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Two numerical solutions for radiative transport in tissue are presented: the

Monte Carlo and the adding-doubling methods. Both methods are appropriate

for tissues with internal reflection at boundaries and anisotropic scattering pat-

terns. The adding-doubling method yields accurate solutions in one-dimension.

The slower Monte Carlo method is the only exact solution available for finite

beam irradiance of tissue. Convolution formulas for calculation of fluence rates

for circularly symmetric flat and Gaussian irradiances using the Monte Carlo

impulse response are presented.

The delta-Eddington method is extended to include many boundary con-

ditions appropriate for tissue optics. The delta-Eddington method is compared

with exact methods. Delta-Eddington reflection and transmission are least accu-

rate for thin tissues and mismatched boundary conditions. Fluence calculations

obtained with the delta-Eddington approximation are inaccurate (>50% error)

for tissues with both mismatched boundaries and high albedos.

A method and theory for the measurement of the phase function of tis-

sue is presented. The method is shown to have a tendency to overestimate the

v



isotropic scattering component in tissues with mismatched boundaries. A graph

is presented to correct the overestimate. The backscattered peak in goniopho-

tometer measurements is shown to result from reflection of the forward peak

and not from a backward peak in the phase function. Measurements on hu-

man dermis indicate that the phase function can be described by a modified

Henyey-Greenstein phase function.

A practical method for measuring the optical properties of tissue as a

function of wavelength is presented. Evaluation of the technique indicates that

the method is accurate to 10% for all optical properties of tissue when sample

thicknesses exceed one optical depth. This technique is applied to bloodless

human dermis as a function of wavelength and to bloodless human aorta dur-

ing moderate power (∼100 mW/mm2) argon laser irradiation as a function of

irradiation time.
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Chapter 1

Introduction and Background

Introduction

The goal of this dissertation is to answer the fundamental question “How is light

distributed inside a tissue during laser irradiation?” Since the light distribution

in a tissue is dependent on its optical properties, the fundamental problem nat-

urally splits into two related questions: “What is the light distribution during

irradiation in a tissue with known optical properties?” and “What are the optical

properties of a tissue and how might they be measured?” Heretofore, these two

questions have been addressed in ways which ignored or roughly approximated

two important physical features: boundary conditions and anisotropic scattering.

In this dissertation, boundary conditions and scattering functions characteristic

of tissues are carefully implemented and included in all calculations.

In Chapters 2 and 3, accurate models for calculation of light distributions

based on known optical properties are developed. In Chapter 4 a fast approx-

imate method for these calculations is presented. In the last two chapters, two

different techniques for measuring optical properties are outlined.

1



2

1.1 Motivation

The laser as a tool is becoming available to a growing number of physicians, but

before the doctor can use this tool he must select a laser, a beam power, a spot

size, and an irradiation time. Since small differences in any of these parameters

can determine whether an application is efficacious or disastrous, some a priori

knowledge about the effects of each parameter is needed. This information is

usually provided by mathematical models.

Any model of a laser treatment—photochemical, thermal, or ablative—

is based on the distribution of light in the tissue. For example, in thermal

and ablative applications, the light distribution is directly proportional to the

heat source used in the thermal model. In photochemical applications involving

hematoporphyrin derivative, the release of singlet oxygen is proportional to the

light distribution. Since photodynamic, thermal, and ablative models are only as

good as the optical model they are based on, it unfortunate that current biomed-

ical light transport models are approximate (e.g., the diffusion approximation) or

heuristic (Kubelka-Munk). The paint, paper, photographic, and plastic indus-

tries; meteorology; oceanography; astrophysics; analytic chemistry; and biology

have all used exact optical models; however, these methods have heretofore not

been utilized in biomedical applications.

Accurate models are needed because approximate models fail near tissue

boundaries. In many applications, the distribution of light immediately beneath

the point of irradiation is critical. In these regions the assumptions made in the

approximate models are worst. For example, in the Kubelka-Munk approxima-

tion the distribution of light immediately subsurface is assumed isotropic. Since
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light must undergo several scattering events before an isotropic profile is reached

this approximation is poorest near the surface.

The optical properties of some tissues have been measured, but often in

the context of the heuristic Kubelka-Munk model and consequently, these pa-

rameters should only be used with the Kubelka-Munk theory. Existing methods

are impractical for measurement of optical properties as a function of wave-

length. Current methods are ill-suited because they require diffuse light [64],

many sample thicknesses [70], or goniophotometric measurements [13]. A prac-

tical method for measurement of optical properties as a function of wavelength

is needed. The single scattering phase function (defined below) characterizing a

tissue must also be measured. Recent attempts to measure the phase function

[5, 13] have not generated quantitative expressions that may be used in more

complete models.

1.2 General assumptions

This section outlines the fundamental assumptions made throughout this disser-

tation. First, the distribution of light is assumed static with time, and conse-

quently, both optical properties which change and irradiance times shorter than

about one nanosecond are excluded. Second, all media are assumed to have

homogeneous optical properties. This restriction may be relaxed somewhat in

the models presented, but all results in this dissertation are for strictly optically

homogeneous media.

A third assumption is that the tissue geometry may be approximated by

an infinite plane-parallel slab of finite thickness. Such a shape allows generaliza-

tion to layered tissues or extension to an infinitely thick tissue. This assumption
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requires that the beam width be smaller than the width of the tissue.

The tissue is assumed to have a uniform index of refraction. This ensures

that light will travel in a straight line until it is scattered or absorbed. The

boundaries are assumed smooth and to reflect specularly according to Fresnel’s

law. The last assumption is that the polarization of light may be ignored.

1.3 Definitions and nomenclature

In this section the nomenclature used in this dissertation is presented. In Section

1.3.1 variables with dimensions are introduced. The next section introduces the

albedo and optical thickness. In Section 1.3.3 the phase function is discussed and

relations between the Henyey-Greenstein phase function and the delta-Eddington

phase function are given. In Section 1.3.4 the transport equation is introduced.

1.3.1 Dimensional quantities

Tissue is assumed to be a random turbid medium, with variations in the optical

properties small enough to prevent localized absorption. In other words, tissue is

considered to have volumetric scattering and absorption properties rather than

being composed of discrete scattering and absorption centers distributed in a

non-scattering, non-absorbing medium. The advantage to the distributed scat-

tering center approach is that for perfect spheres the phase function is known,

however there is little similarity between perfect spheres and tissue. Volumetric

absorption (or scattering) is obtained by multiplying an absorption (or scatter-

ing) cross section with the density of absorbers (or scatterers) [31]. This is how

the absorption coefficients µa and scattering coefficient µs are defined. The scat-

tering and absorption coefficient are typically measured in inverse millimeters
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and the reciprocal of these coefficients is the average distance that light will

travel before being scattered or absorbed, respectively.

The thickness of the slab is denoted by d. In addition to the thickness,

light propagation through a slab is determined by three parameters: the absorp-

tion and scattering coefficients and the phase function. The phase function is

the fraction of light scattered into the direction of the unit vector ŝ′ by light

incident from the direction of the unit vector ŝ. The phase function is discussed

in detail below.

The radiance is L(r, ŝ); the position is denoted by the vector r and the

radiance is specified by the direction of the unit vector ŝ. The radiance has units

of energy per area per solid angle (Watts sr−1 cm2). Sometimes this is called

“specific intensity” or just “intensity.”

The fluence φ(r) is the total radiance at a point r. The fluence is obtained

by integrating the radiance over all angles. The product of the fluence and the

absorption coefficient equals the heat source: the amount of energy deposited in

a unit volume of tissue.

1.3.2 Dimensionless quantities

When dimensionless units are used, light propagation is dependent upon three

parameters: the albedo, the optical depth or thickness, and the phase function.

The albedo a is a dimensionless parameter defined as the ratio of scattering to

the sum of scattering and absorption. The albedo varies between zero and one:

a value of zero indicates the absence of scattering and a value of one indicates

that the tissue does not absorb light. The optical depth τ is the product of the

tissue thickness and the sum of the scattering and absorption coefficient. An
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optical depth of one indicates that there is a probability of e−1 = 37% that light

will travel at least that distance without scattering or absorbing.

1.3.3 Phase functions

When light strikes a particle with an index of refraction different from its envi-

ronment, the light is refracted. The angle at which the light is bent is a function

of the size and shape of the particle as well as the wavelength of the incident light

and the incidence angle of the light. In general, each particle will have a differ-

ent scattering profile. This scattering profile is called the phase function. This

name is misleading since the scattering profile has no connection with the phase

of the incident light waves and would be more appropriately called a scattering

function.

The phase function p(ŝ, ŝ′) describes the amount of light scattered from

the direction denoted by the unit vector ŝ into the direction ŝ′. There are a

number of ways in which the phase function may be normalized, but the most

natural is that used by the astrophysicists. They treat the phase function as

a probability distribution; consequently, their normalization condition requires

the integral of the phase function over all angles to equal unity

∫
4π
p(ŝ, ŝ′) dω = 1 (1.1)

where dω is a differential solid angle in the ŝ direction. This condition does

not permit the phase function to describe absorption of light by the particle,

the phase function is a description of only the distribution of scattering by the

particle. Thus p(ŝ, ŝ′) dω is the probability that a photon incident from the ŝ

direction will leave in the differential unit of solid angle in the ŝ′ direction.
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The phase function will differ in general from particle to particle. For

simplicity an average phase function which adequately describes the most im-

portant features of the scattering process is used. This average phase function

is further constrained by assuming that the probability of scattering from one

direction into another is a function only of the angle between the two directions,

thus p(ŝ, ŝ′) = p(ŝ · ŝ′) = p(cos θ).

The simplest phase function is the isotropic phase function

p(ŝ · ŝ′) =
1

4π
(1.2)

The factor of 1/4π results from the normalization condition (1.1) and the fact

that there are 4π steradians in a complete circle. The phase function has units

of sr−1.

If the phase function is not isotropic, then a parameter called the average

cosine of the phase function is used to describe the degree of anisotropy of the

phase function. This parameter is often denoted by g and is defined as the

integral over all angles of the phase function multiplied by the cosine of the

angle

g =
∫

4π
p(ŝ · ŝ′)(ŝ · ŝ′) dω (1.3)

The choice of a single scattering phase function is a compromise between

realism and mathematical tractability. Jacques et al. have shown that a modified

Henyey-Greenstein function describes single particle light scattering in human

dermis quite well [32]. More recently Yoon et al. have found similar results for

human aorta [69]. The modified Henyey-Greenstein function is

pm−HG(cos θ) =
1

4π

[
β + (1− β)

1− g2
HG

(1 + g2
HG − 2gHG cos θ)

3/2

]
(1.4)
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In this function, the first term β represents the amount of light scattered isotrop-

ically. The second term is the Henyey-Greenstein function. The function is

normalized such that the integral of the phase function over all solid angles is

unity. When β = 0 this phase function reduces to the Henyey-Greenstein phase

function.

A popular phase function is the Eddington phase function

pEddington(cos θ) =
1

4π
[1 + 3g′ cos θ] (1.5)

With this approximation the transport equation may be reduced into a diffusion

equation [31, 55]. Such a solution provides a qualitative picture of radiative

transport in media which is not highly forward scattering. Unfortunately, the

anisotropy (the average cosine of the phase function) for tissue such as dermis

[32], aorta [70] and bladder [9] have values of 0.8–0.9. This suggests that the

Eddington approximation would not be very good for modeling light in such

tissues.

Another possible phase function is the delta-Eddington approximation

[34],

pδ−E(cos θ) =
1

4π
[2fδ(1− cos θ) + (1− f)(1 + 3g′ cos θ)] (1.6)

where f is the fraction of light scattered into the forward peak and g′ is an asym-

metry factor. As f → 1 the phase function becomes exactly a delta function, and

as f → 0 the phase function reduces to the Eddington approximation. This phase

function also allows reduction of the transport equation to a diffusion equation.

Consequently, it is desirable to approximate the modified Henyey-Greenstein

function using the delta-Eddington phase function. Joseph et al. used the delta-

Eddington phase function above to approximate the Henyey-Greenstein phase
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function [34]. Only slight modification must be made to their derivation to arrive

at an approximation for the modified Henyey-Greenstein function.

Recalling that the Dirac delta function may be expanded as a sum of Leg-

endre polynomials [44] allows expansion of the delta-Eddington phase function

pδ−E(cos θ) =
1

4π

[
f
∞∑
n=0

(2n+ 1)Pn(cos θ) + (1− f)(1 + 3g′P1(cos θ))

]
(1.7)

collecting like terms

pδ−E(cos θ) =
1

4π
[1 + 3[f + g′(1− f)]P1(cos θ) + 5fP2(cos θ) + · · ·] (1.8)

The modified Henyey-Greenstein phase function may also be expanded as a sum

of Legendre polynomials using the expansion from [60] for the Henyey-Greenstein

function

pm−HG(cos θ) =
1

4π

[
βP0(cos θ) + (1− β)

∞∑
n=0

(2n+ 1)gnHGPn(cos θ)

]
(1.9)

and collecting like terms

pm−HG(cos θ) =
1

4π

[
1 + 3(1− β)gHGP1(cos θ) + 5(1− β)g2

HGP2(cos θ) + · · ·
]

(1.10)

Now the first terms of each series are equated. The very first term (n = 0) is

1/4π for both series. This results from the normalization of the phase functions.

The next term (n = 1) corresponds to three times the average cosine of the phase

function g [31]. Thus for the delta-Eddington approximation, the average cosine

of the phase function is

g = f + (1− f)g′ (1.11)

and for the modified Henyey-Greenstein function the average cosine is

g = (1− β)gHG (1.12)
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The average cosine of the phase function g is a measure of how much light is

scattered in the forward direction. The anisotropy can be any value between −1

and 1. If g = −1, then scattering is completely in the backwards direction; if

g = 1, then scattering is totally in the forwards direction; and if g = 0, then

scattering is isotropic. If Equations (1.11) and (1.12) are equated then a relation

between the parameters of the two phase functions is obtained

f + (1− f)g′ = (1− β)gHG (1.13)

Proceeding in a similar manner, the second moments of the two phase functions

may be equated

f = (1− β)g2
HG (1.14)

And using Equation (1.13) an expression for g′ may be obtained

g′ =
gHG(1− gHG)

1
1−β − g2

HG

(1.15)

Notice that if gHG → 1 then g′ → 0 provided that β 6= 0, otherwise g′ → 1
2
.

For example, measurements of the phase function of dermis at 633 nm

yields the modified Henyey-Greenstein parameters gHG = 0.91 and β = 0.10. Us-

ing Equations (1.14) and (1.15) the corresponding values for the delta-Eddington

phase function may be found, i.e., f = 0.75 and g′ = 0.29. This illustrates the

way that the delta-Eddington approximation accommodates for strongly forward

scattering phase functions by lumping a large portion of the scattering into the

forward directed Dirac delta function and allowing the anisotropy to fall. In-

creased accuracy results since it is known that the diffusion approximation is

poor for large values of anisotropy but is relatively good when the scattering is

nearly isotropic.
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For completeness, the following equations relate the modified Henyey-

Greenstein parameters to the delta-Eddington parameters

gHG =
f + (1− f)g′

1− β and β = 1− f

g2
HG

(1.16)

These are useful as long as f is not zero. If f is zero then no solution is possi-

ble, because the equations relating the first and second moments are no longer

independent.

1.3.4 The transport equation

The transport equation describes the behavior of light in a slab [8]

(ŝ · ∇)L(r, ŝ) = −µtL(r, ŝ) + µs

∫
4π
p(ŝ, ŝ′)L(r, ŝ) dω′ (1.17)

Here the integral is over all solid angles and dω′ is the differential solid angle in

the direction ŝ′. Notice that the radiance is a function of five variables: three in

the r vector and two in the ŝ unit vector. (Since ŝ is a unit vector the magnitude

is fixed and consequently one degree of freedom has been removed.) The left

hand side of the transport equation describes the rate of change of the intensity

at the point indicated by r in the direction ŝ. This rate of change is equal to

the intensity lost due to absorption and scattering (the first term on the R.H.S.)

plus the intensity gained through light scattering from all other directions into

the direction ŝ (the last term on the R.H.S.).

The assumptions implicit in the transport equation are those mentioned

in the assumptions Section 1.2 above. The first of these is that the medium is

assumed to be homogeneous. This means that any variation in the scattering

and absorption of the medium must be on length scales much smaller than
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the depth of the slab. Another more questionable assumption, from a tissue

optics standpoint, is that each particle is sufficiently isolated that its scattering

pattern is independent of all other particles. This is known as the far field

approximation in geometrical optics, and is clearly violated for typical tissues

because the scattering and absorbing particles are in contact with one another. A

related assumption is that scattering by all particles may be described by a single

function known as the phase function. This means that there exists an ensemble

average scattering pattern for all the scattering centers in the medium. Yet

another assumption is that the intensity distribution is assumed to be in a steady

state, which is valid if the light is incident for longer than a few nanoseconds.

Finally, it is assumed that there are no light sources in the medium.

1.4 Goals

The primary goal of this dissertation is to permit accurate estimates of the light

distributions in tissue during laser irradiation. This goal has two separate but

related tasks:

1. Develop an exact solution to calculate light fluences

2. Develop methods to measure the optical properties of a tissue.

The first task is dealt with in the chapters 2 and 3 according to the method of

solution. These are

• Develop a Monte Carlo model for 3D problems

• Develop an adding-doubling model for 1D slab problems
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The Monte Carlo method is the currently the only way to calculate fluence for

finite width beams with index mismatching and anisotropic scattering. Chapter

3 discusses the adding-doubling method. This method is very accurate and

much faster than the Monte-Carlo method. Unfortunately, the adding-doubling

method is restricted to one dimension. Consequently, the Monte Carlo and

the adding-doubling methods are complementary accurate techniques useful in

different contexts.

Related to the first goal, but mainly useful for the second goal is the

delta-Eddington approximation. This approximation is an improvement on the

diffusion approximation. The delta-Eddington approximation is very fast and

can be used in iterative procedures to determine the optical properties of tissues.

Goals related to the delta-Eddington approximation are

• Develop a delta-Eddington model for fast, approximate solutions

• Determine accuracy of delta-Eddington approximation

Chapter 4 is devoted to these two subgoals. The Monte Carlo and adding-

doubling methods are used to evaluate the delta-Eddington approximation.

The measurement of optical properties falls into two categories. The first

one concerns the measurement of the phase function

• Give a method for measuring the phase function of tissue

• Determine accuracy of the method

• Make measurements on human dermis
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The method for measuring the phase function is based on the single scattering

approximation. The range of optical thicknesses over which this technique is

applicable is evaluated using the adding-doubling method as “truth.” In Chapter

5 the method is outlined, the accuracy of the method is checked, and results for

human dermal samples are reported.

In Chapter 6 a method for measuring the optical properties with a spec-

trophotometer is discussed.

• Present the inverse iterative method

• Determine errors in the inverse method

• Make measurements on human dermis

The iterative method is outlined in Chapter 6, as well as the limits of its appli-

cability, and experimental results for human dermis.



Chapter 2

Monte Carlo

Introduction

Monte Carlo refers to a technique first proposed by Metropolis and Ulam [42]

to simulate physical processes using a stochastic model. In a radiative trans-

port problem, the Monte Carlo method consists of recording photons histories

as they are scattered and absorbed. Monte Carlo programs with great sophisti-

cation have been developed—an extreme example is the MCNP Monte Carlo code

package at Los Alamos that has involved over 250 person years of development

[14]. The Monte Carlo method has been used infrequently to model laser-tissue

interactions, but these applications have so far neglected anisotropy and internal

light reflection (e.g., [65]).

This chapter describes a simple Monte Carlo code specifically for use

in modeling light transport in a tissue and includes the formulas necessary to

implement the Monte Carlo method in computer code. It discusses the reflection

of a photon from boundaries, shows how the phase function may be used to

generate new scattering angles, discusses a few variance reduction schemes to

improve efficiency, gives a method for estimating the uncertainty in any Monte

Carlo calculation, and verifies the implementation by comparison against known

solutions. The verified Monte Carlo model is used to evaluate the finite beam

15
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size delta-Eddington approximation in Chapter 4.

The Monte Carlo method is attractive because it is easily implemented

and sufficiently flexible that complex tissues may be modeled. Theoretically,

Monte Carlo solutions can be obtained for any desired accuracy. However the

accuracy is proportional to 1/
√
N where N is the number of photons propagated.

Thus relative errors less than a few tenths of a percent will require the propaga-

tion of substantial numbers of photons (∼ 106 − 109) and require large amounts

of computer time.

2.1 Methods

This section outlines two different Monte Carlo methods: the physics is the same

for both methods, but one method uses fixed stepsizes and the other uses variable

stepsizes for each propagation step. Both methods begin by launching a photon

downwards into the tissue at the origin. If a collimated beam is normally incident

on a slab, the photon is initially directed directly downwards into the tissue. If

the incident light is diffuse, then the photon direction is chosen randomly from all

possible directions in the downward hemisphere. For a finite beam size the origin

of the beam is randomly chosen based either on the incident beam’s profile or

the fluence rate is found using a convolution technique similar to those in Section

2.5.

Once launched, the photon is moved a distance ∆s where it may be

scattered, absorbed, propagated undisturbed, internally reflected, or transmitted

out of the tissue. The photon is repeatedly moved until it either escapes from or

is absorbed by the tissue. If the photon escapes from the tissue, the reflection or

transmission of the photon is recorded. If the photon is absorbed, the position
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of the absorption is recorded. Once this has been done a new photon is launched

at the origin. This process is repeated until the desired number of photons have

been propagated. The recorded reflection, transmission, and absorption profiles

will approach true values (for a tissue with the specified optical properties) as

the number of photons propagated approaches infinity.

2.1.1 Fixed stepsize method

The simplest Monte Carlo method propagates each photon with small, fixed

incremental stepsizes. A flowchart describing the process is shown in Figure

2.1. Three questions arise: “What should the stepsize ∆s be?”, “What is the

probability of the photon being scattered?” and, “What is the probability of the

photon being absorbed?”

The fixed stepsize ∆s chosen must be small relative to the average mean

free path of a photon in the tissue. The mean free path is the reciprocal of the

total attenuation coefficient.

∆s¿ 1

µa + µs
(2.1)

If ∆s is too small the photon will rarely interact with the tissue and the Monte

Carlo method will be inefficient. It was found that a stepsize ∆s of one-tenth of

a mean free path yielded reasonable results.

