
Charts to Rapidly Estimate Temperature following Laser Irradiation

Scott A. Prahl

Oregon Medical Laser Center, Portland, OR 97225

ABSTRACT

A recurring problem in laser applications is estimating the thermal response of target tissues to laser irra-
diation. This typically involves using an optical model to determine the distribution of absorbed laser energy
and then using a thermal model to establish the temperature during and after laser irradiation. To avoid such
modelling and yet allow one to obtain fast, accurate estimates of temperature, a series of charts for laser irradia-
tion of semi-infinite homogeneous media with adiabatic boundaries is presented. These charts were created using
analytic solutions of the temperature for absorbing-only media with simple pulsed source geometries. Through
the use of non-dimensional parameters, these charts allow one to make rapid estimates of the spatial and temporal
thermal distributions following laser irradiation for arbitrary pulse durations and absorption coefficients.
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1 INTRODUCTION

Many papers have modelled temperatures in tissues following heating. Fewer papers have modelled light
distributions in tissue. Still fewer papers have modelled temperatures in tissue following laser irradiation. This
is one of those papers.

No general solution to the thermal/optical problem in tissue exists, nor is likely to exist soon, due to the
difficulties associated with phase transitions, fracture mechanics, variable optical properties, and tissue inho-
mogenieties. This paper avoids these difficult problems (and others) by ignoring them. Specifically, I assume (1)
a homogeneous material with unchanging optical and thermal properties, (2) semi-infinite geometry, (3) adiabatic
thermal boundaries, and (4) no phase-transitions (e.g., no ablation, pyrolysis). The laser irradiation is uniform
and perpendicular to the surface and is constant for the duration of the laser pulse. Further, I assume that the
diffusion equation is adequate to simulate the light propagation in the turbid medium.

To summarize, the problem solved in this paper is “not too hard” and “not too easy.” Sufficient simplification
is made so that analytic solutions can be obtained. Sufficient complexity is retained so that the solutions are
interesting and could not be predicted based on length scale arguments alone. For example, the solution remains
valid for pulse durations comparable to the thermal diffusion time for the sample. The temperature solution is
obtained in closed-form and is valid for at any time or position in the sample. The laser pulse may be an arbitrary
length and the sample can have any scattering and absorption coefficients.
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2 THEORY

2.1 Optical Distribution

The full radiative transport equation is finessed by assuming that the diffusion approximation is valid. This is
not as bad as it might seem. The diffusion approximation is best at approximating integrated quantities like total
reflected light. Thus while the diffusion approximation may not get the particulars of the internal distribution
of light exactly right, it will get the total absorbed energy nearly correct. Since the specifics of the heating
distribution become less important as heat diffuses, and the total energy delivered becomes more important, a
combined optical-thermal model plays to the strengths of the optical diffusion approximation.

The diffusion equation in one dimension is1

d2Ld(z)

dz2
− µeff

2Ld(z) = −(3µt
2 − µeff

2)(1− rs)E0e
−µtz (1)

where Ld(z) is the total diffuse radiance [W/cm2] at a point, E0 is the normal irradiance [W/cm2] at the surface,
and rs is the specular reflection at the surface. The total scattering coefficient µt [cm−1] and effective attenuation
µeff are

µt = µa + µs and µeff =
√

3µaµt (2)

where µa and µs are the absorption and scattering coefficients. The scattering phase function is assumed to be
isotropic. For anisotropic scattering, the scattering coefficient µs should be replaced by the reduced scattering
coefficient µs

′ = µs(1− g).∗

The boundary condition for the top boundary is

Ld(z) =
A

µt

dLd(z)

dz
at z = 0 and A =

1 +R1

1−R1
(3)

where R1 is the normalized first moment of the unpolarized Fresnel reflection.† This moment was found analyti-
cally by Walsh (see2)

R1 =
1

2
+

(m− 1)(3m+ 1)

6(m+ 1)2
+

[
m2(m2 − 1)2

(m2 + 1)3

]
ln
m− 1

m+ 1

− 2m3(m2 + 2m− 1)

(m2 + 1)(m4 − 1)
+

[
8m4(m4 + 1)

(m2 + 1)(m4 − 1)2

]
lnm (4)

where m = 1/n is the reciprocal of the index of refraction of the slab (relative to the medium above the slab).
The second boundary condition requires

Ld(z)→ 0 as z →∞

The total radiance in the slab is the sum of the scattered and unscattered radiances

L(z) = Ld(z) + (1− rs)E0 exp(−µtz)

Therefore

L(z) =
1

3a− 2

[
3a(3 + 2A)

3 + 2A
√

3− 3a
exp(−µeffz)− 2 exp(−µtz)

]
(1− rs)E0 (5)

