrell et al.," who cite Moulton" as their
reason for choosing two monopoles located with an offset of A. Farrell’s
sources were located at z7 = —p, ~' — 2A and the internal source was still at
= u; ! to obtain

Grir') = G,(rz,9; 0,1/pn,,0) — G, (r,z,6; 0,—1/n; — 24, 0) (7.105)

A similar argument was used by Allen ef al.’ in the dipole approximation who
noted the functional dependence on the radial components. They went on to
observe that for large radii, the functional dependence becomes a constant and
that the dipole should be located at 7' = —A to satisfy the asymptotic bound-
anv conditions. Allen also goes on to find a relation for the magnitude of the
dipole moment and proposed the modified diffusion dipole equation

20,PQ2z + A) expligrd)
(I + tegh) (AP

It should be noted that all attempts so far to resolve the boundary condition
problem using the method of images have been only approximate solutions.
Experimental and Monte Carlo simulations have verified that some of these
approaches give quite acceptable answers at sufficient distances from the beam.
It is also noteworthy that if inhomogeneous boundary conditions (i.e., those that
hold for anisotropic media) are to be simulated, then each of the expressions
given in this section must be substituted into the Green’s function formalism to
include the effects of inhomogeneous boundaries. If specific beam shapes are
desired, then convolution must be performed over the beam shape. This was
done by Eason et al.” Unfortunately, this process destroys the primary attraction
of the monopole and dipole approximations—analytic simplicity. In fact, the
mntegrals that result are worse than those obtained using the Green’s function
approach above.

0,(r2) = (1 + pegAr) exp(— perAr)  (7.106)

7.5. DIFFUSE RADIANT FLUENCE RATE IN A SLAB
7.5.1. The Green’s Function for a Ring Source

The Green’s function for a cylindrically symmetric ring source in a slab
with thickness d at a radius r' and depth z' that satisfies the differential equa-
won (7.10) is'

& sintk,z + v,) sin (kiZ' + ¥a) [ KoONDlNr),  ifr > 7

Grgr,z) = ,Zl N, Ko\ oD, otherwise

(7.107)
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where K, and I, are modified Bessel functions. The restriction on the eigen-
values v, is obtained by substituting the Green’s function into the boundary
condition (7.12) at z = O,

tan v, = Ak, (7.108)

The equation governing the eigenvalues &, is obtained by imposing the bound-
ary condition (7.13) at z = d and simplifying,

tan(k,d + v,) = —Ak, (7.109)

Using (7.108) and some trigonometry, we obtain

2Ak
tan(k,d) = A_zkz_—n_l (7.110)

The normalization factor N, is given by

sin2y, — sin(2k,d + 2v,) + 2kd
4k,

d
N, = f sin®(k,z + Yn) dz = (7.111)
0
Finally, substituting the Green’s function (7.107) into the diffusion equation
(7.2) results in a relation between \, and k:

A = k2 + piy (7.112)

Now if the Green’s function is convolved with a decaying exponential
over the depth of the slab, then response for an extended ring source is ob-
tained:

d

Gerz; r') = J G(r,z, r'.2") exp(— ') dZ’ (7.113)
0

Substituting and integrating reveals that the extended source Green’s function is

& sink,z + Yn) {KO()\,,r)IO()\,,r’), ifr>r

Ge(rz; r') = ngl N, 2 + p2| KoOarHo(Nar), otherwise
(7.114)

where z, is given by

in = sin Yn [p‘t + exP(— qu) (kn, sin knd — M COS knd)]
+ cos v, [k, — exp(—pd) (1, sin k,d + k, cos k,d)] (7.115)
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7.5.2. Diffuse Radiant Fluence Rates for Finite Beams
For a slab geometry, the volume integral only extends from O to d and the

sarface integral must also include the bottom boundary. The expression for the
&ffuse radiant fluence rate (7.21) can be separated into three terms,

‘r‘r-:) = 3“’:(1 - rce)P[(u‘t F g”‘a)IV(r’Z) + gItop(r,Z) - &8 exp(_p“td)lbottom]

(7.116)
The volume integral is given by
E(r")
Iy(rz) = | Gryr') ——————
v(r2) f @ r’) 1= r.0P
= | Ge(r,z; r') ——————=1r'dr 7.117
fo o(r.z r)(1 — P ( )
< Sink,z + Vp) 2
= H
P P
. where the radial integral has been denoted by
| ! N EC) ” N ECY
Hr) = Ko(\,») . I\, r") m r'dr’ + Io(\,r) . Ko\, ") m r'dr
(7.118)
The surface integral for the top is given by
- ¥ E(rl) ¥ !
Lop(r2) = J.() G(r,z; r',0) m r'dr
- . 7.119)
siny,, sin(k,z + Y,) (
-3 = e H(r)
n=1 Nn
The surface integral for the bottom is
°° E(r r'dr'
Lportom(r,2) = f G(r.z; ' ,d) -(1_(—))1)
0 Tee (7.120)
& sin(k,z + in(k,d +
-3 sin(knz + Yn) Sink,d + ¥n) H.(r)
n =1 Nn
Now, based on the restrictions on the eigenvalues (7.108) and (7.109), the fol-

g relations hold:

= —sin(k,d + v,) (7.121)
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The top and bottom surface integral relations can be combined to obtain
Is(rz) = Itop(r’z) - exP( - p‘rd)lbottom(r’z)

_ i siny,, sin(k,z + Y,)z, [1 + exp(—pd)] H,(P

n s N,
The diffuse radiant fluence rate now has the same form as in the semi-infinite
case:

(7.122)

du(r2) = 3p(1 = redPl(e + galv(r2) + gls(r)]  (7.123)

It just remains to evaluate H,(r) for different beam distributions.