The probability of absorption of a photon travelling a distance ∆s is given

by Beer’s Law

P{absorption} = 1− e−µa∆s (2.2)

Expanding the exponential in a Taylor series, and letting µa∆s→ 0, shows that
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Figure 2.1: Flowchart of Monte Carlo with fixed propagation stepsize. The small
stepsize ∆s required causes most of the computation time is spent in the inner
(dashed) loop. Since the statistics are only changed in the “Update Absorption”
and “Update Reflection and Transmission” boxes this method is inefficient.
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the probability of photon absorption is

P{absorption} ≈ µa∆s (2.3)

Similarly, the probability that the photon will scatter in this distance is

P{scattering} = 1− e−µs∆s (2.4)

and for short pathlengths ∆s

P{scattering} ≈ µs∆s (2.5)

Assuming three disjoint events (1) absorption, (2) scattering, and (3) no

interaction between the tissue and the photon, the sum of the three events equals

unity. This implicitly assumes that the photon cannot be scattered and absorbed

in the same propagation step. To determine if a photon is scattered or absorbed,

a random number ξ uniformly distributed between zero and one is generated and

compared with the probability of absorption. If,

ξ < P{absorption} (2.6)

then the photon is absorbed and a new photon is launched. If ξ is between

P{absorption} ≤ ξ < P{absorption}+ P{scattering} (2.7)

then the photon is scattered and a new photon direction is chosen based on the

phase function for the medium. If the photon is neither scattered nor absorbed

then the photon has propagated the distance ∆s without interaction.

One advantage of this method is that it is simple to implement. Moreover,

since the stepsize is fixed, each step corresponds to a given length of time, and a
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time history can be generated. The primary disadvantage is that this technique

is slow: the photon must be moved an average of (µa +µs)/∆s times before it is

either absorbed or scattered. The number of propagation steps required becomes

prohibitive for highly scattering media, since the total distance travelled before

absorption is large compared with the stepsize.

2.1.2 Variable stepsize method

The second Monte Carlo method varies the distance ∆s that the photon is moved

each propagation step. The stepsize ∆s is chosen in such a way that it is the

distance at which the photon is either scattered or absorbed. If distances in the

tissue have been non-dimensionalized (Section 4.5) so that the mean free path is

unity, then the probability density function for ∆s is e−∆s. Appendix A1 shows

how a stepsize ∆s with this probability density function may be generated as a

function of a random number ξ uniformly distributed between zero and one

∆s = − ln ξ (2.8)

When ∆s is chosen in this manner, the photon is forced either to scatter

or be absorbed after each propagation step. Given that the photon is either

absorbed or scattered, the probability that it is scattered is equal to the ratio of

the scattering coefficient to the sum of the absorption and scattering coefficients

(the albedo). If ξ is a random number uniformly distributed between zero and

one, then the photon is scattered if

ξ <
µa

µa + µs
= a. (2.9)

Otherwise, the photon is absorbed. If a photon is scattered then a new photon

direction is chosen based on the phase function, otherwise the photon is absorbed
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Figure 2.2: Flowchart for the variable stepsize Monte Carlo technique. Notice
that each time through the inner (dashed) loop, the photon is either scattered
or absorbed.
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and a new photon is launched. This process is described in the flowchart in Figure

2.2.

2.1.3 Variance reduction techniques

Variance reduction techniques are used to reduce the number of photons nec-

essary to achieve the desired accuracy for a Monte Carlo calculation. These

techniques have a long history and the important ones were first implemented

by Kahn [35, 36, 38, 37]. More recently, a summary of current variance reduction

techniques is given by Hendricks and Booth [25]. A simple proof that the vari-

ance is smaller when implicit capture is used (described below) is given by Sobol’

[57]. The flowchart in Figure 2.3 illustrates how variance reduction techniques

fit into a Monte Carlo program.

The technique of implicit capture as described by Witt was used to reduce

the variance in the Monte Carlo model [68]. This technique assigns a weight

to each photon as it enters tissue. After each propagation step, the particle’s

weight is reduced by the probability of absorption. The usual method completely

absorbs a photon according to the probability of absorption. Thus the implicit

capture technique provides some absorption information at each photon step,

rather than just at times when the photon is completely absorbed.

As an example, consider the use of the implicit capture technique with

the variable stepsize method. In this case, the photon’s weight is reduced by a

factor of (1 − a) which represents the fraction of the photon absorbed at each

propagation step. This ensures that photons are not killed after a significant

amount of computation time has been spent to transport them long distances.

This is the basis for the improvement or, as Hendricks and Booth put it, “All
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Figure 2.3: Monte Carlo with variable stepsize and the implicit capture technique
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below and used to calculate solutions used in Section 4.6.
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variance reduction schemes work by putting a large number of particles of low

weight in regions of interest and allowing only a small number of particles with

high weight in unimportant regions of phase space.”

The implicit capture technique is equivalent to propagating many pho-

tons (a packet) along each path through the tissue. The size of the packet is

described by a weight coefficient. After each photon step a fraction (1 − a) of

the photons travelling along the path is absorbed, and the weight coefficient

is reduced accordingly. The packet of photons is propagated until the weight

coefficient drops below a specified tolerance.

How should the photon (packet) be terminated? The weight will never

reach zero, and continuing to propagate a photon with a minuscule weight adds

little information to the problem solution. Absorbing or discarding all the re-

maining weight, after the weight falls below a minimum, skews the absorption

profile or violates energy conservation. A technique called roulette is used to ter-

minate a photon once its weight drops below a specified minimum. The roulette

technique gives such a photon (with weight w) one chance in m of surviving with

a weight mw or else its weight is reduced to zero. The photon is thereby killed

in an unbiased fashion, without sacrificing energy conservation and without con-

tinuing propagation until its weight has reached zero.

The converse technique, called splitting, might be used to improve statis-

tics in another situation. When a photon passes into the a more “interesting”

region, a photon with weight w may be split into m different photons each with

weight w/m. This conserves energy and improves the statistics in the region

of greater interest. When a photon passes into a region of lesser interest, then,

roulette is used to reduce the number of photons in that region.
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2.2 Mechanics of photon propagation

A photon is uniquely described by five variables: three spatial coordinates for the

position and two directional angles for the direction of travel. Initially, cylindrical

coordinates were used for the photon’s position and two angle variables relative to

the line between the photon and the origin were used for its direction. Cylindrical

coordinates were chosen for symmetry reasons. The primary disadvantage of

this description was that the angle variables changed with each photon step,

even when the photon continued travelling in the same direction. Another less

critical problem was that this geometry has several special trigonometric cases,

which complicates the mechanics of photon propagation.

Alternatively, Carter and Everett have described the photon’s spatial po-

sition with Cartesian coordinates and the direction of travel with three direction

cosines [6]. The required formulas for propagation are simpler, and the angle

variables describing photon direction do not change unless the photon’s direc-

tion changes. The direction cosines are specified by taking the cosine of the

angle that the photon’s direction makes with each axis. These are specified by

µx, µy, and µz corresponding to each of the x-, y-, and z-axes respectively (Figure

2.4A). For a photon located at (x, y, z) travelling a distance ∆s in the direction

(µx, µy, µz), the new coordinates (x′, y′, z′) are given by

x′ = x+ µx∆s

y′ = y + µy∆s (2.10)

z′ = z + µz∆s

If a photon is scattered at an angle (θ, φ) from the direction (µx, µy, µz) in which
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Figure 2.4: Monte Carlo coordinate system. Figure A shows the Cartesian
coordinate system and how the photon’s direction cosines are specified. Figure
B shows how θ and φ are specified when a photon is scattered.
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it is travelling (Figure 2.4B), then the new direction (µ′x, µ
′
y, µ

′
z) is specified by

µ′x = sin θ√
1−µ2

z

(µxµz cosφ− µy sinφ) + µx cos θ

µ′y = sin θ√
1−µ2

z

(µyµz cosφ+ µx sinφ) + µy cos θ (2.11)

µ′z = − sin θ cosφ
√

1− µ2
z + µz cos θ

If the angle is too close to the normal (say |µz| > 0.99999), the following formulas

should be used

µ′x = sin θ cosφ

µ′y = sin θ sinφ (2.12)

µ′z = µz/|µz| cosφ

to obtain the new photon directions.

2.3 Phase function

Any phase function may be used with the Monte Carlo method. A normalized

phase function describes the probability density function for the angle at which

a photon is scattered. Anisotropic scattering is characterized by a non- uniform

density function. Random scattering angles with non-uniform distributions may

be generated using the techniques of Appendix A1. Generating functions for

isotropic, Henyey-Greenstein, and modified Henyey-Greenstein phase functions

are given in this appendix.

2.4 Photon absorption

An absorption event requires that the absorbed photon fraction be added to a

matrix in which different elements correspond to different positions in the tissue.
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For example, if a weighting technique is used with the variable stepsize method,

the appropriate element of the absorption matrix is incremented by (1−a)w. The

number of bins in the absorption matrix is determined by the spatial resolution

desired. Increasing the number of entries increases the spatial resolution, but also

increases the absorption uncertainty in each element (because fewer absorption

events will take place in each element and the error is inversely proportional to

the square root of the number of absorption events). The fluence rate is obtained

by dividing the final value of each matrix element by (1) the equivalent spatial

volume of the element, (2) the absorption coefficient, (3) the total number of

photons propagated, and (4) the initial weight of each photon.

2.5 Internal reflection

The possibility of internal reflection occurs when the photon is propagated across

an index of refraction discontinuity. Typically, reflection will only occur at the

boundaries of the medium. The probability that a photon will be reflected is

determined by the Fresnel reflection R(θi)

R(θi) =
1

2

[
sin2(θi − θt)
sin2(θi + θt)

+
tan2(θi − θt)
tan2(θi + θt)

]
(2.13)

where θi = cos−1 µz is the angle of incidence on the boundary and the angle of

transmission θt is given by Snell’s law

ni sin θi = nt sin θt (2.14)

where ni and nt are the indices of refraction of the medium from which the

photon is incident and transmitted, respectively. A random number ξ uniformly

distributed between zero and one is used to decide whether the photon is reflected
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Figure 2.5: Geometry of photon reflection at an interface. In the slab geometry
shown only the z-coordinate and µz direction angle change.

or transmitted. If ξ < R(θi) then the photon is reflected, otherwise the photon

is transmitted. The details of how the photon is reflected depends upon the

variance reduction technique used in the Monte Carlo method.

Once a photon leaves the tissue a new photon is initialized, except when

photon weighting is used. If the photon is internally reflected, then the position

and direction of the photon are adjusted accordingly. For a slab with thickness

t, the exiting photon position is obtained by computing the position assuming

transmission and changing only the z component of the photon coordinates

z′ =
{−z if z < 0,

2τ − z) if z > τ .
(2.15)
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The change in photon direction is

µ′z = −µz (2.16)

and both µx and µy remain unchanged (Figure 2.5). When photon weighting is

used then the photon may be both reflected and transmitted. If the old weight

is w, then the new weight of the transmitted photon is w′ = w(1− R(θi)). The

reflected photon’s position and direction are calculated as above and the new

weight of the photon is given by w′ = wR(θi).

When a glass slide placed on the surface of the tissue, creating a tissue-

glass-air interface, the situation is slightly more complicated than for a tissue-air

interface. When no weighting is used then reflection coefficients are calculated for

each interface and the photon is propagated until it is reflected by or transmitted

through the glass slide. For weighted photons, the photon should be split into

two photons at each interface—one that is transmitted and one that is reflected.

These photons in turn would be propagated and split as necessary until all

photons are terminated. This has the advantage of creating many photons with

small weights near the surface, which is a region of interest. The disadvantage is

that this is awkward to implement. A simpler method is to no longer treat the

photon as weighted, and let the whole weight of the photon either be reflected

or transmitted at all interfaces.

2.6 Convolution

Potentially, the fluence rate for any irradiation profile may be obtained by launch-

ing photons distributed spatially with a probability density function equal to the

irradiation profile. Since many photons must be launched at a fixed point before
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the random fluctuation of the Monte Carlo process becomes small, launching

photons from different places increases the total number of photons which must

be launched before statistical errors become negligible. Fortunately, the fluence

rate which results from photons launched at a single point corresponds to the

Green’s function G(x, y, z) for the medium. Since the irradiation source profile

is not a function of depth, the convolution is independent of z.

The fluence rate for an arbitrary irradiation profile may be obtained

by convolving the Green’s function profile with the irradiation source function

S(x, y)

Φ(x, y, z) =
∫ ∞
−∞

∫ ∞
−∞

G(x′, y′, z′)S(x− x′, y − y′) dx′dy′ (2.17)

In cylindrical coordinates, the convolution of a cylindrically symmetric irradia-

tion source S(r) and Green’s function G(r) will be cylindrically symmetric. This

convolution may be written (referring to Figure 2.6)

Φ(r) =
∫ ∞

0
S(r′)

[∫ 2π

0
G(
√
r′2 + r2 − 2rr′ cos θ dθ

]
r′dr′ (2.18)

or alternatively as,

Φ(r) =
∫ ∞

0
G(r′)

[∫ 2π

0
S(
√
r′2 + r2 − 2rr′ cos θ dθ

]
r′dr′ (2.19)

Both integrals should give the same results, providing a convenient check on

any convolution implementation. The advantage of Equation (2.19) is that the

integral over the source needs to be done just once for a particular radius r and

absorption distributions at all depths for the radius r can be calculated.

A Gaussian source function with a e−2 radius of R is given by

S(r) = S0e
−2(r/R)2

(2.20)
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function and the source has been assumed.
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where S0 is related to the total power P of the beam by

S0 =
2P

πR2
(2.21)

Substituting Equation (2.20) into Equation (2.19) yields

Φ(r) = S0e
−2(r/R)2

∫ ∞
0

G(r′)e−2(r′/R)2
[∫ 2π

0
e4rr′ cos θ/R2

dθ
]
r′dr′ (2.22)

The integral in brackets reduces to a zero order modified Bessel function, and

the Equation for the fluence becomes

Φ(r, z) = S0e
−2(r′/R)2

∫ ∞
0

G(r′, z)e−2(r/R)2

I0(4rr′/R2) 2πr′ dr′, (2.23)

The source function for a flat beam with radius R is

S(r′) =
{
S0 if r′ ≤ R,
0 otherwise.

(2.24)

where S0 equals the total power divided by the area of the beam. Substituting

Equation (2.24) into Equation (2.19) yields

Φ(r, z) = S0

∫ ∞
0

G(r′, z)Θ(r, r′)2πr′ dr′ (2.25)

where the different cases for Q(r, r′) are shown in Figure 2.7. Specifically,

Θ(r, r′) =


1 if 0 ≤ r ≤ R− r′,
1
π

cos−1
[
r′2+r2−R2

2rr′

]
if |R− r′| ≤ r ≤ R + r′,

0 otherwise.

(2.26)

These convolution equations are used to calculate the finite beam fluence

rates used in Chapter 4 to evaluate the accuracy of the three-dimensional delta-

Eddington fluence rate. Since the Monte Carlo method is used as the standard

against which the delta-Eddington approximation is compared, the Monte Carlo

method was tested extensively. The results of these tests are presented below.
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2.7 Verification

Both Monte Carlo methods were implemented. The variable stepsize method was

much faster and the fixed stepsize method was abandoned. The variable stepsize

Monte Carlo method was checked to ensure that the sum of the transmission,

reflection, and absorption was unity. The method was verified by comparing the

Monte Carlo reflection and transmission results with known values.

Three different comparisons with exact values for testing all aspects of

the Monte Carlo implementation were used. The errors shown in all the figures

are standard errors (i.e., the standard deviations of the mean). These values

were obtained by splitting one large Monte Carlo run of say 50,000 photons into

ten runs of 5,000 each. The results of these ten runs were averaged and the

standard error was computed.

For an anisotropic phase function and a slab geometry of finite thickness

with index matching, van de Hulst’s tables served as a reference for reflection

and transmission as a function of angle [1980b]. The phase function is for the

Henyey-Greenstein phase function with an average cosine of 0.75. The slab was

two optical depths thick, and index-matched with its environment. Light was

uniformly incident normal to the slab. The average results from the Monte Carlo

program with ten runs of 50,000 photons are plotted with standard errors, along

with exact values from van de Hulst in Figures 2.8 and 2.9. The values for total

reflection and total transmission are

Quantity van de Hulst Monte Carlo std. dev.
Total Reflection 0.09739 0.0971 0.0003
Total Transmission 0.66096 0.6616 0.0005

Finding exact solutions for media which are not index matched is difficult,

but Giovanelli provides data for a semi-infinite slab with isotropic scattering and
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Figure 2.8: Comparison of exact reflection values (filled circles) with variable
stepsize Monte Carlo simulation. Scattering is anisotropic (g=0.75) and dis-
tributed according to the Henyey-Greenstein phase function. The index of re-
fraction of the tissue equals that of its environment. The albedo is 0.9 and the
thickness of the slab is two optical depths. Error bars indicate standard errors
in the Monte Carlo simulation.
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Figure 2.9: Comparison of exact transmission values (filled circles) with vari-
able stepsize Monte Carlo simulation (empty squares). Scattering is anisotropic
(g=0.75) and distributed according to the Henyey-Greenstein phase function.
The index of refraction of the tissue equals that of its environment. The albedo
is 0.9 and the thickness of the slab is two optical depths. Standard errors are
smaller than the empty squares.
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Figure 2.10: Comparison of exact reflection values (filled squares) with Monte
Carlo simulation (empty circles). The tissue is semi-infinite with an index of
refraction mismatch of 1.5 to 1.0 at the tissue-air interface. The albedo is 0.9
and scattering is isotropic. Error bars indicate standard errors.
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an index of refraction mismatch of 1.5 to 1.0 [16]. The internal reflection assumes

Fresnel Reflection. The average of ten Monte Carlo runs of 5,000 photons with

the values from Giovanelli are plotted in Figure 2.10. The albedo is 0.9 and light

is normally incident. The values for total reflection are shown below

Giovanelli Monte Carlo std. dev.
Total Reflection 0.2600 0.26079 0.00079

2.8 Conclusions

The Monte Carlo model allows calculation of reflection, transmission, and flu-

ence rates in tissue. Both mismatched boundary conditions and anisotropic

scattering have been included, thereby increasing the realism of the model. A

variable-stepsize weighted Monte Carlo model has been implemented and vali-

dated by comparison with published tables. This Monte Carlo model may be

used to calculate fluence rates for finite beams by convolving the impulse response

with either flat or Gaussian beam irradiation profiles. Analytic expressions that

facilitate such calculations have been presented.



Chapter 3

The Adding-Doubling Method

Introduction

Non-stochastic solutions of the radiative transport equation are used for simple

geometries when accurate solutions are required. The most common techniques

for solving the transport equation are successive scattering, Ambartsumian’s

method, the discrete ordinate method, Chandrasekhar’s X and Y functions, and

the adding-doubling method. Most of these methods are appropriate only for

a slab geometry and the solutions obtained are one-dimensional. The adding-

doubling method was chosen for calculating solutions because it permits (1)

anisotropic scattering, (2) arbitrarily thick tissues, (3) Fresnel boundary condi-

tions, (4) inhomogeneous layers, and (5) relatively fast computation. The short

review below gives a brief description of all the methods and indicates advantages

and disadvantages of each (extensive reviews are given by [27, 24, 29, 60]).

The successive scattering method (or Neumann series solution) starts by

calculating the distribution of all light that has been scattered once: this is the

first-order scattered light distribution. The first-order distribution is used to find

the second-order light distribution. This process is repeated until the distribu-

tion of light scattered n times is negligible. The distributions for all orders are

summed to determine the final distribution of light in the slab. This method is

40
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easily adapted to inhomogeneous layers and anisotropic phase functions; unfor-

tunately, it becomes prohibitively slow for optically thick tissues (τ > 1) [59, 29].

Ambartsumian’s method (invariant embedding) uses the principle that

when a layer is added to the top of a homogeneous slab with the same optical

properties, the reflection and transmission will be equivalent to those obtained by

adding the layer to the bottom instead. When the added layer is thin enough that

single scattering is valid, then simple equations can be derived for the reflection

and transmission of the combined layers [24]. Solutions for thick layers are built

up by adding many thin layers. This method works well with inhomogeneous

media, but solutions for optically thick samples require extensive computation

[1, 8, 3].

Chandrasekhar analytically manipulates the invariant embedding equa-

tions to obtain integral equations defining the X and Y functions [8]. The X and

Y functions depend on only one angle variable and must be solved numerically.

These functions are very complicated for anisotropic phase functions [24], and

flexible extensions to inhomogeneous media have not been made [27], making

this method more limited in application than others described in this section.

The method of discrete ordinates divides the radiative transport equation

into N discrete fluxes to obtain N equations in N unknowns. These equations

are solved numerically [41]. This method is useful when the phase function can

be expressed as the sum of a few Legendre polynomials. For these cases, the

discrete ordinate method quickly yields results accurate to about one percent

[24]. A major difficulty with this technique is that highly anisotropic phase

functions require a large number of fluxes; when the number of fluxes exceeds
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20–30, the system of equations that must be solved becomes numerically ill-

conditioned [40, 29, 67].

The adding method requires that the reflection and transmission for two

slabs be known. If the reflection and transmission (for all angles of incidence

and exitance) of two slabs are known, then the transmission and reflection for a

slab comprised of these two individual slabs can be determined. The doubling

method refers to the special case in which both slabs are identical. When the

added layer is very thin this method reduces to Ambartsumian’s method. The

adding-doubling method has the advantage that (1) only numerical integrations

over angle are required; (2) physical interpretation of results can be made at

each step; (3) the method is equivalent for isotropic and anisotropic scattering;

and (4) results are obtained for all angles of incidence used in the integration

[29].

The doubling method was first used in radiative transfer by van de Hulst

[59]. The doubling method has been extended to include the addition of two

dissimilar layers (see review by [47].) Once the transmission and reflection for a

thin slab are known, then the reflection and transmission for a slab of arbitrary

thickness maybe found by repeatedly doubling the thickness of the thin slab

until the desired thickness is reached. If the slab is sufficiently thin then single

scattering approximations accurately estimate the reflection and transmission for

the slab. These expressions are detailed in Section 3.1 below as well as criteria

for evaluating “sufficiently thin.”

This chapter describes an implementation of the adding-doubling method

for solving the radiative transport equations numerically. Any phase function

may be chosen to characterize scattering in the medium and any tissue optical
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thickness is possible. Tissue layers with different optical properties may be added

together to find the reflection and transmission for inhomogeneous layered media.

Light normally incident on a slab is azimuthally independent. Consequently, the

adding-doubling method presented is assumed free of azimuthal dependence.

Boundaries characterized by specular Fresnel reflection are discussed in Section

3.5.

Finally it should be emphasized that the adding-doubling method (like

all the methods described) is one-dimensional, and confined to a slab geometry.

Existing solutions for the three-dimensional problem of a searchlight (or laser)

incident on a slab are restricted to particular choices of optical properties [8, 52,

10].