∗This approximation replaces the phase function by a delta-isotropic phase function. This is not as accurate as a delta-Eddington
phase function, but can be easily incorporated into this derivation. I did not include the anisotropy in an effort to eliminate yet
another variable in the derivation.
†Technically, A = (1 + R1)/(1 − R2) where R2 is the normalized second moment of the Fresnel reflection. Ironically, R1 gives

better approximations when used in the denominator than R2 and therefore R2 is not used.
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where the single scattering albedo a is defined as

a =
µs

µa + µs

The normalized volumetric heat generation in the tissue is

q′′′(z) = µa(1− rs)E0

{[
3a

3a− 2

3 + 2A

3 + 2A
√

3− 3a

]
exp(−µeffz) +

[
2

2− 3a

]
exp(−µtz)

}
(6)

2.2 Thermal Evolution

The one-dimensional heat conduction equation is

∂2T

∂z2
=

1

κ

∂T

∂t
(7)

where T is the temperature, t is time, and κ is the thermal diffusivity. The Green’s function for an instantaneous
plane source (triggered at t′) in an infinite uniform medium is3

G(z, t; z′, t′) =
1√

4πκ(t− t′)
exp

[
− (z − z′)2

4κ(t− t′)

]
(8)

Note that the Green’s function has the somewhat peculiar dimensions of [1/cm]. The temperature for an arbitrary
volumetric heating distribution µaL(z′, t′) is

T (z, t) =
µa
ρc

∫ ∞
0

∫ tp

0

G(z, t; z′, t′)L(z′, t′) dz′ dt′ (9)

where ρc is the specific heat of the material.

The Green’s function a pulsed plane source that is constant and lasts from t′ = 0 to t′ = tp is

G(z, t; z′) =
1

tp

∫ tp

0

G(z, t; z′, t′) dt′ (10)

Substituting and intgrating yields

G(z, t; z′) =

√
t

πt2pκ
exp

[
− (z − z′)2

4κt

]
+
z − z′
2κtp

erf

[
z − z′√

4κt

]
−

√
t− tp
πt2pκ

exp

[
− (z − z′)2

4κ(t− tp)

]
− z − z′

2κtp
erf

[
z − z′√

4κ(t− tp)

]

This solution is valid even when (0 ≤ z ≤ z′) if one recalls that − erf(z) = erf(−z). One might note that this
solution is identical to equation 2–185 in Özişik who obtained the solution when t = tp.

4

The Green’s function in a semi-infinite medium with no heat flow across the boundary z = 0 is obtained by
the method of images as

Gadiabatic(z, t; z′, t′) =
1√

4πκ(t− t′)

(
exp

[
− (z − z′)2

4κ(t− t′)

]
+ exp

[
− (z + z′)2

4κ(t− t′)

])
(11)

and therefore the Green’s function for a pulsed source in a semi-infinite material with adiabatic boundaries is

Gadiabatic(z, t; z′) = G(z, t; z′) +G(z, t; −z′) (12)
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2.3 Optical-thermal solution

Since the normalized volumetric heat generation in the sample contains decaying exponential factors, here the
temperature response for a simple exponential is useful,

G(z, t) =

∫ ∞
0

G(z, t; z′) exp(−µtz′) dz′ (13)

The parameter µt introduces a convenient length scale with which to form dimensionless variables. For example,

ξ = µtz and τ = µ2
tκt (14)

At this point we also note that the Green’s function G(ξ, τ) is dimensionless,

G(ξ, τ) =

∫ ∞
0

G(ξ, τ ; ξ′) exp(−ξ′) dξ′ (15)

Substituting and integrating by parts yields‡

G(ξ, τ) =
1

2τp

{
4

√
τ

π
exp

[
− ξ

2

4τ

]
− 4

√
τ − τp
π

exp

[
− ξ2

4(τ − τp)

]
+ 2ξ erf

[
ξ

2
√
τ

]
− 2ξ erf

[
ξ

2
√
τ − τp

]
+ exp(τ − ξ) erfc

[√
τ − ξ

2
√
τ

]
− exp(τ − τp − ξ) erfc

[√
τ − τp −

ξ

2
√
τ − τp

]
+ exp(τ + ξ) erfc

[√
τ +

ξ

2
√
τ

]
− exp(τ − τp + ξ) erfc

[√
τ − τp +

ξ

2
√
τ − τp

]}
A useful special case is the temperature at the surface ξ = 0

G(0, τ) =
1

τp

{
2

√
τ

π
− 2

√
τ − τp
π

+ exp(−τ) erfc(
√
τ)− exp(−τp + τ) erfc(

√
τ − τp)

}
(16)

The temperature during the laser pulse (τ ≤ τp) is§

G(ξ, τ) =
1

2τp

{
4

√
τ

π
exp

[
− ξ

2

4τ

]
− 2ξ erfc

[
ξ

2
√
τ

]
− 2 exp(−ξ)

+ exp(τ − ξ) erfc

[√
τ − ξ

2
√
τ

]
+ exp(τ + ξ) erfc

[√
τ +

ξ

2
√
τ

]}
The surface temperature during the laser pulse is,

G(0, τ) =
1

τ

{
2

√
τ

π
+ exp(−τ) erfc(

√
τ)− 1

}
(17)

The limiting behavior for small times should lead to a function that is proportional to unity

G(0, τ) = 1− 4

3
√
π

√
τ +

1

2
τ − · · · (18)