7.5.2.1. Impulse Ring

The radial integral for a ring source with radius wy is

oo

H,(r) = Ko(Au7) f Tor' B¢ — wpdr' + Io(an)f Ko\ )0(r' — wy) dr'
0

T

— KO()\nr)IO()\nwL)’ ifr> wr
B {KO()\,,WL)IO()\,,r), otherwise (7.124)
Therefore, the volume integral is
o sin(kaz + Ya)za | Ko\ PN wp), if r >wg
L(rz) = 2 2 + pdN, {Ko(x,,wL)lo(x,,r), T

The surface integral is

& siny, sink,z + ¥,) [ Ko Io(hwi), fr>w
Is(r2) = [1 + exp(— pd)] 21 { oD oNwr) ]
oo

N, Ko\ wplo(\,.1), otherwise
(7.126)
7.5.2.2. Flat Beam
The radial integral for a flat beam with radius w; is
2 r L
H(r) = = [ Ko\, 1) f Lo\ r'dr’ + Io(xnr)fw Ko\, r') r'dr’
w 0 i (7.127)

2 onLKo()\,nr)Il()\nWL), if r > wy
wik2 | 1 — NwiKiNwlp(N,r), otherwise
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This leads to a solution for the diffuse radiant fluence that is equivalent to
Revnolds’s solution' except that Reynolds neglected the inhomogeneous bound-
arv condition at the surface.

7.5.2.3. Gaussian

The inner integral for a Gaussian beam with radius w; is

T

H,(r) = i21(()(7\nr) J. Io(\,r') expl = 2(r'tw,)*1r' dr’
WL 0 (7.128)

o

4
+ ;—VEIO()\,,r) f Ko(Nr') expl = 2(r' iwy)*1r dr'
L r

which has not been solved analytically.

7.6. DISCUSSION

The intent of this chapter has been to give complete accurate analytical
expressions for the diffuse radiant fluence rate for the searchlight problem on
“lat-slab and semi-infinite geometries. Special care was taken to incorporate the
entire boundary condition for the interface between a scattering medium and a
~onscattering medium with different indices of refraction (i.e., the inhom-
ogeneous Robin condition) so that when the delta-Eddington approximation™ is
_~ed the boundary conditions remain accurate. Usually, homogeneous boundary
conditions are used because the similarity principle is used to convert the an-
-wotropic problem to an isotropic problem [p; — w1 — g) and g — 0]. Once
sne problem is isotropic, the boundary conditions become homogeneous. Unfor-
-unately, this is not as accurate as the delta-Eddington approximation.

Included also are the formulas for the reflection and transmission in which
~ultiple internal reflections of unscattered light are incorporated accurately.
Including these interactions may seem incongruous with the implicit inac-
curacies of the diffusion approximation, but it yields answers that are exactly
correct when p, = 0 and gives much better approximations when the unscat-
wred light is much larger than the scattered component. Finally, the expressions
for the diffuse reflection and diffuse transmission are given in terms of the
&iffuse radiant fluence rate. This allows the rest of the chapter to focus on
finding expressions for the diffuse radiant fluence rate with no need to find
separate expressions for the radial dependence of the diffuse reflection and
ransmission.
| Expressions for the diffuse radiant fluence rate in a semi-infinite geometry
are given for a ring of irradiance, uniform irradiance over a finite beam, and
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Gaussian irradiance. These solutions incorporate inhomogeneous Robin bound-
ary conditions, and should be applicable to media with anisotropic scattering
and mismatched indices of refraction at the boundaries. Unfortunately, the ex-
pressions are in terms of integrals of Bessel functions. Since these expressions
involve only a single integration, they are amenable to numerical integration.

The monopole and dipole approximations for the diffuse radiant fluence
rate offer analytic simplicity and have been shown in the literature to work
reasonably well at larger radii. However, the fact that the boundary conditions
are homogeneous makes these solutions less accurate than those obtained using
the Green’s function method.

Finally, the solutions for a slab geometry are given for inhomogeneous
Robin conditions. The solution is in the form of an infinite series of modified
Bessel functions. Worse, the solution for Gaussian irradiance involves an infi-
nite sum of integrals that must be computed numerically. The details of finding
the eigenvalues for the problem involve finding the zeros of a transcendental
function. As the optical thickness of the slab grows, these eigenvalues decrease
very slowly and therefore the number of terms in the series necessary to reach a
certain accuracy grows increasingly cumbersome. However, the solutions are
comglete and can be implemented numerically.
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