3.1 Definition of reflection and transmission operators

Denote the cosine of the angle that a right circular cone makes with the normal

by µ (Figure 3.1A). Furthermore let the incident radiance, which is a function

of incident angle µ, be denoted by L+
rmincident(µ) where the plus sign indicates

the downward direction. The total radiance transmitted through the slab at a

particular cosine angle µ′ is given by [60]

L+
transmitted(µ′) =

∫ 1

0
T (µ′, µ)L+

incident(µ) 2µdµ (3.1)

The total radiance reflected by the sample is

L−reflected(µ′) =
∫ 1

0
R(µ′, µ)L+

incident(µ) 2µdµ (3.2)

The operators T (µ, µ0) and R(µ, µ0) may be written in matrix form

T ij = T (µi, µj) Rij = R(µi, µj) (3.3)
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Figure 3.1: Geometric description of nomenclature. Figure A illustrates the
incident radiance L+

rmincident with the cosine of the angle of incidence equal to
µ0. Figure B shows the nomenclature for the upward and downward radiances
from each surface of the slab.
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where the angles µi and µj are chosen according to the particular quadrature

scheme desired. The superscripts ij indicate the entry ij in the matrices T and

R. The radiances L+(µ) and L−(µ) correspondingly may be written as vectors

Li = L(µi) (3.4)

The matrix star multiplication A ?B is defined to directly correspond to

an integration similar to those in Equations (3.1) and (3.2)

A ? B =
∫ 1

0
A(µ,µ

′)B(µ′, µ′′) 2µdµ (3.5)

then

A ? B =
∑
j

Aij2µjwjB
jk (3.6)

where µj is the jth quadrature angle and wj is its corresponding weight. The

identity matrix E is then

Eij =
1

2µiwi
δij (3.7)

where δij is the usual Kronecker delta. Grant and Hunt have shown that this

algebra is a semi-group [21, 22] and have proven that all matrix manipulations

in Section 3.2 are valid mathematically. It is sometimes useful to consider these

matrix “star multiplications” as normal matrix multiplications which include a

diagonal matrix c

cij = 2µiwiδij (3.8)

Thus a matrix star multiplication may be written

A ? B = AcB (3.9)

where the multiplications on the R.H.S. of Equation (3.9) are usual matrix mul-

tiplications.



46

3.2 Derivation of the adding-doubling method

This derivation follows Plass et al. [47] with the terms representing internal

sources omitted for clarity. Define Tnm and Rnm as the transmission and re-

flection operators for light incident on side n and exiting side µ. Homogeneous

tissues have no preferred direction and so the matrices are equal Tnm = Tmn and

Rnm = Rmn (The matrices are also symmetric.) Let the vector L+
0 (µ) denote the

radiance incident from on side 0 of the slab 01, and L−1 (µ) denote the radiance

incident on side 1. Similarly define L−0 and L+
1 as the radiance exiting the slab

from sides 0 and 1 respectively (Figure 3.1B). The downward radiance from side

1 is the sum of the transmitted incident radiance from side 0 and the reflected

radiance from side 1,

L+
1 = T01L

+
0 +R10L

−
1 (3.10)

The upward radiance from side 0 is the transmitted radiance from side 1 and

the reflected radiance from side 0

L−1 = R01L
+
0 + T10L

−
1 (3.11)

Analogous formulas apply to a layer 12

L+
2 = T12L

+
1 +R21L

−
2 (3.12)

L−1 = R12L
+
1 + T21L

−
2 (3.13)

Juxtaposition of layers 01 and 12 yields a combined layer 02. The equations

relating the radiances exiting from the top and bottom of this slab are

L+
2 = T02L

+
0 +R20L

−
2 (3.14)

L−0 = R02L
+
0 + T20L

−
2 (3.15)
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Presumably, the reflection and transmission operators for the 01 and 12 layers

are known. The reflection and transmission operators for the 02 layer are needed

in terms of those for the 01 and 12 layers. To do this Equation (3.10) is multiplied

by R12 from the left and added to Equation (3.13). Since the terms containing

L+
1 cancel

(E −R12R10)L−1 = R12T01L
+
0 + T21L

−
2 (3.16)

Multiplying Equation (3.16) on the left by (E −R12R10)−1 yields

L−1 = (E −R12R10)−1(R12T01L
+
0 + T21L

−
2 ) (3.17)

This equation expresses the upward radiance at the interface between two layers.

An equation for the downward mid-layer radiance can be obtained similarly using

Equations (3.13) and (3.10)

L+
1 = (E −R10R12)−1(T01L

+
0 +R10T21L

−
2 ) (3.18)

Substituting Equation (3.18) into Equation (3.12) yields

L+
2 =

[
T12(E −R10R12)−1T01

]
L+

0 +
[
T12(E −R10R12)−1R10T21 +R21

]
L−2

(3.19)

Comparing this equation with Equation (3.14) indicates that

T02 = T12(E −R10R12)−1T01 (3.20)

R20 = T12(E −R10R12)−1R10T21 +R21 (3.21)

Similarly Equation (3.11) can be substituted into Equation (3.13) to obtain

T20 = T10(E −R12R10)−1T21 (3.22)

R02 = T10(E −R12R10)−1R12T01 +R01 (3.23)
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Equations (3.20)–(3.23) define the reflection and transmission operators for a

layer comprised of two individual layers in terms of reflection and transmission

operators for each layer.

3.3 The redistribution function

The single scattering phase function p(θ) for a tissue determines the amount of

light scattered at an angle θ from the direction of incidence. The redistribution

function determines the fraction of light from a cone of angle u will be scattered

into a cone of angle v. It is the transmission operator for a single scattering

event. The redistribution function h(u, v) is calculated by averaging the phase

function over all possible azimuthal angles for fixed angles u and v,

h(u, v) =
1

2π

∫ 2π

0
p
[
uv +

√
1− u2

√
1− v2 cosφ

]
dφ (3.24)

If the cosine of the angle of incidence or exitance is unity (u = 1 or v = 1) then

the redistribution function is equivalent to the phase function h(1, v) = p(v). In

the case of isotropic scattering the redistribution function is a constant

h(u, v) =
1

4π
(3.25)

For Henyey-Greenstein scattering, the redistribution function may be expressed

in terms of a complete elliptic integral of the second kind [62]

h(u, v) =
2

π

1− g2

√
α + γ(α− γ)

E(k) (3.26)

where g is the average cosine of the Henyey-Greenstein phase function and

α = 1 + g2 − 2guv γ = 2g
√

1− u2
√

1− v2 k =

√
2γ

α + γ
(3.27)
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and E(k) is the complete elliptical integral tabulated by Jahnke and Emde [33].

This function may be calculated with numerical routines by Press et al. [49].

The redistribution function for the modified Henyey-Greenstein phase function

follows directly from Equations (3.25) and (3.26)

h(u, v) = β + (1− β)
2

π

1− g2

√
α + γ(α− γ)

E(k) (3.28)

Other phase functions require numerical integration of Equation (3.24).

If the phase function is highly anisotropic, then the integration over the az-

imuthal angle is particularly difficult and care must be taken to ensure that the

integration is accurate. This is important because errors in the redistribution

function enter directly into the reflection and transmission operators for thin

layers. These errors will be doubled with each successive addition of layers and

small errors will rapidly increase.

The normalization of the phase functions provides a check on the accuracy

of the quadrature method [19, 18].

1

2

n∑
i=1

wi[h(µi,muj) + h(−µi, µj)] = 1 (3.29)

where n is the number of quadrature angles used and the minus sign in the second

term represents the “reflected” component of the scattered light. If relation

(3.29) is not satisfied then the number of quadrature angles should be increased.

This is not always practical and a number of phase function renormalization

methods have been developed to remedy this problem (see review in[67]).

3.4 Reflection and transmission of thin layers

Starting the adding-doubling method requires knowledge of the reflection and

transmission operators for a thin slab. Several methods exist for obtaining these
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operators: diamond initialization [66], infinitesimal generator [20], and succes-

sive scattering [28]. The first two methods have been compared by Wiscombe

who found that the more complicated diamond initialization technique was bet-

ter about two-thirds of the time [67]. The successive scattering technique was

the first method used for calculating the reflection and transmission operators of

a thin slab [63]. With this method initial optical depths up to τ ∼ 1 are possible

although Hansen and Travis indicate that an optical thickness of τ ∼ 2−10 is opti-

mal for this starting method [24]. The infinitesimal generator technique assumes

that the tissue is sufficiently thin that single scattering accurately estimates the

reflection and transmission for the slab. This is the method implemented for

calculations in this chapter because of its simplicity.

Single scattering equations for the reflection and transmission functions

are given by van de Hulst for isotropic scattering [60]. For azimuthally indepen-

dent anisotropic scattering the redistribution function must be included. The

single scattering reflection function for thin layers is

R(a, τ, µ, µ0) =
aπh(µ,−µ0)

µ+ µ0

[
1− exp

(
−τ
µ
− τ

µ0

)]
(3.30)

The slight difference from van de Hulst results from differences in phase function

normalization. At grazing angles (µ0 = µ = 0), the reflection has a singularity

R(a, τ, 0, 0) =∞ (3.31)

When the angle of incidence is not equal to the angle of transmission

(µ0 6= µ), then the transmission function is given by

T (a, τ, µ, µ0) =
aπh(µ,−µ0)

µ0 − µ

[
exp

(
− τ

µ0

)
− exp

(
−τ
µ

)]
(3.32)
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When µ0 = µ then the primary beam (with an incident cone of µ) must be

included,

T (a, τ, µ, µ) =
aπh(µ, µ)

µ
exp

(
− τ

µ0

)
+

1

2µ
exp

(
−τ
µ

)
(3.33)

The factor of 2µ in the unscattered beam results from the use of star multipli-

cation. Finally, for grazing incidence (µ = µ0 = 0), the transmission is zero

T (a, τ, 0, 0) = 0 (3.34)

3.5 Boundary conditions

Boundary conditions are implemented in the adding-doubling method by creat-

ing a layer which mimics the reflection and transmission at a boundary. This

layer is added to a slab to find the reflection and transmission for a slab including

the boundary conditions. If r(µ) is the Fresnel reflection for light incident from

a medium with index of refraction n0 on a medium with index of refraction n1

then

R01(µi, µj) =
r(µi)

2µi
δij (3.35)

T01(µi, µj) =
1− r(µi)

2µi

(
n1

n0

)2

δij (3.36)

The square of the ratio of the indices of refraction is due to the n2-Law of radiance

(Appendix A2) which accounts for the difference in radiances across across an

index of refraction mismatch. The factor of 2µ is included to compensate for star

multiplication. If a glass slide is present then Equation (A2.21) should be used to

calculate r(µi) with ni = ntissue, ng = nglass and nt = noutside. Both operators are

diagonal because light is specularly reflected and the angle of incidence equals the
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angle of reflection. The reflection and transmission operators for light travelling

from medium 1 into medium 0 are

R10(µi, µj) = R01(µi, µj) (3.37)

T10(µi, µj) = T01(µi, µj)
(
n0

n1

)4

δij (3.38)

Since light is refracted at the boundary, care must be taken to ensure

that the incident and reflected fluxes are identified with the proper angles. For

example, if eleven Gaussian quadrature angles are used, all but three are totally

internally reflected at an interface with n1 = 1.5 and n2 = 1.0. This is caused

by the uneven distribution of quadrature points over the integration interval—

in the Gaussian quadrature scheme oblique angles are emphasized over angles

near normal and, therefore, most of the quadrature angles undergo total internal

reflection.

If equal boundary conditions exist on both sides of the slab then, by

symmetry, the transmission and reflection operator for light travelling from the

top to the bottom are equal to those for light propagating from the bottom to the

top. Consequently only one set need be calculated. This leads to a faster method

for calculating the reflection and transmission for a slab with equal boundary

conditions on each side. Let the top boundary be layer 01, the medium layer

12, and the bottom layer 23. The boundary conditions on each side are equal:

R01 = R32, R10 = R23, T01 = T32, and T10 = T23. For example the light reflected

from layer 01 (travelling from boundary 0 to boundary 1) will equal the amount

of light reflected from layer 32, since there is no physical difference between the

two cases. The switch in the numbering arises from the fact that light passes

from the medium to the outside at the top surface by going from 1 to 0, and
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from 2 to 3 on the bottom surface. The reflection and transmission for the slab

with boundary conditions are R30 and T03 respectively. These are given by

T02 = T12(E −R10R12)−1T01 (3.39)

R20 = T12(E −R10R12)−1R10T21 +R21 (3.40)

and

T03 = T10(E −R20R10)−1T02 (3.41)

R30 = T10(E −R20R10)−1R20T01 +R01 (3.42)

Further increases in efficiency may be made by exploiting the diagonal nature

of the reflection and transmission operators for an interface, since most ma-

trix/matrix multiplications above become vector/matrix multiplications.

3.6 Implementation

The equations given in Section 3.2 are entirely appropriate if the direct beam

coincides with one of the quadrature angles. If this is not the case, then the

equations for doubling become more complex. Equations with separate terms

for primary and scattered light are given in Hansen and Travis [24] and van de

Hulst [60].

Every matrix multiplication is an integration (Section 3.1). Quadrature

methods improve the integration accuracy using a fixed number of points judi-

ciously chosen. Gaussian quadrature gives very good answers, but unfortunately

none of the quadrature points corresponds to normal incidence. Lobatto quadra-

ture [43] includes normal incidence as a quadrature point, but it also includes a

quadrature point at µ = 0. This leads to singularities in the reflection matrix
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(Equation (3.31). Those using Lobatto quadrature have found it comparable in

accuracy to Gaussian quadrature [47].

Since quadrature points seldom coincide with angles at which information

is desired, interpolation to points of interest is required. Because the reflection

and transmission operators are functions of µ and µ′, two-dimensional interpola-

tion methods must be used. Bicubic spline interpolation [49] works well for small

numbers of quadrature points, but is slow when many quadrature points are used.

Polynomial interpolation [49] also works well for small numbers of quadrature

points, but is useless for large numbers of points. Simple bilinear interpolation is

fast for any number of quadrature points but is considerably less accurate than

spline interpolation. Consequently, splines were used for one-dimensional inter-

polation and bilinear interpolation was used when two-dimensional interpolation

was required.

3.7 Tabulated values

This section verifies the implementation of the doubling method and gives four

digit reflection and transmission results for various albedos and optical thick-

nesses. The results from this chapter are summarized in Tables 3.1–3.6. The

first four tables are calculations for slabs with matched boundary conditions.

The last two tables give reflection and transmission values for a air-slide-tissue-

slide-air sandwich.

Tables 3.1 and 3.2 give reflection and transmission for light normally in-

cident on slabs of various optical depths and albedos. Isotropic scattering was

assumed for these tables. Values for reflection and transmission for various op-

tical depths τ = 2−5 to τ = 25 and τ = ∞ are identical to those tabulated
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a=0.4 a=0.8 a=0.95 a=0.99
Giovanelli .0858 .2072 .4155 .6541
Doubling .0859 .2075 .4160 .6547

by van de Hulst [60]. When the medium is conservative (a = 1), large optical

depths (τ ∼ 214) are required before the slab becomes effectively semi-infinite.

The adding-doubling method is subject to anomalous absorption arising from

quadrature errors when optical depths become this large. The diffusion ap-

proximation was used to calculate reflection and transmission for conservative

scattering and optical depths larger than τ = 210, because the diffusion approx-

imation is more accurate in the diffusion region (large optical depths). This

ensured that all entries in these tables were accurate to 0.01%.

Tables 3.3 and 3.4 give reflection and transmission for anisotropic scat-

tering with a Henyey-Greenstein phase function. Many values in this table are

also tabulated by van de Hulst (τ = 20 to τ = 24 and τ = ∞) [61]. The values

in Tables 3.3 and 3.4 are identical to those of van de Hulst, thus verifying the

implementation for anisotropic scattering.

Correct implementation of the boundary conditions is verified by com-

parison with Giovanelli [16] who calculated reflection from a semi-infinite slab

bounded by glass slides. The indices of refraction were nslab = 1.333, nglass =

1.532, and noutside = 1.0. Giovanelli states that the fourth digit in his values is

questionable.

Once both anisotropy and the boundary conditions were verified, Ta-

bles 3.5 and 3.6 were calculated. These tables give reflection and transmission

for a air-glass-tissue-glass-air sandwich. These values have not been tabulated

elsewhere, and will serve as “truth” for evaluation of the delta-Eddington ap-
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proximation.

3.8 Conclusions

The adding-doubling method has been implemented with boundary conditions

and scattering functions similar to those for tissue. The adding-doubling method

is one-dimensional and with a modest number of quadrature angles (N = 16)

very accurate results may be obtained (0.01%). The adding-doubling method

is not as flexible as the Monte Carlo method, but it is a valuable standard

against which other one-dimensional methods may be compared. The tabulated

values (Tables 3.1–3.6) of reflection and transmission presented in this chapter

will be used to evaluate the accuracy of the one-dimensional delta-Eddington

approximation in the Chapter 4.
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n a = 1 a = .99 a = .95 a = .9 a = .8 a = .6 a = .4 a = .2
-15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-13 .0001 .0001 .0001 .0000 .0000 .0000 .0000 .0000
-12 .0001 .0001 .0001 .0001 .0001 .0001 .0000 .0000
-11 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0000
-10 .0005 .0005 .0005 .0004 .0004 .0003 .0002 .0001
-9 .0010 .0010 .0009 .0009 .0008 .0006 .0004 .0002
-8 .0019 .0019 .0019 .0018 .0016 .0012 .0008 .0004
-7 .0039 .0038 .0037 .0035 .0031 .0023 .0015 .0008
-6 .0077 .0077 .0074 .0069 .0061 .0046 .0030 .0015
-5 .0154 .0152 .0146 .0137 .0121 .0090 .0059 .0029
-4 .0303 .0300 .0286 .0269 .0236 .0173 .0112 .0055
-3 .0589 .0582 .0553 .0518 .0450 .0323 .0207 .0099
-2 .1117 .1101 .1039 .0965 .0824 .0573 .0356 .0167
-1 .2025 .1989 .1851 .1690 .1401 .0927 .0553 .0250
0 .3413 .3329 .3017 .2674 .2108 .1295 .0734 .0320
1 .5175 .4975 .4287 .3616 .2659 .1510 .0820 .0349
2 .6909 .6450 .5124 .4081 .2840 .1553 .0833 .0352
3 .8218 .7287 .5344 .4148 .2853 .1554 .0834 .0352
4 .9036 .7513 .5355 .4149 .2853 .1554 .0834 .0352
5 .9498 .7527 .5355 .4149 .2853 .1554 .0834 .0352
6 .9743 .7527 .5355 .4149 .2853 .1554 .0834 .0352
7 .9870 .7527 .5355 .4149 .2853 .1554 .0834 .0352
8 .9935 .7527 .5355 .4149 .2853 .1554 .0834 .0352
9 .9968 .7527 .5355 .4149 .2853 .1554 .0834 .0352

10 .9984 .7527 .5355 .4149 .2853 .1554 .0834 .0352
11 .9992 .7527 .5355 .4149 .2853 .1554 .0834 .0352
12 .9996 .7527 .5355 .4149 .2853 .1554 .0834 .0352
13 .9998 .7527 .5355 .4149 .2853 .1554 .0834 .0352
14 .9999 .7527 .5355 .4149 .2853 .1554 .0834 .0352

Table 3.1: Total reflection from a slab for normal incidence as a function of
optical depth (τ = 2n) and albedo (a). Scattering is isotropic (g = 0), the
boundary conditions are matched, and all digits shown are significant. The
diffusion method was used for the italicized entries, all others were obtained
with the doubling method.
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n a = 1 a = .99 a = .95 a = .9 a = .8 a = .6 a = .4 a = .2
-15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
-14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999
-13 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
-12 .9999 .9999 .9999 .9999 .9998 .9998 .9998 .9998
-11 .9998 .9998 .9997 .9997 .9997 .9997 .9996 .9996
-10 .9995 .9995 .9995 .9995 .9994 .9993 .9992 .9991
-9 .9990 .9990 .9990 .9989 .9988 .9986 .9984 .9982
-8 .9980 .9980 .9980 .9979 .9977 .9973 .9969 .9965
-7 .9961 .9961 .9959 .9957 .9953 .9945 .9937 .9930
-6 .9923 .9922 .9919 .9914 .9906 .9891 .9875 .9860
-5 .9846 .9844 .9838 .9830 .9814 .9782 .9751 .9721
-4 .9697 .9693 .9680 .9663 .9630 .9567 .9506 .9449
-3 .9411 .9403 .9375 .9340 .9272 .9146 .9030 .8924
-2 .8883 .8867 .8806 .8733 .8595 .8349 .8136 .7951
-1 .7975 .7941 .7808 .7654 .7378 .6928 .6577 .6296
0 .6587 .6510 .6226 .5916 .5414 .4714 .4251 .3923
1 .4825 .4657 .4093 .3565 .2860 .2111 .1730 .1502
2 .3091 .2755 .1869 .1285 .0751 .0394 .0272 .0215
3 .1782 .1221 .0408 .0160 .0047 .0012 .0006 .0004
4 .0964 .0296 .0020 .0002 .0000 .0000 .0000 .0000
5 .0502 .0019 .0000 .0000 .0000 .0000 .0000 .0000
6 .0257 .0000 .0000 .0000 .0000 .0000 .0000 .0000
7 .0130 .0000 .0000 .0000 .0000 .0000 .0000 .0000
8 .0065 .0000 .0000 .0000 .0000 .0000 .0000 .0000
9 .0032 .0000 .0000 .0000 .0000 .0000 .0000 .0000

10 .0016 .0000 .0000 .0000 .0000 .0000 .0000 .0000
11 .0008 .0000 .0000 .0000 .0000 .0000 .0000 .0000
12 .0004 .0000 .0000 .0000 .0000 .0000 .0000 .0000
13 .0002 .0000 .0000 .0000 .0000 .0000 .0000 .0000
14 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000

Table 3.2: Total transmission by a slab for normal incidence as a function of
optical depth (τ = 2n) and albedo (a). Scattering is isotropic (g = 0), the
boundary conditions are matched, and all digits shown are significant. The
diffusion method was used for the italicized entries, all others were obtained
with the doubling method.
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g = 0 g = .5 g = .875
n a = .6 a = .9 a = .99 a = .6 a = .9 a = .99 a = .6 a = .9 a = .99