The temperature in the sample at an arbitrary time and position and for any pulse duration, absorption
coefficient, or anisotropy is then

T (z, t) =
µa(1− rs)E0tp
ρc(3a− 2)

[
3a(3 + 2A)

3 + 2A
√

3− 3a
G(µeffz, µeff

2κt)− 2G(µtz, µt
2κt)

]
(19)

‡A simple check of the validity of this expression is to integrate over all space. The result should be and was unity
§I have normalized by the time τ instead of by τp because all the energy has not been delivered.
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In the special case of an absorbing only material, the temperature is

T (z, t) =
(1− rs)µaE0tp

ρc
G(µaz, µa

2κt) (20)

This suggests the following form for the dimensionless temperature

Θ(z, t) =
ρcT (z, t)

µa(1− rs)E0tp
=

1

3a− 2

[
3a(3 + 2A)

3 + 2A
√

3− 3a
G(µeffz, µeff

2κt)− 2G(µtz, µt
2κt)

]
(21)

The dimensionless temperature Θ is therefore normalized to the temperatures that would arise if there were no
optical or thermal diffusion. The temperature Θ = 1 corresponds to the temperature distribution associated with
an infinitely short pulse on an absorbing-only target.

3 DISCUSSION

Figures 1–8 graph the dimensionless temperature against a variety of parameters. The captions provide a
brief interpretation of the charts.

I believe that this paper presents the first closed-form solution to the one-dimensional, pulsed, optical-thermal
problem incorporating scattering and absorption. This solution is sufficiently simple that it can be coded in a
few lines of one of the current computer algebra systems (Maple or Mathematica). The solution should aid in
making informed estimates of the implications of changing laser wavelength (and therefore absorption coefficient)
or of changing the laser pulse characteristics. This is especially helpful when the time for thermal relaxation
(across dimensions comparable to the optical mean free path) is approximately equal to the duration of the laser
pulse. Finally, because this solution is exact it can also provide a useful check for more elaborate optical-thermal
numerical simulations.
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Figure 1: The thermal evolution of a very short pulse (τp = 0.01). Even for such a short pulse, the surface
temperature only reaches about 95% of the temperature increase expected for an infinitely short pulse. The
decrease in temperature between the end of the laser pulse at τ = 0.01 and τ = 0.1 is roughly equal to the decay
between τ = 0.1 and τ = 1, or between τ = 1 and τ = 10.
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Figure 2: The thermal evolution of a short pulse (τp = 0.1). The surface temperature at (τ = 0.1) is greater than
that for the very short pulse (τ = 0.01) at the same time, because of the larger temperature gradients associated
with the very short pulse. By τ = 1 the internal temperature fields are are nearly identical.
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Figure 3: The thermal evolution of a medium length pulse (τp = 1). The surface temperature at τ = 1 is much
higher than for the shorter pulses at the same time. Again, by τ = 10 internal temperature fields are nearly
identical for all three pulse lengths.
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Figure 4: The internal spatial distribution is displayed at the end of the laser pulse to demonstrate thermal
confinement. These times correspond to the maximum surface temperatures for the four different pulse lengths.
Clearly, the two shortest pulse lengths achieve the nearly same degree of thermal confinement. When the pulse
duration is equal to unity, the thermal penetration is significantly deeper than for the shorter pulses.
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Figure 5: The effect of pulse length on surface temperature. For very short pulse lengths (τp → 0) the surface
temperature approaches unity as expected. Since the temperature is plotted at the end of the pulse, the surface
temperatures are the maximum temperatures achieved in the tissue. Consequently, this graph is handy for
estimating how long a laser pulse must be to ensure that the tissue temperature stays below a fixed temperature.
The other two lines ξ = 0.5 and ξ = 1 indicate how uniform the internal temperature profile is at the end of the
laser pulse.
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Figure 6: The effect of scattering on temperature. The dimensionless depth and time are specified in terms of
the dimensionless variables ξ = µaz and τ = µa

2κt. The best way to interpret this graph is to assume that the
absorption coefficient remains fixed. Increased albedo implies increased scattering coefficient. Adding scattering
to the sample improves the thermal confinement and longer pulse lengths may be used to achieve the same degree
of thermal confinement.
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Figure 7: The effect of scattering on surface temperature. The best way to intrepret this graph is assume that
the absorption coefficient remains fixed. The dimensionless time is specified in terms of τ = µa

2κt. Increasing the
scattering coefficient and hence the albedo increases the surface temperature, because the light does not penetrate
penetrate as deeply. Note that light must be deposited much more slowly in highly scattering tissues than in
absorbing-only tissues to ensure that the tissue is not heated too much.
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Figure 8: The surface temperatures for matched and mismatched boundaries for a short laser pulse. Increasing
the index of refraction mismatch increases the subsurface fluence distribution and leads to increased surface
temperatures. Note that for mismatched boundaries it only takes µs ≈ 4µa to achieve twice the absorbing-only
surface temperature, but for matched boundaries µs ≈ 10µa is required.
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