-15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-13 .0000 .0000 .0001 .0000 .0000 .0000 .0000 .0000 .0000
-12 .0001 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000
-11 .0002 .0002 .0002 .0000 .0001 .0001 .0000 .0000 .0000
-10 .0003 .0004 .0005 .0001 .0002 .0002 .0000 .0000 .0000
-9 .0006 .0009 .0010 .0002 .0003 .0003 .0000 .0000 .0001
-8 .0012 .0018 .0019 .0004 .0006 .0007 .0001 .0001 .0001
-7 .0023 .0035 .0038 .0008 .0012 .0013 .0001 .0002 .0002
-6 .0046 .0069 .0077 .0016 .0024 .0026 .0003 .0004 .0005
-5 .0090 .0137 .0152 .0031 .0048 .0053 .0005 .0008 .0009
-4 .0173 .0269 .0300 .0060 .0096 .0107 .0010 .0016 .0018
-3 .0323 .0518 .0582 .0114 .0190 .0216 .0019 .0033 .0037
-2 .0573 .0965 .1101 .0208 .0375 .0438 .0035 .0064 .0076
-1 .0927 .1690 .1989 .0353 .0720 .0878 .0059 .0125 .0157
0 .1295 .2674 .3329 .0527 .1298 .1707 .0089 .0238 .0327
1 .1510 .3616 .4975 .0658 .2045 .3053 .0116 .0422 .0691
2 .1553 .4081 .6450 .0698 .2612 .4698 .0128 .0658 .1417
3 .1554 .4148 .7287 .0700 .2770 .6001 .0129 .0826 .2584
4 .1554 .4150 .7513 .0700 .2778 .6561 .0129 .0864 .3753
5 .1554 .4150 .7527 .0700 .2778 .6644 .0129 .0866 .4312
6 .1554 .4150 .7527 .0700 .2778 .6646 .0129 .0866 .4396
7 .1554 .4150 .7527 .0700 .2778 .6646 .0129 .0866 .4397
8 .1554 .4150 .7527 .0700 .2778 .6646 .0129 .0866 .4397
9 .1554 .4150 .7527 .0700 .2778 .6646 .0129 .0866 .4397

Table 3.3: Total reflection for normal incidence as a function of optical depth
(τ = 2n) and albedo (a) for three different anisotropies (g = 0, g = 0.5 and
g = 0.875) using a Henyey-Greenstein phase function and matched boundary
conditions. All digits shown are significant.
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g = 0 g = .5 g = .875
n a = .6 a = .9 a = .99 a = .6 a = .9 a = .99 a = .6 a = .9 a = .99

-15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
-14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
-13 .9999 .9999 .9999 .9999 1.0000 1.0000 .9999 1.0000 1.0000
-12 .9998 .9999 .9999 .9999 .9999 1.0000 .9999 1.0000 1.0000
-11 .9997 .9997 .9998 .9998 .9999 .9999 .9998 .9999 1.0000
-10 .9993 .9995 .9995 .9995 .9998 .9998 .9996 .9999 1.0000
-9 .9986 .9989 .9990 .9990 .9995 .9997 .9992 .9998 .9999
-8 .9973 .9979 .9980 .9980 .9990 .9993 .9984 .9995 .9998
-7 .9945 .9957 .9961 .9961 .9980 .9986 .9967 .9990 .9997
-6 .9891 .9914 .9922 .9921 .9960 .9972 .9935 .9980 .9994
-5 .9782 .9830 .9844 .9843 .9920 .9944 .9870 .9960 .9988
-4 .9567 .9663 .9693 .9685 .9839 .9886 .9741 .9921 .9975
-3 .9146 .9340 .9403 .9372 .9675 .9770 .9487 .9841 .9950
-2 .8349 .8733 .8867 .8758 .9341 .9533 .8993 .9679 .9898
-1 .6928 .7654 .7940 .7602 .8672 .9057 .8068 .9354 .9790
0 .4714 .5916 .6510 .5629 .7391 .8145 .6458 .8702 .9558
1 .2111 .3565 .4657 .2955 .5233 .6603 .4067 .7432 .9057
2 .0394 .1285 .2755 .0743 .2505 .4527 .1539 .5212 .8002
3 .0012 .0160 .1221 .0041 .0544 .2438 .0197 .2335 .6081
4 .0000 .0002 .0296 .0000 .0025 .0860 .0003 .0410 .3522
5 .0000 .0000 .0019 .0000 .0000 .0120 .0000 .0012 .1263
6 .0000 .0000 .0000 .0000 .0000 .0002 .0000 .0000 .0171
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

Table 3.4: Total transmission for normal incidence as a function of optical depth
(τ = 2n) and albedo (a) for three different anisotropies (g = 0, g = .5 and
g = 0.875) using a Henyey-Greenstein phase function and matched boundary
conditions. All digits shown are significant.
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g = 0 g = .5 g = .875
n a = .6 a = .9 a = .99 a = .6 a = .9 a = .99 a = .6 a = .9 a = .99

-20 .0789 .0789 .0789 .0789 .0789 .0789 .0789 .0789 .0789
-19 .0789 .0789 .0789 .0789 .0789 .0789 .0789 .0789 .0789
-18 .0789 .0789 .0790 .0789 .0789 .0789 .0789 .0789 .0789
-17 .0789 .0790 .0790 .0789 .0789 .0790 .0789 .0789 .0789
-16 .0789 .0790 .0790 .0789 .0790 .0790 .0789 .0789 .0789
-15 .0790 .0790 .0790 .0789 .0790 .0790 .0789 .0789 .0790
-14 .0790 .0790 .0790 .0789 .0790 .0790 .0789 .0789 .0790
-13 .0790 .0790 .0790 .0789 .0790 .0790 .0789 .0790 .0790
-12 .0790 .0790 .0790 .0790 .0790 .0790 .0789 .0790 .0790
-11 .0790 .0791 .0791 .0790 .0790 .0791 .0789 .0790 .0790
-10 .0790 .0792 .0793 .0790 .0791 .0792 .0789 .0790 .0790
-9 .0791 .0795 .0797 .0790 .0792 .0794 .0789 .0790 .0790
-8 .0792 .0800 .0805 .0790 .0795 .0799 .0788 .0790 .0791
-7 .0795 .0811 .0821 .0790 .0800 .0808 .0787 .0791 .0793
-6 .0801 .0833 .0852 .0791 .0811 .0826 .0786 .0792 .0797
-5 .0812 .0876 .0915 .0792 .0833 .0861 .0781 .0794 .0804
-4 .0832 .0959 .1036 .0794 .0875 .0932 .0774 .0799 .0820
-3 .0870 .1115 .1268 .0796 .0956 .1071 .0759 .0808 .0850
-2 .0931 .1391 .1693 .0799 .1102 .1333 .0730 .0825 .0910
-1 .1013 .1817 .2405 .0795 .1342 .1805 .0680 .0855 .1031
0 .1084 .2326 .3422 .0769 .1649 .2554 .0604 .0899 .1267
1 .1107 .2689 .4552 .0717 .1867 .3485 .0516 .0940 .1701
2 .1106 .2795 .5506 .0686 .1880 .4323 .0463 .0915 .2336
3 .1106 .2803 .6088 .0684 .1857 .4933 .0453 .0816 .2871
4 .1106 .2803 .6259 .0684 .1855 .5222 .0453 .0776 .3068
5 .1106 .2803 .6270 .0684 .1855 .5268 .0453 .0775 .3124
6 .1106 .2803 .6270 .0684 .1855 .5269 .0453 .0775 .3132
7 .1106 .2803 .6270 .0684 .1855 .5269 .0453 .0775 .3132
8 .1106 .2803 .6270 .0684 .1855 .5269 .0453 .0775 .3132

Table 3.5: Total reflection as a function of optical depth (τ = 2n) and albedo (a)
for three different anisotropies (g = 0, g = .5, and g = 0.875) using a Henyey-
Greenstein phase function. The slab (nslab = 1.4) is bounded by glass slides
(nglass = 1.5) and air (nair = 1.0). All digits shown are significant.
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g = 0 g = .5 g = .875
n a = .6 a = .9 a = .99 a = .6 a = .9 a = .99 a = .6 a = .9 a = .99

-20 .9211 .9211 .9211 .9211 .9211 .9211 .9211 .9211 .9211
-19 .9211 .9211 .9211 .9211 .9211 .9211 .9211 .9211 .9211
-18 .9211 .9211 .9211 .9211 .9211 .9211 .9211 .9211 .9211
-17 .9211 .9211 .9211 .9211 .9211 .9211 .9211 .9211 .9211
-16 .9210 .9211 .9211 .9211 .9211 .9211 .9211 .9211 .9211

-15 .9210 .9210 .9210 .9210 .9210 .9211 .9210 .9211 .9211
-14 .9210 .9210 .9210 .9210 .9210 .9210 .9210 .9211 .9211
-13 .9210 .9210 .9210 .9210 .9210 .9210 .9210 .9210 .9211
-12 .9209 .9209 .9209 .9209 .9210 .9210 .9209 .9210 .9210
-11 .9207 .9208 .9208 .9208 .9209 .9209 .9208 .9210 .9210

-10 .9203 .9205 .9206 .9204 .9207 .9208 .9206 .9209 .9210
-9 .9195 .9200 .9202 .9198 .9203 .9205 .9202 .9207 .9209
-8 .9180 .9189 .9193 .9186 .9196 .9200 .9194 .9204 .9208
-7 .9150 .9166 .9176 .9162 .9180 .9190 .9177 .9197 .9205
-6 .9090 .9123 .9142 .9113 .9150 .9170 .9143 .9184 .9200

-5 .8971 .9036 .9075 .9017 .9091 .9129 .9077 .9158 .9189
-4 .8738 .8865 .8942 .8826 .8972 .9048 .8945 .9105 .9167
-3 .8289 .8535 .8688 .8456 .8738 .8890 .8686 .9001 .9124
-2 .7458 .7916 .8218 .7758 .8287 .8587 .8188 .8792 .9035
-1 .6032 .6829 .7414 .6521 .7448 .8030 .7269 .8378 .8856

0 .3940 .5131 .6208 .4587 .6017 .7100 .5710 .7574 .8491
1 .1673 .2970 .4697 .2251 .3966 .5793 .3486 .6115 .7766
2 .0297 .1029 .3049 .0530 .1784 .4241 .1261 .3888 .6488
3 .0009 .0126 .1453 .0028 .0377 .2503 .0153 .1548 .4734
4 .0000 .0002 .0360 .0000 .0017 .0925 .0002 .0255 .2800

5 .0000 .0000 .0023 .0000 .0000 .0130 .0000 .0007 .1031
6 .0000 .0000 .0000 .0000 .0000 .0003 .0000 .0000 .0141
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

Table 3.6: Total transmission as a function of optical depth (τ = 2n) and albedo
(a) for three different anisotropies (g = 0.0, g = 0.5 and g = 0.875) using a
Henyey-Greenstein phase function. The slab (nslab = 1.4) is bounded by glass
slides (nglass = 1.5) and air (nair = 1). All digits shown are significant.



Chapter 4

The Delta-Eddington Approximation

Introduction

This chapter describes the delta-Eddington approximation to the radiative trans-

port equation. In Section 4.1 the diffusion equation is derived from the transport

equation; this derivation follows that of [30] with the exception that the Edding-

ton phase function has been replaced by the delta-Eddington phase function of

Joseph et al. [34]. New boundary conditions required for a number of different

physical situations are derived in Section 4.1. The results of the previous sec-

tions are converted into dimensionless units in Section 4.2. The one-dimensional

diffusion equation is solved analytically in Section 4.3, and in Section 4.4 the cal-

culation of flux, reflection, and transmission is discussed. The three-dimensional

cylindrically symmetric solution to the diffusion equation is presented in Section

4.5. In Section 4.6 the solutions obtained using the diffusion approximation are

compared with exact solutions obtained with the adding-doubling method.

4.1 Derivation of the diffusion equation

The radiative transport equation is [8]

(ŝ · ∇)L(r, ŝ) = −µtL(r, ŝ) + µs

∫
4π
P (ŝ, ŝ′)L(r, ŝ′) dω′ (4.1)

63



64

where L(r, ŝ) is the radiance (W cm−2sr−1) at position r in the direction of the

unit vector ŝ. The differential solid angle dω′ has the unit vector ŝ′ as an outward

normal. The phase function p(ŝ, ŝ′) represents the fraction of light scattered from

the direction ŝ′ into the direction ŝ. The phase function is normalized such that

it is unity when integrated over all directions.

The scattering medium is an infinite slab with finite thickness and infinite

breadth. The inward normal to the top of the slab is chosen as the positive z-

direction. The top surface is illuminated with a monodirectional flux πF0(r)

Linc(r, ŝ) = πF0(r)δ((ŝ · ẑ)− (ŝ0 · ẑ)) = πF0δ(µ− µ0) (4.2)

where ẑ is a unit vector in the direction of the z-axis and ŝ0 is a unit vector in the

direction of the incident flux and µ is the cosine of the angle ŝ makes with the

z-axis. The delta function δ(µ − µ0) is discussed in Appendix A3. Historically,

the factor of π is included so that an isotropic diffuse source F0(r) will result in

a flux of πF0(r) at a surface,∫
2π µ≥0

F0(r)(ŝ · ẑ) dω = F0(r)
∫ 1

0
µ dµ

∫ 21π

0
dφ = πF0(r) (4.3)

If the irradiance E0(r) represents collimated light, then E0(r) = πF0(r).

Notice that Linc(r, ŝ) includes contributions from a cone containing all

vectors having ŝ · ẑ = µ0, and not just one particular azimuthal angle. This

simplifies the mathematics by eliminating any azimuthal dependence of radiance

in the slab. The radiance L(r, ŝ) is a function of only the position r and the angle

cos−1(ŝ · ẑ).

The phase function is modelled as a delta-Eddington phase function

Pdelta−E(cos θ) =
1

4π
{2fδ(1− cos θ) + (1− f)(1 + 3g′ cos θ)} (4.4)
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where cos θ = (ŝ · ŝ′) is the cosine of the angle between the incident and the

scattered light. The first term accounts for strong scattering in the forward

direction and the second term approximates a more diffuse type of scattering.

The parameter f determines the fraction of light scattered into the forward peak

(the delta function) and g′ denotes the degree of asymmetry in the diffuse portion

of the scattering. The factor of 1/4π is included for normalization.

Substituting Equation (4.4) into (4.1) yields

(ŝ · ∇)L(r, ŝ) = −µ′tL(r, ŝ) +
µs
4π

∫
4π
L(r, ŝ′)[1 + 3g′(ŝ · ŝ′)] dω′ (4.5)

where the reduced scattering coefficient is µ′s = µs(1 − f) and the transport

coefficient is µ′t = µ′s+µa. The transport µ′t and reduced scattering µ′s coefficients

are less than the corresponding total attenuation µt and scattering coefficients

µs respectively and represent effective total attenuation and scattering. The

scattering coefficient is reduced because light scattered into the forward peak of

Equation (4.4) is indistinguishable from unscattered light. The fraction of light

not scattered into the forward peak is (1− f), and consequently, the scattering

coefficient is reduced by a factor of (1−f). Thus the reduced scattering coefficient

µ′s represents the amount of light scattered out of the collimated portion of the

radiance and into the diffuse portion of the radiance.

The radiance is divided into collimated and diffuse components

L(r, ŝ) = Lcoll(r, ŝ) + Ld(r, ŝ) (4.6)

The collimated radiance includes both the light scattered into a direction parallel

to the incident beam and any unscattered light. Because the collimated radiance

includes light scattered forward, the beam is attenuated not by the usual total
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attenuation coefficient µt but by the transport coefficient µ′t The collimated light

is attenuated at a rate proportional to the transport coefficient.

(ŝ0 · ∇)Lcoll(r, ŝ) = −µ′tLcoll(r, ŝ) (4.7)

The amount of collimated light entering the slab is given by Equation

(4.2), less the amount of light lost to specular reflection from the surface

Lcoll(r, ŝ) = (1− rs)πF0(r)δ(µ− µ0) (4.8)

where rs is the specular reflection coefficient given by the usual Fresnel reflection

formula for specular reflection for an angle of incidence cos θ0 = ŝ0 · ẑ

rs =
1

2

[
sin2(θ0 − θt)
sin2(θ0 + θt)

+
tan2(θ0 − θt)
tan2(θ0 + θt)

]
(4.9)

The incident and transmitted angles θ0 and θt are related by Snell’s law

ntissue sin θt = nair sin θ0

where nair and ntissue are the indices of refraction of air and tissue. The solution

of Equation (4.7) subject to the initial condition of Equation (4.8) is

Lcoll(r, ŝ) = (1− rs)πF0(r) exp(−µ′tz/µ0)δ(µ− µ0) (4.10)

where z/µ0 is the distance incident light travels in tissue to reach a depth z in

the slab. Substituting Equation (4.6) into (4.5) and simplifying using Equations

(4.7) and (4.10) yields

(ŝ · ∇)Ld(r, ŝ) = −µ′tLd(r, ŝ) +
µ′s
4π

∫
4π
Ld(r, ŝ

′)[1 + 3g′(ŝ · ŝ′)] dω′

+
µ′s
4π

(1− rs)πF0(r) exp(−µ′tz/µ0)[1 + 3g′µ0µ] (4.11)
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where ŝ · ŝ′ has been rewritten in terms of the spherical angles determining ŝ and

ŝ′ If µ = ŝ · ẑ and µ′ = ŝ′ · ẑ then

ŝ · ŝ′ = µµ′ −
√

1− µ2
√

1− µ′2 cos(φ− φ′) (4.12)

The Eddington or diffusion approximation characterizes the diffuse radi-

ance as a sum of a diffuse radiant fluence φd(r) and a diffuse radiant flux per unit

area Fd(r) These are defined as the first two moments of the radiance Ld(r, ŝ)

ϕd(r) =
∫

4π
Ld(r, ŝ

′) dω′ and Fd(r) =
∫

4π
Ld(r, ŝ

′)ŝ dω′ (4.13)

The diffuse radiance can then be expressed as

Ld(r, ŝ) =
1

4π
ϕd(r) +

3

4π
Fd(r) · ŝ (4.14)

The factors of 1/4π and 3/4π in Equation (4.14) result from normalization.

Equation (4.14) represents the first two terms of the Taylor expansion for the

diffuse radiance Ld(r, ŝ), where φd(r) represents the isotropic and Fd(r) the

anisotropic contribution to the diffuse radiance.

Recalling the solid angle integration identities (see Appendix A3)∫
4π

ŝ ·A dω = 0 and
∫

4π
(ŝ ·A)(ŝ ·B) dω =

4π

3
(A ·B) (4.15)

and substituting Equation (4.14) into (4.11) and using (4.15) to simplify yields

the following equation for the diffuse radiance

(ŝ · ∇)ϕd(r) + 3(ŝ · ∇)(Fd(r) · ŝ) = −µaϕd(r)− 3(µ′t − gµ′s)(Fd(r) · ŝ) (4.16)

+ µ′s(1− rs)πF0(r) exp(−µ′tz/µ0)(1 + 3g′µµ0)

Integration of Equation (4.17) over all directions and using relations (4.15) results

in the following equation for the diffuse flux

∇ · Fd(r) = −µaϕd(r) + µ′s(1− rs)πF0(r) exp(−µ′tz/µ0) (4.17)
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Here the L. H. S. represents the net change in the diffuse radiant flux. This

equals the intensity lost through absorption of the diffuse radiant fluence plus

that gained through scattering of collimated light into the diffuse portion of the

radiance. Multiplying Equation (4.17) by ŝ and integrating over all angles yields

an energy flux equation for the diffuse radiance which states that the change

in the diffuse fluence equals the diffuse flux lost to absorption plus that gained

from collimated light.

∇ϕd(r) = −3µ′trFd(r) + 3g′µ′s(1− rs)πF0(r) exp(−µ′tz/µ0)µoẑ (4.18)

where µ′tr = µa + µ′s(1 − g′) is the reduced transport coefficient. The reduced

transport coefficient incorporates forward scattered light from the second term

of the delta-Eddington phase function into the collimated beam in much the

same way that such light for the first term was incorporated into expressions for

the reduced scattering coefficient. Taking the divergence of Equation (4.18) and

solving for ∇ · Fd(r) yields

∇ · Fd(r) = − 1

3µ′tr
∇2ϕd(r)− g′µ′sµ

′
t

µ′tr
(1− rs)πF0(r) exp(−µ′tz/µ0) (4.19)

Equating Equation (4.17) and (4.19) leads to a Helmholtz equation

∇2ϕd(r)− 3µ′trµaϕd(r) = −3µ′s(µ
′
tr + µ′tg

′)(1− rs)πF0(r) exp(−µ′tz/µ0) (4.20)

which is the well-known diffusion equation. The R. H. S. of this equation repre-

sents the collimated irradiation source.

4.2 Boundary conditions

The appropriate boundary conditions for light scattering at the interface between

two media are introduced in this section. These boundary conditions for the
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diffuse radiance Ld(r, ŝ) at the slab boundaries must be specified before the

diffusion equation may be solved. They are appropriate for use with the diffusion

equation. The majority of this section treats the interface between a scattering

medium (tissue) and a non-scattering medium (e.g., air, glass, water-glass-air).

The simplest situation has matched indices of refraction across the bound-

ary and no incident diffuse light. This first case considered is uncomplicated

by either reflected light—caused by index of refraction mismatching—or source

terms arising from incident diffuse light. The next case (index matching, diffuse

light incident) illustrates how a problem involving diffuse or Lambertian irra-

diance may be solved by including an extra term in the boundary conditions.

Boundaries between two media with different indices of refraction are treated

next, both with and without diffuse incidence. Finally, boundaries between two

scattering media are considered. First with and then without index of refrac-

tion matching. These cases are particularly important when light scattering in

multi-layered tissue is modelled.

4.2.1 Index matching, no incident diffuse light

If no diffuse light is incident on the top surface of the slab, then the obvious

boundary condition for diffuse light in the slab at a boundary is

Ld(r, ŝ) = 0 if ŝ · ẑ > 0, atz = 0 (4.21)

where the vector r has the usual cylindrical coordinates (r, z, θ) and ẑ is directed

into the slab. Condition (4.21) requires that diffuse light from all inward direc-

tions be zero at the top surface. Recalling the diffuse radiance in the diffusion
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approximation (Equation (4.14)

Ld(r, ŝ) =
1

4π
ϕd(r) +

3

4π
Fd(r) · ŝ

It is evident that since both φd(r) and Fd(r) are independent of ŝ, both must

be identically zero to satisfy condition (4.21) and the boundary condition in

Equation (4.21) cannot be used.

The usual choice for a boundary condition at a surface is the Marshak

condition [7]. This condition requires that the diffuse radiant flux per unit area

downwards at the surface equal zero.

∫
2π µ≥0

Ld(r, ŝ)(ŝ · ẑ) dω = 0 at z = 0 (4.22)

The notation “2π µ ≥ 0” under the integral sign indicates that the integration is

done over the hemisphere in which µ is positive. The positive z-direction is into

the slab and the cosine angles µ = ŝ · ẑ are all positive for directions pointing

forwards or into the slab. The extra (ŝ · ẑ) term is needed to project the radiance

in the z-direction. Equation (4.22) may be rewritten using expansion (4.14) for

the diffuse radiance

∫
2π µ≥0

Ld(r, ŝ)(ŝ · ẑ) dω =
1

4π

∫
2π µ≥0

ϕd(r)(ŝ · ẑ) dω+
3

4π

∫
2π µ≥0

(Fd(r) · ẑ)(ŝ · ẑ) dω

(4.23)

Further simplification is obtained using the hemispherical Equations (A3.12) and

(A3.16) from Appendix A3,

∫
2π µ≥0

Ld(r, ŝ)(ŝ · ẑ) dω =
1

4
ϕd(r) +

1

2
(Fd(r) · ẑ) = 0 (4.24)

Recalling the relation between Fd(r) and φd(r), Equation (4.18)

∇ϕd(r) = −3µ′trFd(r) + 3g′µ′s(1− rs)πF0(r) exp(−µ′tz/µ0)µ0ẑ
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and taking the vector dot product of Equation (4.18) with ẑ yields upon rear-

rangement

Fd(r) · ẑ = − 1

3µ′tr

∂ϕd(r)

∂z
+
g′µ′s
µ′tr

(1− rs)πF0(r) exp(−µ′tz/µ0)µ0 (4.25)

Substituting Equation (4.25) into (4.24) and simplifying yields the boundary

condition for diffuse light at the upper boundary

ϕd(r)− h∂ϕd(r)

∂z
= −Q(r) at z = 0 (4.26)

where (rs = 0 for matched indices of refraction)

h =
2

3µ′tr
and Q(r) = 3hg′µ′sπF0(r) exp(−µ′tz/µ0)µ0 (4.27)

The anisotropic surface factor Q(r) results from the difference in scattering into

the forward and backward hemispheres at the boundary due to anisotropic scat-

tering. This factor is zero when scattering is isotropic (g′ = 0).

The boundary condition for light at the bottom boundary (located at

z = d) is ∫
2π µ≤0

Ld(r, ŝ)(−ŝ · ẑ) dω = 0 at z = d (4.28)

The inward normal to the slab at the bottom boundary is −ẑ, and (−ẑ · ŝ) is

a positive projection angle needed to project the diffuse radiance onto the −ẑ

axis. Since

∫
2π µ≤0

Ld(r, ŝ)(−ŝ · ẑ) dω =
1

4
ϕd(r)− 1

2
(Fd(r) · ẑ) = 0 (4.29)

the boundary condition (4.22) becomes

ϕd(r) + h
∂ϕd(r)

∂z
= Q(r) at z = d (4.30)
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with h and Q(r) defined in Equation (4.27) above. Equations (4.26) and (4.30)

are the appropriate boundary conditions for tissue embedded in a non-scattering

environment. Reflection had not been considered and so these boundary condi-

tions implicitly require the scattering media to have the same index of refraction

as the tissue. Equation (4.30) is also appropriate for tissue having a black back-

ing, since in this case light is not internally reflected (i.e., all light reaching the

black rear surface is absorbed.)

4.2.2 Index matching, diffuse light incident

When the light incident on a slab is diffuse, either in addition to the collimated

incidence or as the sole light source, it is included in the boundary conditions.

The diffuse radiance Ldi(r, ŝ) is assumed isotropic (Lambertian) and might be

generated experimentally with an integrating sphere. Since the net diffuse radi-

ant flux downwards equals the net flux of the incident diffuse radiance.

∫
2π µ≥0

Ld(r, ŝ)(ŝ · ẑ) dω =
∫

2π µ≥0
Ldi(r, ŝ)(ŝ · ẑ) dω at z = 0 (4.31)

Equation (4.31) may be simplified using Equation (4.24) and using the isotropy

of the incident diffuse radiance Ldi(r, ŝ)

1

4
ϕd(r) +

1

2
(Fd(r) · ẑ) = πLdi(r, ŝ) (4.32)

Substituting the expression for Fd(r) · ẑ from Equation (4.25) and simplifying

yields

ϕd(r)− h∂ϕd(r)

∂z
= −Q(r) + 4πLdi(r, ŝ) at z = 0 (4.33)

where

h =
2

3µ′tr
and Q(r) = 3hg′µ′sπF0(r) exp(−µ′tz/µ0)µ0 (4.34)



73

The anisotropic surface factor Q(r) accounts for the difference in scattering into

the forward and backward hemispheres. The surface factor Q(r) is zero when

scattering is isotropic (g′ = 0).

For completeness, when diffuse light is incident on the bottom surface of

the slab then the appropriate boundary condition becomes

ϕd(r) + h
∂ϕd(r)

∂z
= Q(r) + 4πLdi(r, ŝ) at z = d (4.35)

where h and Q(r) are defined in Equation (4.34). Both Equations (4.33) and

(4.35) assume that the scattering medium is adjacent to non scattering media.

Furthermore, the non-scattering media must have the same index of refraction

as the scattering media. If either of these conditions is not satisfied then these

are not physically appropriate. Consequently, these boundary conditions are not

particularly useful for solving multi-layered problems since adjacent tissues may

have different optical properties and will both probably scatter light.

4.2.3 Index mismatch, no incident diffuse light

If the indices of refraction are mismatched and no diffuse light is incident on the

slab, then boundary condition (4.22) becomes∫
2π µ≥0

Ld(r, ŝ)(ŝ · ẑ) dω =
∫

2π µ≤0
r(−ẑ · ŝ)Ld(r, ŝ)(−ŝ · ẑ) dω at z = 0

(4.36)

where r(−ẑ · ŝ) is the reflection coefficient given by the Fresnel Equation (4.9).

This equation states that the average downward radiance equals the reflected

upward radiance. The Fresnel reflection is an even function of µ, so r(µ) =

r(−µ). The R.H.S. of Equation (4.36) may be expanded using Equation (4.14)∫
2π µ≤0

Ld(r, ŝ)(−ŝ · ẑ)r(ẑ · ŝ) dω =
1

4π

∫
2π µ≤0

ϕd(r)(−ŝ · ẑ)r(ẑ · ŝ) dω
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+
3

4π

∫
2π µ≤0

(Fd(r) · ẑ)(−ŝ · ẑ)r(ẑ · ŝ) dω(4.37)

Since the first term on the R.H.S. of Equation (4.37) is independent of the

azimuthal angle, it becomes

1

4π

∫
2π µ≤0

ϕd(r)(−ŝ · ẑ)r(ẑ · ŝ) dω = −1

2
ϕd(r)

∫ 0

−1
r(µ)(−µ) dµ (4.38)

Decomposing the flux into tangential t̂ and perpendicular ẑ components

Fd(r) = Fdt(r)t̂ + Fdn(r)ẑ (4.39)

allows simplification of the second term on the R.H.S. of Equation (4.37). The

integral of the tangential component is zero due to the azimuthal independence∫
2π µ≤0

(Fdt(t̂·ŝ)(−ŝ·ẑ)r(ẑ·ŝ) dω = −
∫ 2π

0
cosφ dφ

∫ 0

−1
r(µ)µ(1−µ2)1/2 dµ (4.40)

The integral of the normal component of the diffuse radiant flux is

3

4π

∫
2π µ≤0

Fdn(−ẑ · ŝ)(−ŝ · ẑ)r(ẑ · ŝ) dω = −3

2
Fdn

∫ 0

−1
r(µ)µ2 dµ (4.41)

Define the reflection coefficients R1 and R2 as

R1

2
=
∫ 1

0
r(µ)µ dµ = −

∫ 0

−1
r(µ)µ dµ

and
R2

3
=
∫ 1

0
r(µ)µ2 dµ =

∫ 0

−1
r(µ)µ2 dµ (4.42)

where the factors of 1/2 and 1/3 are included to ensure normalization. The

symmetry of the reflection r(µ) = r(−µ) has been used to relate the integrals in

(4.42). Tables for R1 and R2 may be found in Appendix A2 as a function of the

index of refraction ratio between the two media.

Equation (4.41), definitions (4.42), and Fdn(r) = Fd(r) · ẑ allow Equation

(4.37) to be written∫
2π µ≤0

Ld(r, ŝ)r(ŝ · ẑ)(−ŝ · ẑ) dω =
R1

4
ϕd(r)− R2

2
(Fd(r) · ẑ) (4.43)
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Equations (4.43) and (4.24) reduce the boundary condition (4.36) to

1

4
ϕd(r) +

1

2
(Fd(r) · ẑ) =

R1

4
ϕd(r)− R2

2
(Fd(r) · ẑ) (4.44)

Substituting Equation (4.25) into (4.44) and simplifying yields the following

mixed inhomogeneous boundary condition for the diffuse radiance

ϕd(r)− Atoph
∂ϕd(r)

∂z
= −AtopQ(r) at z = 0 (4.45)

where

h =
2

3µ′tr
,

Atop =
1 +R2

1−R1

, and

Q(r) = 3hg′µ′sπF0(r) exp(−µ′tz/µ0)µ0(1− rs) (4.46)

R1 and R2 are evaluated for the index of refraction ratio between the slab and

the medium above the slab. The coefficient Atop may also be found by using the

polynomial approximation (A2.51) given in Appendix A2.

The boundary condition for light at the bottom boundary (located at

z = d) is

∫
2π µ≤0

Ld(r, ŝ)(−ŝ · ẑ) dω =
∫

2π µ≥0
r(ẑ · ŝ)Ld(r, ŝ)(ŝ · ẑ) dω at z = d

(4.47)

Since

∫
2π µ≥0

Ld(r, ŝ)r(ŝ · ẑ)(ŝ · ẑ) dω =
R1

4
ϕd(r) +

R2

2
(Fd(r) · ẑ) (4.48)

Equation (4.29) reduces Equation (4.47) to

ϕd(r) + Abottomh
∂ϕd(r)

∂z
= AbottomQ(r) at z = d (4.49)
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The constants h and Q(r) are defined in Equation (4.46) and Abottom is identical

to Atop except that R1 and R2 are calculated using the ratio of the index of

refraction of the medium beneath the slab to that above the slab. Boundary

conditions (4.45) and (4.48) are appropriate for a scattering medium embedded

in a non-scattering environment with a different index of refraction.

4.2.4 Index mismatch, diffuse light incident

When diffuse light is incident on a slab having an index of refraction different

from the medium directly above the slab, the boundary condition is given by

Equation (4.36) with an extra term to account for the diffuse irradiance∫
2π µ≥0

Ld(r, ŝ)(ŝ · ẑ) dω =
∫

2π µ≤0
r(ẑ · ŝ)Ld(r, ŝ)(−ŝ · ẑ) dω

+
∫

2π µ≥0
t(ẑ · ŝ)Ldi(r, ŝ)(ŝ · ẑ) dω at z = 0(4.50)

where Ldi(r, ŝ) represents the isotropic radiance incident on the slab and t(ŝ·ẑ) =

1 − r(ŝ · ẑ) is the Fresnel transmission. Since the diffuse radiance Ldi(r, ŝ) is

independent of angle, Equation (4.50) reduces to the form

1

4
ϕd(r) +

1

2
(Fd(r) · ẑ) =

R1

4
ϕd(r)− R2

2
(Fd(r) · ẑ) + πLdi(r, ŝ)(1−R1) (4.51)

The reflection coefficient R1 is the same integral of the Fresnel reflection as

defined in Equation (4.42) and is tabulated in Appendix A2. Equation (4.51)

is identical to Equation (4.44) except that the included diffuse light has been

reduced by the light reflected at the boundary. This relation simplifies to

ϕd(r)− Atoph
∂ϕd(r)

∂z
= −AtopQ(r) + 4πLdi(r, ŝ) at z = 0 (4.52)

The boundary condition for diffuse light incident from the bottom of the

slab is similar to Equation (4.52). The only difference is the hemispheres over
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which the integrals are done. The boundary condition at z = d, where d is the

depth of the slab is∫
2π µ≤0

Ld(r, ŝ)(−ŝ · ẑ) dω =
∫

2π µ≥0
r(ẑ · ŝ)Ld(r, ŝ)(ŝ · ẑ) dω (4.53)

+
∫

2π µ≤0
t(ẑ · ŝ)L′di(r, ŝ)(−ŝ · ẑ) dω at z = d

where L′di(r, ŝ) is the diffuse light incident from the bottom. Equation (4.53)

simplifies to

ϕd(r) + Abottomh
∂ϕd(r)

∂z
= AbottomQ(r) + 4πL′di(r, ŝ) at z = d (4.54)

Equations (4.52) and (4.54) are the boundary conditions for diffuse light incident

on a slab with an index of refraction different from its non-scattering environ-

ment. If there is no light incident from the top or bottom then set Ldi(r, ŝ) or

L′di(r, ŝ) to zero as appropriate.

4.2.5 Glass slide — no incident diffuse light

In many experiments to measure optical properties the scattering material is

sandwiched between glass (or quartz) slides. The slides provide support for

thin tissues and a smooth reproducible boundary. Unfortunately, the index of

refraction of the slide is usually not equal to that of the tissue or that of the

environment. This section shows how internal reflection from the glass slide is

incorporated into the boundary conditions.

To incorporate a glass slide in the boundary conditions, Equation (A2.21)

should be used to calculate the reflection coefficient r′(µ) rather that the usual

Fresnel reflection equation. Thus two new reflection coefficients Rglass
1 and Rglass

2

may be defined analogous to Equation (4.42)

Rglass
1

2
=

∫ 1

0
r′(µ)µ dµ = −

∫ 0

−1
r′(µ)µ dµ
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Rglass
2

3
=

∫ 1

0
r′(µ)µ2 dµ =

∫ 0

−1
r′(µ)µ2 dµ (4.55)

The analysis of the index mismatch section follows with Atop replaced by

Aglass
top =

1 +Rglass
2

1−Rglass
1

Aglass
bottom =

1 +Rglass
2

1−Rglass
1

(4.56)

Values forAglass may be calculated using the polynomial approximations (A2.52)–

(A2.57) in Appendix A2. The boundary conditions for the top and bottom of

the slab follow from Equations (4.45) and (4.48)

ϕd(r)− Aglass
top h

∂ϕd(r)

∂z
= −Aglass

top Q(r) at z = 0 (4.57)

ϕd(r) + Aglass
bottomh

∂ϕd(r)

∂z
= Aglass

bottomQ(r) at z = d (4.58)

Equations (4.57) and (4.58) are appropriate for a slab of tissue sandwiched be-

tween glass slides.

4.2.6 Glass slide — diffuse light incident

If diffuse light is incident on a slab bounded by glass slides then the correct

boundary conditions follow from Equations (4.57) and (4.58) with the diffuse

incidence incorporated as in Equations (4.52) and (4.53)

ϕd(r)− Aglass
top h

∂ϕd(r)

∂z
= −Aglass

top Q(r) + 4πLdi(r, ŝ) (4.59)

ϕd(r) + Aglass
bottomh

∂ϕd(r)

∂z
= Aglass

bottomQ(r) + 4πL′di(r, ŝ) (4.60)

Ldi(r, ŝ) is the isotropic diffuse radiance incident in the slab from above,

L′di(r, ŝ) is the diffuse radiance from below. The parameters Aglass
top are calculated

as in Appendix A2.
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4.2.7 Index matching, no incident diffuse light, both media scattering

If two slabs with the same index of refraction are juxtaposed, then the boundary

conditions at the interface z = z0 are continuity of the first two moments of the

radiance

ϕ
(1)
d (r) = ϕ

(2)
d (r) at z = z0 (4.61)

F
(1)
d (r) · ẑ = F

(2)
d (r) · ẑ at z = z0 (4.62)

This is the boundary condition required for multi-layered tissues in which there

is no index of refraction difference from one medium to another. Equation (4.62)

simplifies to

1

µ
(1)
tr

∂φ
(1)
d (r)

∂z
=

1

µ
(2)
tr

∂φ
(2)
d (r)

∂z
at z = z0 (4.63)

where the superscripts 1 and 2 denote either the upper or lower medium respec-

tively.

4.2.8 Index mismatch, no incident diffuse light, both media scatter-
ing

Since the radiance over the square of the index of refraction is constant across an

interface (Section A2.1) then as long as the radiance is divided by the square of

the index of refraction of the medium it is in, the same methods used previously

will suffice. Consequently, for light travelling upwards∫
2πµ ≤0

L(1)(r, ŝ)

n2
1

(−ẑ · ŝ) dω =
∫

2πµ ≥0

L(1)(r, ŝ)

n2
1

r(1)(ẑ · ŝ)(ẑ · ŝ) dω

+
∫

2πµ ≤0

L(2)(r, ŝ)

n2
2

t(2)(ẑ · ŝ)(−ẑ · ŝ) dω(4.64)

This means that the total amount of light travelling upwards in layer 1 from the

boundary equals the light reflected back into layer 1 plus that transmitted from
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the lower layer. Similarly, for light travelling downwards

∫
2πµ ≥0

L(2)(r, ŝ)

n2
2

(ẑ · ŝ) dω =
∫

2πµ ≤0

L(2)(r, ŝ)

n2
2

r(2)(ẑ · ŝ)(−ẑ · ŝ) dω

+
∫

2πµ ≥0

L(1)(r, ŝ)

n2
1

t(1)(ẑ · ŝ)(ẑ · ŝ) dω (4.65)

The superscripts on the reflection r and the transmission t indicate the medium

from which light is incident on the boundary

For upwards travelling light, Equation (4.64) can be simplified to

1

n2
2

[ (
1−R21

1

)
ϕ

(2)
d (r) − 2

(
1−R21

2

)
F

(2)
d (r) · ẑ

]
(4.66)

=
1

n2
1

[ (
1−R12

1

)
ϕ

(1)
d (r)− 2

(
1 +R12

2

)
F

(1)
d (r) · ẑ

]

For downwards travelling light, Equation (4.65) becomes

1

n2
2

[ (
1−R21

1

)
ϕ

(2)
d (r) + 2

(
1 +R21

2

)
F

(2)
d (r) · ẑ

]
(4.67)

=
1

n2
1

[ (
1−R12

1

)
ϕ

(1)
d (r) + 2

(
1−R12

2

)
F

(1)
d (r) · ẑ

]

Subtracting yields

F
(1)
d (r) · ẑ =

(
n1

n2

)2

F
(2)
d (r) · ẑ (4.68)

Thus the flux across a boundary behaves the same way that the radiance does.

Equation (4.68) may be rewritten

1

n2
1µ

(1)
tr

dϕ(1)(r)

dz
=

1

n2
2µ

(2)
tr

dϕ(2)(r)

dz
(4.69)

Adding (4.67) and (4.68) yields

1

n2
1

[ (
1−R12

1

)
ϕ

(1)
d (r) − 2R12

2 F
(1)
d (r) · ẑ

]
(4.70)

= − 1

n2
2

[ (
1−R21

1

)
ϕ

(2)
d (r) + 2R21

2 F
(2)
d (r) · ẑ

]
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where R21
2 is the second moment of the Fresnel reflection R2 for light passing

from n1 to n2. Substituting for Fd(r)

1

n2
1

[ (
1−R12

1

)
ϕ

(1)
d (r) − R12

2

(
1

µ
(1)
tr

∂ϕ(1)(r)

∂z
−Q′(r)

) ]
(4.71)

= − 1

n2
2

[ (
1−R21

1

)
ϕ

(2)
d (r)−R21

2

(
1

µ
(2)
tr

∂ϕ(2)(r)

∂z
−Q′(r)

) ]

This equation with Equation (4.68) provides the two boundary conditions at an

interface. If n1 = n2 then R12
2 = R21

2 = 0.

4.3 Dimensionless form of the diffusion equation

All optical properties heretofore have been expressed in terms of dimensional pa-

rameters. This is useful for emphasizing the underlying physics of the derivation

of the boundary conditions and the diffusion equation. However this notation

is cumbersome and simplification is possible with the use of non-dimensional

quantities. The three non-dimensional constants are the modified albedo a′,

the modified optical depth τ ′, and the modified anisotropy factor g′. This sec-

tion expresses τ ′ and a′ in terms of the absorption coefficient µa, the scattering

coefficient µs, the delta-Eddington parameter f , and the tissue thickness d.

The usual definitions for the optical depth τ and albedo a are independent

of the phase function characterizing the medium.

a =
µs

µs + µa
and τ = (µa + µs)d (4.72)

However, the modified optical depth τ ′ and modified albedo a′ are specific to

the delta-Eddington approximation and depend on the delta-Eddington phase

function. These modified quantities depend on reduced scattering coefficients
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based on the delta-Eddington phase function:

Pdelta−E(cos θ) =
1

4π
{2fδ(1− cos θ) + (1− f)(1 + 3g′ cos θ)} (4.73)

The reduced scattering coefficient is defined as µ′s = µs(1−f) (Section 4.1). The

modified albedo and modified optical depth are

a′ =
µ′s

µ′s + µa
=

(1− f)a

1− af and τ ′ = (µa + µs)d = (1− af)τ (4.74)

The inverse equations are

a =
a′

1− f + a′f
and τ =

(
1 +

a′f

1− f

)
τ ′

The diffusion Equation is (A4.21),

∇2ϕd(r)− 3µ′trµaϕd(r) = S(r) (4.75)

and the source function S(r) is

S(r) = −3µ′s(µ
′
tr + µ′tg

′)(1− rs)πF0(r) exp(−µ′tz/µ0) (4.76)

The boundary conditions for mismatched indices of refraction between the slab

and its non-scattering environment are given by Equation (4.45) for the top

surface

ϕd(r)− Atoph
∂ϕd(r)

∂z
= −AtopQ(r) at z = 0

and Equation (4.49) for the bottom surface

ϕd(r) + Abottomh
∂ϕd(r)

∂z
= AbottomQ(r) at z = d

The parameter h and the function Q(r) are defined by Equation (4.46).

h =
2

3µ′tr
and Q(r) = 3hg′µ′sπF0(r) exp(−µ′tz/µ0)(1− rs)
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The variables Atop and Abottom incorporate internal reflection of light and depend

only on the index of refraction of the slab (Section 4.2.3).

Converting Equation (4.75) to non-dimensional quantities, requires re-

placement of the cylindrical coordinates z and r by non-dimensional variables

ζ = z(µ′s + µa) and ρ = r(µ′s + µa). The cylindrically symmetric for of the

diffusion Equation (4.75) becomes

∂2ϕd(r)

∂ζ2
+

1

ρ

∂ϕd(r)

∂ρ
+
∂2ϕd(r)

∂ρ2
− 3(1− a′)(1− a′g′)ϕd(r) = S(r) (4.77)

The source term (4.76) is then

S(r) = 3(1− rs)a′[1 + g′(1− a′)]πF0(ρ) exp(−ζ/µ0) (4.78)

The boundary conditions remain the same, with h replaced by h′ and Q(r) by

Q′(r)

ϕd(r)− Atoph
′∂ϕd(r)

∂ζ
= −AtopQ

′(r) at ζ = 0 (4.79)

for the top surface and

ϕd(r) + Abottomh
′∂ϕd(r)

∂ζ
= AbottomQ

′(r) at ζ = d(µa + µ′s) (4.80)

for the bottom surface. The parameters h′ and Q′(r) are given by

h′ =
2

3(1− g′a′) and Q′(r) = 3h′g′a′πF0(ρ) exp(−ζ/µ0)µ0(1−rs) (4.81)

Rearranging Equation (4.18) to express the diffuse radiant flux in terms of the

average diffuse radiance d yields the following equation

Fd(r) = − 1

3µ′tr
∇ϕd(r) +

g′µ′s
µ′tr

(1− rs)πF0(ρ) exp(−ζ/µ0)µ0ẑ (4.82)

In dimensionless parameters this is

Fd(r) = −h
′

2

∂ϕd(r)

∂ρ
r̂− h′

2

[
∂ϕd(r)

∂ζ
− 3g′a′(1− rs)πF0(ρ)µ0 exp(−ζ/µ0)

]
ẑ

(4.83)
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4.4 Solution of the one-dimensional diffusion equation

The one-dimensional diffusion Equation (4.75), in dimensionless units, is

d2ϕd(ζ)

dζ2
− κ2

dϕ(ζ) = S(ζ) (4.84)

where the source S(ζ) and k2
d are given by

S(ζ) = −3a′[1 + g′(1− a′)](1− rs)πF0 exp(−ζ/µ0)

κ2
d = 3(1− a′)(1− g′a′) (4.85)

The solution of Equation (4.84) is the sum of a particular solution and a homo-

geneous solution,

ϕd(ζ) = ϕhomod (ζ) + ϕpartd (ζ) (4.86)

The particular solution has the form

ϕpartd (ζ) = c3 exp(−ζ/µ0)

c3 =
−3µ2

0

1− κ2
dµ

2
0

a′[1 + g′(1− a′)](1− rs)πF0 (4.87)

The homogeneous solution depends on the albedo of the slab. Solutions for

various cases are given in the following subsections.

4.4.1 Non-conservative scattering (a′ < 1), finite slab

The homogeneous solution is (when the albedo is not equal to one)

ϕhomod (ζ) = c1 exp(κdζ) + c2 exp(−κdζ) (4.88)

where c1 and c2 depend on the boundary conditions. The complete solution is

ϕpartd (ζ) = ϕhomod (ζ) + ϕpartd (ζ) = c1 exp(κdζ) + c2 exp(−κdζ) + c3 exp(−ζ/µ0)

(4.89)
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Where c3 is given by Equation (4.87). The boundary conditions at the top

surface and bottom surfaces are given by Equations (4.79) and (4.80)

ϕd(ζ)− Atoph
′dϕd(ζ)

dζ
= −AtopQ

′(ζ) at ζ = 0 (4.90)

ϕd(ζ) + Abottomh
′dϕd(ζ)

dζ
= AbottomQ

′(ζ) at ζ = τ ′ (4.91)

The parameter h′ and Q′(ζ) are given by Equation (4.81)

h′ =
2

3(1− g′a′) and Q′(ζ) = 3h′g′a′πF0(ρ) exp(−ζ/µ0)µ0(1−rs) (4.92)

Substituting Equation (4.89) into boundary condition (4.90) yields

c1(1− Atoph
′κd) + c2(1 + Atoph

′κd) = −AtopQ
′(0)− c3

[
1 +

Atoph
′

µ0

]
(4.93)

Substituting Equation (4.89) into boundary condition (4.91) yields

exp(−κdτ ′)
[
c1(1 + Abottomh

′κd) + c2(1− Abottomh
′κd)

]
= (4.94)

exp(−τ ′/µ0)

{
AbottomQ

′(0)− c3

[
1− Abottomh

′

µ0

]}

Equations (4.93) and (4.95) are two linear equations with constant coefficients

in the two unknowns c1 and c2. These equations are easily solved using deter-

minants.

4.4.2 Non-conservative scattering (a′ < 1), semi-infinite slab

When the thickness of the slab is infinite then to ensure the solution (4.89) is

bounded at infinity,

c1 = 0 (4.95)

The other coefficient c2 may be determined using the boundary condition (4.90)

c2 = −AtopQ
′(0) + c3(1 + Atoph

′/µ0)

1 + Atoph′κd
(4.96)
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Equations (4.95) and (4.98) define the homogeneous solution to the diffusion

equation for a semi-infinite slab with non-conservative scattering.

4.4.3 Conservative scattering a = 1, finite slab

When the albedo is unity, then the differential Equation (4.84) becomes

d2ϕd(ζ)

dζ2
= S(ζ) (4.97)

The homogeneous solution is

ϕhomod (ζ) = c1 + c2ζc (4.98)

and the particular solution is given by Equation (4.87) as with a′ = 1. The

constants c1 and c2 are determined using the boundary conditions (4.90) and

(4.91)

c1 − Atoph
′c2 = −AtopQ

′(0)− c3(1 + Atoph
′/µ0) (4.99)

and

c1 + c2(τ ′ + Abottomh
′) = {AbottomQ

′(0)− c3(1− Abottomh
′/µ0)} exp(−τ ′/µ0)

(4.100)

Equations (4.99) and (4.100) are two linear equations in the two unknowns c1

and c2. These coefficients determine the homogeneous solution for a finite slab

with conservative scattering.

4.4.4 Conservative scattering (a = 1), semi-infinite slab

If the slab is semi-infinite, the diffuse average radiance must be bounded as

ζ →∞. Hence

c2 = 0 (4.101)
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The other constant c1 is determined using the boundary condition (4.90)

c1 = −AtopQ
′(0)− c3(1 + Atoph

′/µ0) (4.102)

Equations (4.101) and (4.102) determine the solution for a semi-infinite slab with

conservative scattering.

4.5 Reflection, transmission, and fluence rates in one-
dimension

The diffuse radiant flux per unit area is given by Equation (4.83)

Fd(r) = −h
′

2

∂ϕd(r)

∂ρ
r̂− h′

2

[
∂ϕd(r)

∂ζ
− 3g′a′(1− rs)πF0(ρ)µ0 exp(−ζ/µ0)

]
ẑ

Projecting the above equation into the z-direction yields

Fd(ζ) · ẑ = −h
′

2

[
dϕd(r)

dζ
− 3g′a′(1− rs)πF0(ρ)µ0 exp(−ζ/µ0)µ0

]
(4.103)

where h′ is defined by Equation (4.81). This represents the net fluence at a depth

ζ. The average diffuse radiance for a non-conservative finite medium is given by

Equation (4.89).

ϕpartd (ζ) = c1 exp(κdζ) + c2 exp(−κdζ) + c3 exp(−ζ/µ0) (4.104)

The derivative of ϕd(ζ) is

dϕpartd (ζ)

dζ
= κdc1 exp(κdζ)− κdc2 exp(−κdζ)− c3/µ0 exp(−ζ/µ0) (4.105)

Substituting these expressions into Equation (4.103) and dividing by the to-

tal incident intensity yields the diffuse reflection and diffuse transmission. The

expressions for the diffuse reflection and diffuse transmission are

Rd =
−Fd(ζ) · ẑ

(1− rs)πF0µ0

∣∣∣∣
ζ=0

and Td =
Fd(ζ) · ẑ

(1− rs)πF0µ0

∣∣∣∣
ζ=τ ′

(4.106)
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Substituting (4.103)–(4.105) into (4.106) yields

Rd = −
[

h′

2πF0µ0

(κdc2 − κdc1 + c3/µ0) +
3

2
h′g′a′(1− rs)

]

Similarly, the transmission is

Td =
h′

2πF0µ0

[κdc2 exp(−κdτ ′) + κdc1 exp(κdτ
′) + c3/µ0 exp(−τ ′/µ0)]

+
3

2
h′g′a′(1− rs) exp(−τ ′/µ0)

The equations are the diffuse reflection and diffuse transmission for a slab illu-

minated uniformly by collimated light. The coefficients c1, c2 and c3 are given

in Section 4.4. The source term for heating, or the local volumetric absorption

rate is [26]

Φ(ζ) = −dFd
dz
− µ0

dFcoll

dz
(4.107)

The collimated flux is given by Equation (4.13)

Fcoll(r) =
∫

4π
Lcoll(r, ŝ

′)ŝ′ dω′

The collimated radiance Lcoll(r, ŝ) is defined by Equation (4.10), and the colli-

mated flux is

Fcoll = µ0(1− rs)πF0 exp(−ζ ′/µ0)

Taking the derivative of Fcoll above and substituting Equation (4.17) for

the diffuse flux in Equation (4.107) results in

Φ(ζ) = µa [φc(ζ) + µ0(1− rs)πF0 exp(−ζ/µ0)] (4.108)

This is the one-dimensional source function for light absorbed at a depth

ζ in a slab.
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4.6 Three-dimensional solution of the diffusion equation

The next few subsections detail a three-dimensional solution to the diffusion

equation. The first part gives a formal solution in terms of a Green’s function

for the diffusion equation. The next section gives the Green’s function for a slab

bounded by non-scattering media. The last section gives explicit expressions for

the solutions to the diffusion equation for various irradiation profiles.

4.6.1 Formal solution of φd(r) in terms of Green’s functions

Define φd(r) as a solution to the inhomogeneous Helmholtz equation (Equation

(4.77)

∇2ϕd(r)− κ2
dϕd(r) = S(r) (4.109)

where

S(r) = S0πF0(ρ) exp(−ζ) S0 = −3(1− rs)a′(1 + g′ − a′g′)

and

κ2
d = 3(1− a′)(1− a′g′)

subject to the following inhomogeneous mixed boundary conditions

ϕd(r)− Atoph
′∂ϕd(r)

∂ζ
= −AtopQ

′(r) at ζ = 0 (4.110)

and

ϕd(r) + Abottomh
′∂ϕd(r)

∂ζ
= AbottomQ

′(r) at ζ = τ ′ (4.111)

with

Q′(r) = Q0πF0(ρ) exp(−ζ) Q0 = 3h′a′g′(1− rs)
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Let G(r; r′) be a Green’s function solution to the homogeneous Helmholtz equa-

tion

∇2G(r; r′)− κ2
dG(r; r′) = −δ(r− r′) (4.112)

subject to the following homogeneous mixed boundary conditions

G(r; r′)− Atoph
′∂G(r; r′)

∂ζ
= 0 at ζ = 0 (4.113)

G(r; r′) + Abottomh
′∂G(r; r′)

∂ζ
= 0 at ζ = τ ′ (4.114)

The solution to Equations (4.109)–(4.111) can be found using Green’s second

identity [51],

∫
volume

(u∇2v − v∇2u) dV =
∫

surface
(u
∂v

∂n
− v ∂u

∂n
dS (4.115)

Where n is the outward normal to the surface enclosing the volume of integration

on the left hand side of the equation. If u = G(r; r′) and v = φd(r), then Equation

(4.115) becomes

∫
volume

(
G(r; r′)∇2ϕd(r

′)− ϕd(r′)∇2G(r; r′)
)
dV ′ =∫

surface

(
G(r; r′)

∂ϕd(r
′)

∂n
− ϕd(r′)

∂G(r; r′)

∂n

)
dS ′ (4.116)

Adding and subtracting G(r; r′)κ2
dφd(r) to the left hand side of Equation (4.116)

yields

L.H.S. =
∫

volume

(
G(r; r′)[∇2ϕd(r

′)− κ2
dϕd(r

′)]

− ϕd(r
′)[∇2G(r; r′)− κ2

dG(r; r′)]
)
dV ′ (4.117)

Using Equations (4.109) and (4.112) to simplify the bracketed quantities reduces

the LHS to

L.H.S. =
∫

volume
G(r; r′)S(r′) dV ′ − ϕd(r) (4.118)
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The surface integral on the right hand side of Equation (4.115) can be rewritten

with the stipulation that on the top surface of the slab

∂

∂n
= − ∂

∂ζ ′
(4.119)

and on the bottom surface

∂

∂n
=

∂

∂ζ ′
(4.120)

because ζ increases with depth in the slab and n is an outward normal to the

slab. Upon substitution of Equations (4.119) and (4.120) into the R.H.S. of

Equation (4.116),

R.H.S. = −
∫
ζ′=0

(
G(r; r′)

∂ϕd(r
′)

∂ζ ′
− ϕd(r′)

∂G(r; r′)

∂ζ ′

)
dS ′ (4.121)

+
∫
ζ′=τ ′

(
G(r; r′)

∂ϕd(r
′)

∂ζ ′
− ϕd(r′)

∂G(r; r′)

∂ζ ′

)
dS ′

This equation simplifies using the boundary conditions (4.110),(4.111),(4.113)

and (4.114)

R.H.S. =
1

h′

∫
ζ′=τ ′

G(r; r′)Q′(r′) dS ′ − 1

h′

∫
ζ′=0

G(r; r′)Q′(r′) dS ′ (4.122)

Equating Equations (4.118) and (4.122) results in an expression for φd(r) in

terms of the Green’s function G(r; r′)

ϕd(r) = −
∫

volume
G(r; r′)S(r′) dV ′ +

1

h′

∫
ζ′=τ ′

G(r; r′)Q′(r′) dS ′

− 1

h′

∫
ζ′=0

G(r; r′)Q′(r′) dS ′ (4.123)

The volume integral accounts for the inhomogeneous (source) term in the Helm-

holtz Equation (4.109), and the last two integrals arise from inhomogeneous

boundary conditions at the top and bottom surfaces of the slab.
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4.6.2 The Green’s Function for an Infinite Slab

The Green’s function in the cylindrical coordinate system with r and r′ expressed

in (ρ, φ, ζ) coordinates [50] is

G(r; r′) =
∞∑
n=1

Zn(ζ)Zn(ζ ′)

2πN2
n

{
K0(λnρ)I0(λnρ

′) if ρ ≥ ρ′;
K0(λnρ

′)I0(λnρ) if ρ ≤ ρ′.
(4.124)

where K0 and I0 are modified Bessel functions and Zn(ζ) is an eigenfunction

satisfying the differential Equation (4.112)

Zn(ζ) = sin(knζ + γn) (4.125)

The eigenvalue γn is obtained by substituting the Green’s function into the

boundary condition at ζ = 0

tan γn = Atoph
′kn (4.126)

The eigenvalue kn is obtained imposing the boundary condition (4.114) at ζ = τ ′

tan(knτ
′ + γn)− Abottomh

′kn (4.127)

Using (4.126) and the sum of angles expansion for the tangent simplifies Equation

(4.127)

tan knτ
′ =

(Atop + Abottom)h′kn
AtopAbottom(h′2kn)2 − 1

(4.128)

Evaluation of the roots kn of this equation are discussed in Appendix A4. The

normalization factor N2
n is given by

N2
n =

∫ τ ′

0
[zn(ζ)]2 dζ (4.129)

Substituting (4.125) and simplifying,

N2
n =

sin 2γn − sin 2(knτ
′ + γn) + 2knτ

′

4kn
(4.130)
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Finally, substituting the Green’s function (4.124) into the diffusion Equation

(4.112) results in a relation between λn and κn

λ2
n = k2

n + κ2
d (4.131)

4.6.3 Explicit Expressions for φd(r)

The solution to the diffusion equation is given by Equation (4.123). Substitut-

ing the Green’s function (4.124) from the previous subsection into the volume

integral on the R.H.S. of Equation (4.123) yields

∫
volume

G(r; r′)S(r′) dV ′ =
∞∑
n=1

S0 sin(knζ + γn)

N2
n

zn
k2
n + 1

Bn(ρ)

λ2
n

(4.132)

where zn is given by

zn = sin γn[1 + exp(−τ ′)(kn sin knτ
′ − cos knτ

′)] (4.133)

cos γn[kn + exp(−τ ′)(sin knτ ′ + kn cos knτ
′)]

and the radial term Bn(ρ) is defined as

Bn(ρ) = K0(λnρ)
∫ ρ

0
πφF0(ρ′)I0(λnρ

′)(λnρ
′) d(λnρ

′) (4.134)

+ I0(λnρ)
∫ ∞
ρ

πF0(ρ′)K0(λnρ
′)(λnρ

′) d(λnρ
′)

The radial term depends on the source irradiance. If the source represents

a beam of finite width (ρ0) with constant irradiance then [50]

Bn(ρ) =
{
πF0[1− λnρ0I0(λnρ)K1(λnρ0)] if ρ ≤ ρ0;
πF0[λnρ0K0(λnρ)I1(λnρ0)] if ρ ≥ ρ0.

(4.135)

The special case of constant uniform irradiance is achieved by letting ρ0 → ∞.

Since K1(λnρ0)→ 0 as ρ0 → 0, Equation (4.135) becomes

Bn(ρ) = πF0 (4.136)
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The radial term for an impulse (delta function) located at the origin is

Bn(ρ) = πF0K0(λnρ) (4.137)

A beam with a Gaussian irradiance profile having a e−2 radius of ρ0 requires that

the radial term Bn(ρ) be calculated numerically using Equation (4.135) with

πF0(ρ) = πF0

√
8

π

exp(−2ρ2/ρ2
0)

ρ0

(4.138)

The surface integrals in Equation (4.123) describe the contribution from

the top surface due to reflected light,

∫
ζ′=0

G(r; r′)Q′(r′) dS ′ =
∞∑
n=1

Q0 sin(knζ + γn) sin γnBn(ρ)

N2
nλ

2
n

(4.139)

the contribution from the bottom integral is

∫
ζ′=τ ′

G(r; r′)Q′(r′) dS ′ =
∞∑
n=1

Q0 sin(knζ + γn) sin(knτ
′ + γn)Bn(ρ) exp(−τ ′)

N2
nλ

2
n

(4.140)

Collecting Equations (4.132), (4.139), and (4.140) yields

ϕd(r) =
∞∑
n=1

sin(knζ + γn)Bn(ρ)

N2
nλ

2
n

[
− S0zn
k2
n + 1

− Q0 sin γn
h′

+
Q0 sin(knτ

′ + γn) exp(−τ ′)
h′

]
(4.141)

The derivative of φd(r) with respect to ζ is

∂ϕd(r)

∂ζ
=
∞∑
n=1

kn cos(knζ + γn)Bn(ρ)

N2
nλ

2
n

[
− S0zn
k2
n + 1

− Q0 sin γn
h′

+
Q0 sin(knτ

′ + γn) exp(−τ ′)
h′

]
(4.142)

The derivative of φd(r) with respect to ρ is

∂ϕd(r)

∂ρ
=
∞∑
n=1

sin(knζ + γn)

N2
nλ

2
n

∂Bn(ρ)

∂ρ

[
− S0zn
k2
n + 1

− Q0 sin γn
h′

+
Q0 sin(knτ

′ + γn) exp(−τ ′)
h′

]
(4.143)

Numerical summations of these series are detailed in Appendix A4.
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4.6.4 Flux, Reflection, and Transmission in Three Dimensions

The flux at a point r is given by Equation (4.83)

Fd(r) = −h
′

2

∂ϕd(r)

∂ρ
r̂− h′

2

[
∂ϕd(r)

∂ζ
− 3g′a′(1− rs)πF0(ρ)µ0 exp(−ζ/µ0)

]
ẑ

Equations (4.142) and (4.143) provide representations for the partial derivatives

of φd(r) needed to calculate the flux. If πF0 is the total power density incident

on the slab then the diffuse reflectance and transmission are given by Equation

(4.106) with the understanding that these are a function of radius.

4.7 Evaluation of the Delta-Eddington Approximation

This section compares solutions of the delta-Eddington approximation with ac-

curate adding-doubling and Monte Carlo solutions. Heretofore comparisons have

been for the index matched case, where the delta-Eddington approximation

was found to agree with exa ct solutions for all optical depths, albedos and

anisotropies [34]. This section makes comparisions for mismatched boundary

conditions because of the large differences possible between fluence rates for

identical tissues with different boundary conditions (cf., Figure 4.1). The follow-

ing sections emphasize comparisons with an air-glass-tissue-glass-air medium.

Total reflection and transmission are compared in the first subsection. This is

followed by a comparision of the fluence rates for a one-dimensional slab.

4.7.1 Comparison of total reflection and transmission

Tables (4.1) and (4.2) compare delta-Eddington values of total reflection and

total transmission with the exact values from Tables 3.3–3.6. The first table

assumes index matching and the second assumes that the medium is bounded by
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glass slides to form a air-glass-tissue-glass-air medium. For this case the indices

of refraction vary as 1.0/1.5/1.4/1.5/1.0 according to the layer in the air-glass-

tissue-glass-air medium. The errors for the index mismatched case are roughly

twice those of the index matched case. Both absolute differences and relative

errors are tabulated. This is because often when the reflection or transmission is

small, there is a relatively large difference between the delta-Eddington and the

exact values. However, the difference is so small that for all practical purposes

the difference cannot be measured.

4.7.2 Comparison of Fluence Rates

This section compares the delta-Eddington fluence rates with exact values ob-

tained from the adding-doubling method. The radiances were calculated using

Equations (3.17) and (3.18) and the fluence rates were obtained by integrating

the radiances over all 4π solid angles. The delta-Eddington approximation con-

sistently underestimates the fluence rate found with the adding-doubling method.

In Figure 4.1 the boundary conditions are varied to determine how the

index of the refraction of the medium affects fluence calculations. The delta-

Eddington approximation works best for index matched conditions, because no

approximation must be made to account for total internal reflection of light at

the boundary.

The total fluence is the sum of collimated and diffuse fluences. The

collimated fluence dominates when the albedo is small. This explains Figure

4.2 in which the delta-Eddington approximation is better for low than for high

albedos. Figure 4.3 illustrates that the delta-Eddington approximation is better

for isotropic scattering than anisotropic scattering. In this graph, the Henyey-
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g a τ ∆R 100∆R
R

∆T 100∆T
T

0 0.6 1 0.010 7.5 0.011 2.3
0 0.6 2 0.011 7.0 0.007 3.3
0 0.6 4 0.010 6.5 −0.000 −0.7
0 0.6 8 0.010 6.5 −0.000 −18.1
0 0.9 1 0.005 1.9 0.010 1.6
0 0.9 2 0.009 2.5 0.011 3.2
0 0.9 4 0.011 2.7 0.004 3.4
0 0.9 8 0.011 2.7 −0.000 −2.5
0 0.99 1 −0.002 −0.6 0.004 0.6
0 0.99 2 −0.002 −0.4 0.006 1.2
0 0.99 4 0.001 0.2 0.004 1.4
0 0.99 8 0.003 0.5 0.001 1.0

0.5 0.6 1 0.007 13.3 0.006 1.0
0.5 0.6 2 0.007 11.2 0.004 1.5
0.5 0.6 4 0.007 9.6 −0.001 −0.8
0.5 0.6 8 0.007 9.5 −0.001 −14.8
0.5 0.9 1 0.006 4.7 0.005 0.7
0.5 0.9 2 0.008 4.1 0.011 2.0
0.5 0.9 4 0.011 4.0 0.008 3.4
0.5 0.9 8 0.011 3.9 0.000 0.0
0.5 0.99 1 0.001 0.9 0.000 0.0
0.5 0.99 2 −0.001 −0.2 0.004 0.7
0.5 0.99 4 −0.000 −0.0 0.006 1.4
0.5 0.99 8 0.004 0.6 0.003 1.4

0.875 0.6 1 0.002 20.6 −0.001 −0.1
0.875 0.6 2 0.001 12.2 −0.002 −0.5
0.875 0.6 4 0.001 6.1 −0.002 −1.4
0.875 0.6 8 0.001 5.5 −0.000 −2.3
0.875 0.9 1 0.004 17.1 −0.002 −0.2
0.875 0.9 2 0.006 15.1 −0.001 −0.2
0.875 0.9 4 0.008 11.5 0.002 0.3
0.875 0.9 8 0.007 8.6 0.003 1.4
0.875 0.99 1 0.004 12.6 −0.004 −0.4
0.875 0.99 2 0.006 8.9 −0.005 −0.5
0.875 0.99 4 0.007 4.9 −0.003 −0.3
0.875 0.99 8 0.005 2.0 0.006 0.9

Table 4.1: Delta-Eddington errors for an index matched medium. The ∆R and
∆T values are the differences between the delta-Eddington and the exact values.
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g a τ ∆R 100∆R
R

∆T 100∆T
T

0 0.6 1 0.022 20.4 0.018 4.5
0 0.6 2 0.017 15.7 0.005 3.0
0 0.6 4 0.016 14.6 -0.002 -5.2
0 0.6 8 0.016 14.6 -0 -27.8
0 0.9 1 0.028 12 0.022 4.3
0 0.9 2 0.029 10.8 0.012 4.1
0 0.9 4 0.027 9.5 0 0.2
0 0.9 8 0.026 9.2 -0.001 -8.7
0 0.99 1 0.004 1.3 -0.002 -0.3
0 0.99 2 0.012 2.7 -0.004 -0.8
0 0.99 4 0.016 3 -0.005 -1.6
0 0.99 8 0.015 2.4 -0.003 -1.8

0.5 0.6 1 0.017 21.6 0.013 2.8
0.5 0.6 2 0.012 16.5 0.004 1.8
0.5 0.6 4 0.011 15.4 -0.002 -3.6
0.5 0.6 8 0.011 15.4 -0.001 -21.0
0.5 0.9 1 0.025 15.3 0.021 3.5
0.5 0.9 2 0.025 13.6 0.017 4.2
0.5 0.9 4 0.023 12.3 0.003 1.7
0.5 0.9 8 0.022 11.7 -0.002 -6.0
0.5 0.99 1 0.003 1.3 -0.001 -0.1
0.5 0.99 2 0.008 2.4 0 0.0
0.5 0.99 4 0.016 3.8 -0.003 -0.7
0.5 0.99 8 0.017 3.5 -0.003 -1.4

0.875 0.6 1 0.006 10.2 -0.003 -0.5
0.875 0.6 2 0.003 6.7 -0.005 -1.4
0.875 0.6 4 0.002 4.5 -0.003 -2.3
0.875 0.6 8 0.002 4.9 -0.0 -1.9
0.875 0.9 1 0.019 21.1 0.002 0.3
0.875 0.9 2 0.020 21.1 0.003 0.5
0.875 0.9 4 0.014 15.6 0.006 1.5
0.875 0.9 8 0.011 13.2 0.003 1.9
0.875 0.99 1 0.012 9.1 -0.009 -1.0
0.875 0.99 2 0.014 8.2 -0.006 -0.8
0.875 0.99 4 0.012 5.2 0.005 0.8
0.875 0.99 8 0.015 5.2 0.012 2.5

Table 4.2: Delta-Eddington errors for an air-glass-tissue-glass-air medium. The
∆R and ∆T values are the differences between the delta-Eddington and exact
values.
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Greenstein phase function is used with gHG = 0.875. The equivalent delta-

Eddington parameters (g′ = 0.47, f = 0.77) can be calculated using Equations

(1.4) and (1.5). The effective thickness τ ′ of the sample is 0.97. Consequently,

the diffusion region is not reached in the strongly forward scattering media in

four mean free paths (τ = 4)

4.8 Conclusions

This chapter solved the diffusion equation for mismatched boundary conditions.

Comparison of the approximate delta-Eddington solutions with adding-doubling

calculations indicates that delta-Eddington approximation works well for calcu-

lations of reflection and transmission. It works moderately well for many fluence

rate calculations, but should not be used to calculate fluence rates in tissues with

high albedos and mismatched boundary conditions.
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Matched Unmatched
Depth Exact Diffusion Error Exact Diffusion Error
0.000 1.307 1.297 −0.7 2.866 2.191 −23.6
0.125 1.364 1.314 −3.7 2.872 2.210 −23.0
0.250 1.401 1.329 −5.1 2.878 2.228 −22.6
0.375 1.429 1.343 −6.0 2.883 2.244 −22.2
0.500 1.453 1.355 −6.7 2.889 2.259 −21.8
0.625 1.473 1.366 −7.3 2.894 2.273 −21.5
0.750 1.490 1.375 −7.7 2.899 2.284 −21.2
0.875 1.504 1.382 −8.1 2.904 2.295 −21.0
1.000 1.516 1.388 −8.4 2.908 2.304 −20.8
1.125 1.526 1.393 −8.7 2.912 2.312 −20.6
1.250 1.533 1.397 −8.9 2.916 2.319 −20.5
1.375 1.538 1.399 −9.1 2.920 2.325 −20.4
1.500 1.542 1.400 −9.2 2.924 2.329 −20.3
1.625 1.543 1.400 −9.3 2.927 2.333 −20.3
1.750 1.543 1.398 −9.4 2.930 2.335 −20.3
1.875 1.541 1.396 −9.4 2.933 2.337 −20.3
2.000 1.537 1.392 −9.4 2.936 2.337 −20.4
2.125 1.532 1.388 −9.4 2.938 2.337 −20.5
2.250 1.524 1.382 −9.3 2.941 2.335 −20.6
2.375 1.515 1.376 −9.2 2.943 2.333 −20.7
2.500 1.505 1.368 −9.1 2.945 2.330 −20.9
2.625 1.492 1.360 −8.9 2.947 2.326 −21.1
2.750 1.478 1.351 −8.6 2.950 2.321 −21.3
2.875 1.462 1.341 −8.3 2.952 2.315 −21.6
3.000 1.444 1.330 −7.9 2.955 2.309 −21.9
3.125 1.424 1.318 −7.4 2.957 2.302 −22.2
3.250 1.402 1.305 −6.9 2.960 2.294 −22.5
3.375 1.377 1.292 −6.2 2.963 2.286 −22.9
3.500 1.349 1.278 −5.3 2.967 2.277 −23.3
3.625 1.318 1.263 −4.2 2.971 2.267 −23.7
3.750 1.281 1.248 −2.6 2.975 2.257 −24.1
3.875 1.236 1.232 −0.3 2.980 2.246 −24.6
4.000 1.162 1.215 4.6 2.985 2.234 −25.2

Table 4.3: Percent errors in the delta-Eddington fluence rates. Both sets of data
assume that gHG = 0.875, a = 0.99, and an optical depth of 4.0. The unmatched
data corresponds to an air-glass-tissue-glass-air medium which has indices of
refraction 1.0/1.5/1.4/1.5/1.0. Delta-Eddington is more accurate for matched
boundaries.
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Figure 4.1: Comparison of delta-Eddington (solid lines) and adding-doubling
(squares) fluence rates. The optical properties are gHG = 0.875, a = 0.99, and
an optical depth of 4.0. The upper curves for an air-glass-tissue-glass-air medium
have indices of refraction 1.0/1.5/1.4/1.5/1.0.
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(squares) fluence rates. The optical properties are gHG = 0.875, τ = 4, and an
air-glass-tissue-glass-air medium with indices of refractions 1.0/1.5/1.4/1.5/1.0.
Differences between the two methods decrease with decreasing albedo.
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air-glass-tissue-glass-air medium with indices of refraction 1.0/1.5/1.4/1.5/1.0.



Chapter 5

Goniophotometry

Introduction

Goniophotometry is the measurement of light intensity as a function of angle.

Only a few goniophotometer measurements on tissue have been published [5, 12,

32]. None of these presents a theoretical framework in which goniophotometer

measurements may be analyzed. In this chapter, a method for measuring the

phase function characterizing light scattering in tissue is presented. The method

requires optically thin (τ ¿ 1) tissue samples to ensure the validity of the single

scattering approximation. Because multiple scattering is avoided, there is a

simple functional relationship between the phase function and measurements of

reflection and transmission as a function of angle.

In Section 5.1, the functional dependence of reflected and transmitted

light on the phase function is developed. In Section 5.2, a description of a device

to measure reflected and transmitted light as a function of angle (a goniopho-

tometer) is presented. In Section 5.3 the experimental method used to measure

reflected and transmitted light is outlined. Section 5.4 introduces the necessary

corrections to convert measured data into reflection and transmission values for

use with the theory in Section 5.1. Section 5.5 shows how the experimental mea-

surements of the phase function may be fitted to a modified Henyey-Greenstein

104
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phase function using a least squares algorithm. Section 5.6 presents experimental

results for normal human dermis.

5.1 Single scattering approximation

From Chapter 3, the first order scattering and transmission functions for uniform

normal incidence on a slab of thickness τ are given by Equations (3.30)–(3.34)

R(1,−µ) =
aµ p(1,−µ)

1 + µ
[1− exp(−τ/µ− τ)] (5.1)

T (1, µ) =
aµ p(1, µ)

1− µ [exp(−τ)− exp(−τ/µ)]

T (1, 1) = (aτp(1, 1) + 1) exp(−τ)

where a is the albedo, τ is the optical thickness of the sample, µ is the cosine

of the angle that light exiting with the normal to the sample, and p(1, µ) is

the phase function. Equations (5.1) have been multiplied by 2π to remove the

integration over azimuthal angles and divided by 2µ to remove the factor of 2µ

that was included to satisfy the star multiplication algebra. The redistribution

function h(µ0, µ) can be replaced by the phase function because the cosine of

the angle of incidence is unity (see Equation (3.24).

Henceforth the phase function p(1, µ) will be written p(µ). It is assumed

that the phase function is independent of azimuthal angle (implicit in the mul-

tiplication by 2π above) and that p(µ) is a complete description of the phase

function. No azimuthal dependence was observed in any experiments. Equations

(5.1) are exact for uniform normal illumination and are a good approximation

only when the width of the incident beam is much larger than the thickness of the

slab. Since typical beam diameters are about 1.0 mm and the tissue samples used

are approximately 0.020-0.100 mm in thickness this assumption is reasonable.
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If the exponentials in Equations (5.1) are expanded in a Taylor series

then

R(1,−µ) = aτ p(−µ)

[
1− τ(1 + µ)

2µ
+ · · ·

]
(5.2)

T (1, µ) = aτ p(µ)

[
1− τ(1 + µ)

2µ
+ · · ·

]

T (1, 1) = (aτ p(1, 1) + 1)

[
1− τ +

τ 2

2
− · · ·

]

The factor of aτ indicates that the amount of scattered light is directly pro-

portional to the product of the optical thickness and the albedo (the fraction

of light scattered to the total amount of light scattered and absorbed). Alter-

natively, aτ = µsd (d is the sample thickness) indicates that the reflected and

transmitted light is directly proportional to the amount of light scattered. If the

phase function is isotropic, p(µ, µ′) = 1/4π, then reflection and transmission are

equal and independent of the angle of exitance. These equations show the direct

correspondence between the phase function and the reflected and transmitted

light for very thin slabs (t¿ 1).

Unfortunately, there are always angles µ such that τ/µ is not small and

the above approximation is invalid. These angles correspond to reflection or

transmission at angles nearly parallel to the slab. If the multiplicative factor

required to convert reflection and transmission into a phase function value are

denoted by cR and cT respectively then

p(−µ) = cRR(1− µ) and p(µ) = cTT (1, µ) (5.3)

where

cR =
1 + µ

aµ
[1− exp(−τ/µ− τ)]−1 (5.4)
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cT =
1− µ
aµ

[exp(−τ)− exp(−τ/µ)]−1

Equations (5.4) are plotted in Figure 5.1 for an optical thickness and

albedo of unity. The correction factor is largest for light exiting at grazing

angles and the measurement error at these angles will be magnified accordingly.

Consequently, the phase function data at these angles will be least reliable.

However, the correction factor is nearly constant for angles up to 30◦ from the

normal and at these angles the light exiting the slab is nearly proportional to

the phase function.

5.2 Experimental apparatus

The goniophotometer used at Wellman Laboratory is shown in Figure 5.2. The

interior of the tank was painted flat black and filled with saline to minimize

internal reflections from the box and within the sample. A helium-neon laser de-

livered a 1 mW beam normal to the sample which was sandwiched between glass

microscope slides. The beam diameter was 1 mm. The 3 mm diameter detecting

fiber located at the end of an 8.5 cm long arm was attached to a computer-

controlled stepping motor. The stepping motor made 1.8◦ steps throughout a

full 360◦ circle. A 1.17 mm aperture was placed over the end of the detecting

fiber to increase the resolution of the goniophotometer. Light collected by the

fiber was measured with a photomultiplier tube whose output was connected to

the computer.

The angular resolution (αresolution) of the goniophotometer depends on

several different factors: the width of the detector (Wdetector), the acceptance

angle of the detector (αacceptance), the width of the beam on the sample (Wbeam),
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saline-filled tank

fiber

He-Ne
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photomultiplier
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computer

sample
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beam
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Figure 5.2: The goniophotometer apparatus. Helium-neon laser light enters the
saline filled tank through a glass port on the side. The light strikes the sample
and is scattered. The light is detected by a fiber attached to an arm driven by a
computer controlled stepper motor. The fiber is connected to a photomultiplier
tube which is monitored by a computer.
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and the distance from the sample to the detector (D). The angle subtended by

the beam is approximately (Figure 5.3A)

αspot =
Wbeam

D
(5.5)

Any light leaving the sample at angles larger than this will not reach the detector.

The angle subtended by the detector is approximately (Figure 5.3B)

αdetector =
Wdetector

D
(5.6)

Again any light leaving the sample at angles larger than this will not reach the

detector. The angular resolution of the goniophotometer is usually determined

by the larger of αbeam and αdetector since the acceptance angle of the detector is

usually much larger than the other angles. Thus, the larger of diameters of the

beam and the detector determine the resolution of the goniophotometer. The

angular resolution of the goniophotometer used for these experiments was about

0.8◦.

5.3 Tissue preparation

Skin was obtained from the abdomen at autopsy. The epidermis was manually

separated following mild thermal treatment (two minute exposure in a 55◦C

water bath) which avoids thermal denaturation of dermal collagen. The dermal

sample was frozen. The dermis was cut two different ways: (1) with a cold

dermatome to yield dermal sections 200–400 microns in thickness and (2) with a

freezing microtome to obtain 20 micron thick samples from 6 millimeter diameter

punch biopsies. Both the dermatome and the freezing microtome made cuts

parallel to the surface of the dermis. Dermatome specimens from five subjects
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Figure 5.3: Angular resolution of the goniophotometer is determined by the
relative size of the detector and the spot size when the detector is sufficiently far
from the sample. This figure defines the angles subtended by the spot and the
detector.
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were studied with nine measurements at different sites on each specimen. To

obtain different very thin sample thicknesses, several 20 micron sections were

stacked to obtain 40, 60, 80, and 100 micron samples. Freezing microtome

specimens from four subjects were studied: twenty-six 20 micron samples, nine

40 micron samples, four 60 micron samples, four 80 micron samples, and ten

100 micron samples. All samples were soaked in saline prior to measurements to

ensure standardized 85% hydrated dermis. All samples were sandwiched between

glass microscope slides.

Tissue samples were placed in the center of the tank with the front surface

oriented perpendicular to the incident beam. Before each experiment the total

beam power was measured. The detector was aligned so that 0◦ corresponded

to an on-axis measurement. An initial on-axis measurement was made. The

detector was moved in 1.8◦ steps clockwise around the sample until it reached

the on-axis (co-linear) position again. It was found that for all samples the

reproducibility of an entire scan was excellent if the sample was not moved

between scans. When the beam was moved to a different location on the sample

there was often a substantial change in the measured distribution. This was

especially true of thin tissue sections or thick sections that were not uniform in

thickness. Nine scans were made on each sample to assess this variability.

5.4 Data reduction

The first subsection (5.4.1) describes corrections needed to convert measured

quantities to phase function parameters. The second subsection (5.4.2) describes

a data transformation that allows the data to be fitted to a modified Henyey-

Greenstein equation using a weighted least squares fit.



113

5.4.1 Corrections for internal reflection and refraction

The tissue samples were held between two glass slides and submerged in saline.

Because of the differing indices of refraction, corrections for the reflectance and

refraction at the saline-glass-tissue interface were made. The index of refraction

of glass (nglass) was measured to be 1.54. The assumed value for index of refrac-

tion of 0.9% saline solution (nsaline) was 1.33. The index of refraction for tissue

(ntissue) was based on the generalization that the index of refraction of a tissue

varies linearly between 1.33 to 1.5 for water contents between 100 percent and

0 percent [2]. The index of refraction would vary from 1.38 to 1.36 as water

content varies from 70 to 85 percent, and so ntissue was chosen to be 1.37.

The specular reflection of the incident beam is given by Equation (A2.21)

r(θ) =
r1 + r2 − 2r1r2

1− r1r2

(5.7)

with θ = 0◦ and where r1 is the Fresnel reflection for light passing normal to

saline-glass interface and r2 is the coefficient for light passing from glass to tissue.

Using Equation (A2.29) to find r1 and r2 yields r1 = 0.0054, r2 = 0.0034, and

rs = r(0◦) = 0.0088 or a specular reflectance of about 0.9%.

The raw data was subjected to a series of calculation steps to achieve a

description of the light that exited the tissue at a given angle θexit as opposed to

the light that was observed at a given angle θobs.

1. The raw data, recorded as Volts (V) but representing collected power in

Watts, was normalized by the direct beam measurement (Vdirect) to obtain

the collected power relative to a one Watt incident beam. Division by

(1− rs) corrected for the specular reflectance from the front glass slide as
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the incident beam entered the tissue

P (θobs) =
V (θobs)

Vdirect(1− rs)
inWatts (5.8)

2. The collected power was divided by the solid angle of collection of the

optical fiber bundle (ω). The solid angle is ω = 4π(Ad/4πR
2
g) steradians

where Ad was the collection area of the fiber bundle and Rg was the radius

of the goniophotometer arm. This calculation yielded the observed radiant

intensity A(θobs)

A(θobs) =
P (θobs)

ω
inWatts/steradian (5.9)

3. The observed radiant intensity was corrected for the refraction at the

tissue-glass-saline interfaces which caused the solid angle to expand as

light exited the tissue (the n2-Law see Appendix A2).

B(θobs) = A(θobs)
cos(θexit)n

2
saline

cos(θobs)n2
tissue

in Watts/steradian (5.10)

where θexit is the angle at which light exits the tissue before refraction

ntissue sin(θexit) = nsaline sin(θobs) (5.11)

4. The value B(θobs) was corrected for Fresnel reflection at the tissue-glass

and glass-saline interfaces, which allowed only a fraction, 1 − r(θ), of the

light to escape and reach the detector

I(θobs) =
B(θobs)

1− r(θexit)
(5.12)

where r(θexit) is determined using Equation (5.7) with r1 equal to the

Fresnel reflection for light passing from the tissue to the glass slide and r2



115

equal to the reflection for light passing from the glass slide to the saline

solution. The value I(θobs) was then attributed to the true angle of exitance

from the tissue, θexit as opposed to the observed angle, θobs, in consideration

of the refraction at the tissue-glass and glass-saline interfaces.

5. Finally, modified correction factors c′R = acR and c′T = acT were applied to

the reflected and transmitted light respectively. The modified correction

factors permitted analysis of the data without knowledge of the albedo

characterizing the tissue by allowing the albedo to be lumped with other

unknown calibration factors in a multiplicative constant g described Sec-

tion 5.4.2. Combining the corrections into one equation yields

a p(θexit) =
c′TV (θobs) cos(θexit)n

2
saline

(1Watt)Vdirect(1− rs)ω cos(θobs)n2
tissue(1− r(θexit))

in 1/sr

(5.13)

where c′T should be replaced with cR’ for reflected angles.

The most significant correction factors are c′R and c′T . The other correc-

tions are relatively small and only become significant at oblique angles. Figure

5.4 shows the raw goniometric data as a function of the angle measured with the

goniophotometer and Figure 5.5 shows the corrected data as a function of the

angle that light leaves the tissue before being refracted.

The goniophotometer resolution is 0.005 V which corresponds to an in-

tensity of 0.01 W/sr. This is determined by the A/D conversion unit in the

computer. The background noise was comparable to the resolution of the gonio-

photometer. The error bars in Figure 5.4 have a constant magnitude. In Figure

5.5 the errors in the phase function pmeas(θexit) differ because the correction fac-

tor depends on the angle. Data in the ranges 90± 15◦ and −90± 15◦ in Figure
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5.5 are absent because light exiting the tissue at these angles is totally internally

reflected (θcritical is about 75◦).

5.4.2 Least squares fit

Once the experimental data has been converted into an equivalent phase function

measurement pmeas using Equation (5.13), it must be fit to a phase function. It

was found that a modified Henyey-Greenstein phase function

pm−HG(cos θ) =
1

4π

{
β + (1− β)

1− g2
HG

(1 + g2
HG − 2gHG cos θ)3/2

}
(5.14)

accurately represented the phase function for human dermis. If the albedo for

a tissue is unknown, or a correction factor in Equation (5.13) is not known

precisely, then it is convenient to include an arbitrary multiplicative factor in

the expression for the phase function. If this is done then

pmeas(cos θ) = γpm−HG(cos θ) γ =
1

4πa

The second equality (γ = 1/4πa) is useful only when all factors in Equation

(5.13) are known. This is a poor way to measure the albedo of a material

because it requires excellent absolute accuracy in the goniometric measurement

rather than good relative accuracy. To fit the modified Henyey-Greenstein phase

function to the measured phase function three parameters must be determined:

the multiplicative factor g, the amount of light scattered isotropically β, and the

anisotropy factor gHG.

One of the assumptions in the modified Henyey-Greenstein phase function

is that light scattered in the backwards direction (reflected light) is scattered

isotropically. Figure 5.5 shows a plot of the corrected data. The light reflected
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is not absolutely isotropic (a flat response) but increases slightly around ±180◦

due to internal reflectance of the forward peak. Subtraction of this reflected light

yields a nearly constant value in the backwards direction. The fraction of light

scattered isotropically (γβ) is determined by averaging values for pmeas(θexit) in

the backwards direction.

The reflected data provides information for γβ and the transmitted data

is used to find two more parameters gHG and γ. The transformation

x = cos θ and y = (p(θ)− γβ)−2/3 (5.15)

reduces the modified Henyey-Greenstein equation into a linear equation of the

form y = mx+ b. The slope and intercept are given by

m = − 2gHG

[γ(1− β)(1− g2
HG)]2/3

and b =
1 + g2

HG

[γ(1− β)(1− g2
HG)]2/3

(5.16)

If Equation (5.15) is used to transform the data then a graph similar to Figure 5.4

is obtained. The error values were calculated with a fixed photometric error of

0.005 V in the goniophotometer. The errors in pmeas(θ) are roughly proportional

to the correction factor shown in Figure 5.2. A weighted least squares fit must

be used to find the slope and intercept of the best-fit line because of the widely

varying errors between data points. The error in the slope (∆m) and intercept

(∆b) may also be calculated [4].

The phase function parameters β and gHG may be recovered from the

slope and intercept by solving Equations (5.16). This results in the following

physical expressions for gHG and β in terms of the calculated intercept b, slope

m, and product γβ

gHG = − b

m
−
√
b2

m2
− 1 (5.17)
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γ = −2(gHG/m)3/2

1− g2
HG

+ γβ and β =
γβ

γ

The errors in the values calculated for gHG and β are found using the

standard error propagation formula,

(∆gHG)2 =

(
∂gHG

∂m
∆m

)2

+

(
∂gHG

∂b
∆b

)2

(5.18)

Inserting Equations (5.17) leads to the following equation for the error in the

anisotropic value of gHG

∆gHG =
1

m

(
1 +

b√
b2 −m2

)(
(∆b)2 +

b2(∆m)2

m2

)1/2

(5.19)

The error in γ is

∆γ = γ

(9∆m)2

4m2
+

(
3

2
γ +

g2
HGγ

1− g2
HG

)2
(∆gHG)2

g2
HG

1/2

(5.20)

The error in β is

∆β = β

√√√√(∆(γβ)

γβ

)2

+

(
∆(γ)

γ

)2

(5.21)

where ∆(γβ) is the standard deviation of the average of the backwards scattered

light used to find γβ. Intra-sample variation of gHG and β was much greater

than the errors arising from the fitting process.

5.5 Evaluation of the method

The method for measuring phase functions was evaluated using theoretical values

for reflected and transmitted light from slabs of varying thicknesses. The light

exiting a uniformly illuminated slab as a function of angle was calculated using

the adding-doubling method. All calculations assumed an albedo of 0.98 (the

measured albedo of the dermis at 632 nm) and an isotropy factor of gHG=0.9
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(again, close to that of dermis at 632 nm). Four sets of data were calculated:

matched and mismatched boundaries with β = 0.1 and β = 0. Each of the four

cases was calculated for a series of optical depths ranging from τ = 0.1 to τ = 5.

The mismatched boundary case was equal to that for tissue-glass-saline and the

indices of refraction were 1.37/1.54/1.33.

The reflected and transmitted light as a function of angle for β = 0 and

τ = 0.1, with matched and mismatched boundaries is shown in Figure 5.7. Both

boundary conditions manifest a strong forward peak at 0◦. However, when the

indices of refraction are mismatched, a backward peak at 180◦ results from inter-

nal reflection (∼1%) of the forward peak. The method for obtaining the phase

function from measured quantities was tested using the four sets of calculated

data. The known values of β = 0.1 and gHG=0.9 are compared with the fitted

values using the procedure outlined in Section 5.4. The fitted parameters β and

gHG are presented in Figures 5.8 and 5.9 as a function of the optical thickness of

the theoretical sample.

The values of gHG for all four sets of data were identical. Figure 5.8

shows gHG for only one set of data is shown (β=0, mismatched conditions).

This suggests that gHG is insensitive to changes in the isotropy factor β and

boundary condition. For sample thicknesse less than one optical depth the error

in the fitted phase function is less than five percent. Thicknesses greater than

one optical depth multiply scatter and cause large errors in the fitted phase

function.

Figure 5.9 shows the dependence of the fitted isotropy parameter β as a

function of optical thickness. The isotropy factor β is more sensitive to thickness

than gHG and errors do not become small until optical thicknesses approach 0.1.
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Moreover, β is very sensitive to boundary conditions and significant errors exist

for even very thin tissues with mismatched boundaries. The discrepancy occurs

because internal reflection increases the path length of light in the tissue for

which the single scattering model cannot account The data presented in Figure

5.9 suggests that β cannot be measured reliably because any real experiment

will have mismatched boundaries and subsequent analysis will overestimate the

isotropy factor. Therefore, Figure 5.9 should be used to correct any measured

value of β to obtain the true value of β for light scattered isotropically.

5.6 Experimental results

Experiments were done on different thicknesses of human dermis. The first

set consists of nine measurements on five different samples ranging 200–400µm

thick. The second set used 24 samples (including twelve 20µm samples) on thin

microtomed sections varying from 20–100µm thick. The attenuation coefficient

µt = µa + µs was obtained by making total attenuation measurements on all

samples and averaging the results. The total attenuation measurement so ob-

tained is 190 cm−1 and was used to convert all sample thicknesses into optical

depths. These optical depths were used to calculate the correction factors. A

typical fit is shown in Figure 5.10.

The Henyey-Greenstein phase function parameter gHG as a function of

thickness is shown in Figure 5.11. The limiting value for the anisotropy factor

was gHG=0.92. The error bars are the standard deviation of the fitted values

of gHG for each sample thickness. The increased error for the thinnest samples

(τ = 0.38) is caused by tearing occurring during the tissue preparation process.

The solid curve is identical to that in Figure 5.7 and is included to indicate the
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dependence of the fitted value of gHG on the thickness of the sample. Figure 5.12

shows corrected values for the isotropy β as a function of thickness.

5.7 Conclusions

Measurements of the reflection and transmission of light as a function of angle

allow direct measurement of the single-scattering phase function. It has been

shown that these measurements are directly proportional to the phase func-

tion for very thin samples. Correction factors for reflection and refraction at

boundaries have been presented. The method for measuring the phase function

has been evaluated using reflection and transmission values computed with the

adding-doubling method. Calculation of the anisotropy factor gHG is insensitive

to boundary conditions and values of the isotropy factor β. In contradistinction,

the values for the isotropy factor β were very sensitive to thickness and boundary

conditions—leading to a systematic overestimation of the isotropy factor which

could be corrected using Figure 5.9. Experimental measurements on human

dermis indicate that the Henyey-Greenstein phase function accurately models

the phase function with anisotropy coefficient gHG=0.92, β=0.05 and an average

cosine of the phase function g = gHG(1− β) = 0.87.



Chapter 6

Spectrophotometry

Introduction

This chapter presents a method for measuring the optical properties of tissue

using a spectrophotometer. The spectrophotometer measures direct transmis-

sion of light through a sample as a function of wavelength. When equipped with

an integrating sphere attachment, the spectrophotometer can also measure the

diffuse reflection and total transmission of a sample. Three different measure-

ments are therefore available as a function of wavelength. This chapter presents

a method for determining the three optical properties characterizing a tissue

based on these three measurements or on two integrating sphere measurements

and one goniophotometric measurement.

Knowledge of the optical properties of tissue as a function of wavelength

allows identification of optimal irradiation wavelengths for a particular appli-

cation. A particular medical treatment requires that a certain amount of light

reach a given tissue location. For example, in the treatment of port wine stains,

anomalous subsurface blood vessels must be damaged with minimal injury to the

epidermis and dermis above the blood vessel. Determining wavelengths which

deposit more light in the blood vessel relative to the amount of light absorbed

in the intervening layers increases the success rate for this application.

131
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The optical properties characterizing a tissue are the albedo a, the optical

thickness τ , and the average cosine of the phase function gHG—or equivalently

the scattering coefficient µs, the absorption coefficient µa, and the average cosine

of the phase function gHG. Two types of methods exist for measuring optical

properties: direct and indirect. Direct methods require very thin samples in

which multiple scattering may be ignored [12] and do not need a light transport

model to interpret measurements. The primary disadvantage of direct methods

is the very thin tissues required are susceptible to preparation artifact and the

methods are not suitable for use with a spectrophotometer (which facilitates

measurement of optical properties as a function of wavelength).

Indirect methods permit optical properties to be inferred from measure-

ments of reflection and transmission using a light transport model. The delta-

Eddington model used in this chapter provides fast, accurate calculations of

reflection and transmission for any optical properties of a sample (see Chapter

4). One advantage of indirect methods is that samples of any optical thickness

that transmit measurable quantities of light may be used. This eliminates some

potential problems in the tissue preparation process. Unfortunately, the method

is considerably more complicated than direct methods and requires extensive

computation to derive optical properties from measurements. Finally, the use of

an approximate model may introduce errors.

In Section 6.1 the uniqueness of solutions obtained with the inversion

method of this chapter is discussed in addition to presenting details of the inver-

sion method. The errors arising from using an approximate model are addressed

in Section 6.2. In Section 6.3 results for mouse dermis and human aorta dur-

ing moderate power argon laser irradiation are presented. Finally, Section 6.4
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contains concluding remarks.

6.1 Inverse method

The concept behind the inverse method described in this chapter is straightfor-

ward (Figure 6.1): (a) guess a set of optical properties; (b) calculate the reflection

and transmission; (c) compare the calculated values with the measured reflection

and transmission; (d) if the calculated and measured values are not equal then

repeat the process with a new guess.

Three measurements are required to determine three unknowns. Two

possible sets of measurements are the diffuse reflection Rmeas
diffuse, the total trans-

mission Tmeas
total , and the collimated transmission Tmeas

coll , or alternatively, Rmeas
diffuse,

Tmeas
total , and the anisotropy of the phase function gHG. The first set requires

removal of the integrating sphere assembly in the spectrophotometer and the

second set requires an independent measurement of the anisotropy of the tissue

with a goniophotometer. In Section 6.1.1 below the uniqueness of the optical

properties obtained from such measurements is discussed. Section 6.1.2 contains

details of the inversion process.

Uniqueness of inverse procedure

The iteration method implicitly assumes that a unique combination of the albedo

a, the optical depth τ , and the anisotropy gHG will be determined by a specified

set of reflection and transmission measurements. Consider the case when the

optical thickness is held constant. Increasing the albedo increases reflection and

decreases transmission. Decreasing the anisotropy also increases the reflection

and decreases the transmission, and so the anisotropy and the albedo are not
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obviously independent functions of the reflection and transmission.

In Figure 6.2 the dependence of the total transmission and the diffuse

reflection on the anisotropy and albedo is shown. The grid was computed with

the collimated transmission fixed at ten percent (Tmeas
coll =0.1) and the boundaries

of the sample are matched with the outside. The intersection of the appropriate

measured diffuse reflection and measured total transmission grid lines determines

a unique albedo and anisotropy. Diffuse reflectances above about 0.5 are phys-

ically impossible for the assumed boundary conditions and assumed collimated

transmission. The albedo and anisotropy are most sensitive to errors in the mag-

nitudes of the diffuse reflection and total transmission measurements when the

magnitudes of both these measurements are small (e.g., R = 0.1, T = 0.2).

Now let gHG be held constant: in this case the two parameters which

may be varied are the albedo a and the optical depth τ . Increasing the albedo

increases the reflection and decreases transmission. Since increasing the optical

depth also increases reflection and decreases transmission, the optical depth is

again not clearly independent of the albedo. Figure 6.3 shows how T (total

transmission) and R + T (diffuse reflection plus total transmission) depend on

the albedo and optical thickness for the case when gHG = 0 and the sample

boundaries are matched with the environment. This graph is typical of other

anisotropies and boundary conditions. Measured values for R and T (or equiv-

alently, T and R+ T ) determine a unique intersection point whose ordinate is a

simple function of the albedo a and whose abscissa is the optical depth τ . The

axes in Figure 6.3 were chosen to linearize the T and the R+ T contour curves.
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Figure 6.1: Flowchart for inversion process. The method involves guessing the
optical properties of a tissue, calculating the reflection and transmission for these
properties, comparing the calculated with the measured reflection and transmis-
sion, and repeating this process until the calculated and measured transmission
match.
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Details of the iteration procedure

The inverse method uses anN -dimensional minimization algorithm called AMOEBA

[49]. This algorithm is based on the downhill simplex method of [45]. The func-

tion to be minimized is

F (a′, τ ′, g′) = |Rδ−E
diffuse −Rmeas

diffuse|+ |T δ−Ecoll − Tmeas
diffuse| (6.1)

where Rδ−E
diffuseand T δ−Ecoll are the diffuse reflection and total transmission as cal-

culated with the delta-Eddington model. Only two measurements are used be-

cause either the collimated transmission Tmeas
coll is known and consequently the

delta-Eddington optical depth τ ′ is known

τ = − ln

(
Tmeas

coll

(1− rs)2

)
and τ ′ = (1− af)τ (6.2)

or gHG is known (from which g′ can be derived). Thus the function F (a′, τ ′, g′)

in Equation (6.1) is really a function of only two variables.

The total light transmitted in the delta-Eddington model is

T δ−Ecoll = T δ−Ediffuse + (1− rs)2 exp(−τ ′) (6.3)

where is the diffuse transmission given by Equation (4.106). It should be em-

phasized that the delta-Eddington collimated transmission is not equal to the

measured collimated transmission (except in the special case when f = 0 and

τ ′ = τ). In particular

T δ−Ecoll = (1− rs)2 exp(−τ ′) and Tmeas
diffuse = (1− rs)2 exp(−τ ′) (6.4)

The delta-Eddington collimated transmission is not physically observable, but

merely a mathematical finesse to improve the accuracy of the approximation by

treating some fraction of highly forward scattered light as ‘collimated’ light.
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A Henyey-Greenstein shape may be imposed on the phase function (to

second order in Legendre polynomials—see Section 1.3.3) by varying gHG instead

of g′. This places a restriction on the relation between g′ and f . This has the

added advantage of removing f as an unknown parameter. Currently no evidence

for the shape of a phase function at wavelengths other than 633 nm exists, and

this restriction should be made with caution. If the Henyey-Greenstein phase

function is assumed then g′ and f are calculated according to Equations (1.4)

and (1.5).

f = (1− β)g2
HG and g′ =

gHG(1− gHG)
1

1−β − g2
HG

(6.5)

Finally, it is possible to vary g′ independently of f , and omit calculating a and τ

from the final values a′ and τ ′ (which requires knowledge of f), but such model

dependent parameters have not been found useful.

The minimization routine amoeba assumes the range over which parame-

ters may be varied is −∞ to ∞. Unfortunately, the anisotropy and albedo have

fixed ranges. This is remedied by transforming the albedo and anisotropy into

a “calculation space.” As acalc varies from −∞ to ∞ in the calculation space,

the actual albedo a varies from 0 to 1. The same transformation is made on the

anisotropy, since all tissues measured heretofore have had positive anisotropies.

The transformation function is

xcalc =
2x− 1

x(1− x)
(6.6)

where x represents either gHG or a depending on the need. If negative anisotro-

pies are included, then the transformation function for gHG must be altered to

vary from −1 to 1 as the calculation parameter varies from −∞ to ∞.
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Flowcharts for algorithms based on either known gHG or known are shown

in Figures 6.4 and 6.5. These illustrate the changes of variables which take place

during each iteration of the method.

Starting values for an initial guess of a′, τ ′, and g′ maybe obtained in a

few different ways. First, Kubelka-Munk optical properties may be calculated

from the reflection and transmission and these may be converted to transport

optical properties. This turns out to be not any better than just starting at fixed

intermediate values of the optical properties (a′ = 0.5, τ ′ = 1, and g′ = 0.2).

However, when calculating optical properties for a series of different wavelengths,

excellent starting values to use for the next wavelength are the optical properties

of the previous wavelength.

6.1.1 Evaluation of the inverse method

To evaluate the accuracy of the iteration method, diffuse reflection and total

transmission were calculated using the adding-doubling technique for a variety

of optical properties (Table 3.4 and 3.5). These calculated values were used in

place of measured reflection and transmission, and consequently, the true opti-

cal properties characterizing each set of reflection and transmission are known.

Two separate evaluations were performed: one for a known anisotropy gHG and

one for known collimated transmission. Either the anisotropy or the collimated

transmission was known accurately and any errors presented in Tables 6.1 and

6.2 do not include possible errors in determining these known values.

Tables 6.1 and 6.2 indicate how the approximate delta-Eddington model

used in the iteration procedure affects the optical properties calculated. For both

cases (fixed collimated transmission and fixed anisotropy) the errors are least
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Figure 6.4: Detailed flowchart for the inversion algorithm when the collimated
transmission is known. This flowchart illustrates the changes in variables neces-
sary to vary all the parameters during each iteration.
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g = 0.0 g = 0.5 g = 0.875
n a = .6 a = .9 a = .99 a = .6 a = .9 a = .99 a = .6 a = .9 a = .99

acalc − a
-2 0.04 -0.00 0.01 0.13 0.02 0.01 0.31 0.08 0.01
-1 -0.01 -0.02 0.01 0.05 -0.01 0.01 0.25 0.05 0.01
0 -0.03 -0.02 -0.00 0.01 -0.02 0.00 0.20 0.02 0.01
1 -0.02 -0.02 -0.00 0.01 -0.01 -0.00 0.17 0.00 0.00
2 -0.02 -0.01 -0.00 0.01 -0.01 -0.00 0.17 0.00 -0.00
3 -0.02 -0.01 -0.00 0.01 -0.01 -0.00 0.17 0.00 -0.00
4 -0.02 -0.01 -0.00 0.01 -0.01 -0.00 0.17 0.00 -0.00

Percent Errors
-2 7 -0 1 21 3 1 52 9 1
-1 -2 -3 1 8 -1 1 42 6 1
0 -4 -3 -0 2 -2 0 33 2 1
1 -4 -2 -0 1 -2 -0 28 0 0
2 -3 -1 -0 1 -1 -0 28 0 -0
3 -3 -1 -0 1 -1 -0 29 0 -0
4 -3 -1 -0 1 -1 -0 29 0 -0

τcalc − τ
-2 0.07 0.07 0.09 0.12 0.11 0.14 0.54 0.45 0.52
-1 0.07 0.07 0.07 0.10 0.09 0.11 0.56 0.38 0.43
0 0.06 0.05 0.05 0.08 0.07 0.09 0.63 0.27 0.29
1 0.03 0.00 -0.01 0.07 0.04 0.06 0.90 0.16 0.20
2 -0.08 -0.15 -0.12 0.00 -0.10 -0.07 1.71 0.18 0.25
3 -0.39 -0.52 -0.25 -0.22 -0.46 -0.25 3.28 0.25 0.29
4 -2.18 -1.42 -0.52 0.36 -1.21 -0.48 6.21 -0.13 -0.30

Percent Errors
-2 29 29 36 46 44 57 217 181 208
-1 14 14 13 20 19 22 112 76 87
0 6 5 5 8 7 9 63 27 29
1 2 0 -0 3 2 3 45 8 10
2 -2 -4 -3 0 -2 -2 43 5 6
3 -5 -7 -3 -3 -6 -3 41 3 4
4 -14 -9 -3 2 -8 -3 39 -1 -2

Table 6.1: Differences and percent errors between calculated and true optical
thickness (τ = 2n) and albedo a. The Henyey-Greenstein anisotropy gHG is
assumed known. The reflection and transmission used as truth were taken from
Tables 3.4 and 3.5.
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g = 0.0 g = 0.5 g = 0.875
n a = .6 a = .9 a = .99 a = .6 a = .9 a = .99 a = .6 a = .9 a = 0.99

acalc − a
-2 0.12 0.10 0.01 0.01 -0.01 0.01 0.11 0.06 0.01
-1 0.01 0.01 0.01 -0.04 -0.03 0.01 0.08 0.02 0.01
0 -0.02 -0.02 0.01 -0.03 -0.03 0.00 0.06 0.00 0.01
1 -0.02 -0.02 -0.00 -0.01 -0.02 -0.00 0.06 -0.00 0.00
2 -0.00 -0.01 -0.00 0.01 -0.01 -0.00 0.06 -0.00 -0.00
3 0.00 -0.00 -0.00 0.02 -0.00 -0.00 0.07 -0.00 -0.00
4 0.00 -0.00 -0.00 0.04 -0.00 -0.00 0.07 0.00 -0.08

Percent Errors
-2 20 11 1 2 -1 1 19 6 1
-1 1 1 1 -6 -4 1 13 2 1
0 -4 -2 1 -5 -3 0 10 0 1
1 -4 -2 -0 -2 -2 -0 10 -1 0
2 -0 -1 -0 1 -1 -0 11 -0 -0
3 0 -0 -0 4 -0 -0 11 -0 -0
4 0 -0 -0 7 -0 -0 12 0 -8

gcalc − g
-2 0.00 0.00 0.00 -0.50 -0.36 -0.44 -0.46 -0.27 -0.30
-1 0.00 0.00 0.00 -0.23 -0.14 -0.14 -0.23 -0.11 -0.12
0 0.00 0.00 0.00 -0.09 -0.05 -0.06 -0.12 -0.04 -0.04
1 0.00 0.00 0.00 -0.03 -0.01 -0.02 -0.09 -0.01 -0.01
2 0.05 0.05 0.03 -0.00 0.01 0.01 -0.08 -0.01 -0.01
3 0.05 0.07 0.03 0.02 0.03 0.02 -0.07 -0.00 -0.00
4 0.05 0.09 0.03 0.05 0.04 0.02 -0.07 0.00 -0.84

Percent Errors
-2 — — — -100 -73 -87 -53 -31 -35
-1 — — — -45 -27 -28 -26 -13 -14
0 — — — -17 -10 -11 -14 -4 -4
1 — — — -6 -3 -4 -10 -1 -2
2 — — — -0 3 2 -9 -1 -1
3 — — — 5 6 3 -8 -0 -1
4 — — — 11 8 3 -8 0 -96

Table 6.2: Differences and percent errors between calculated and true Henyey-
Greenstein anisotropies (gHG) and albedos (a). The collimated transmission is
assumed known for various optical depths (τ = 2n). The reflection and trans-
mission used as truth were taken from Tables 3.4 and 3.5.
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when the albedos are large. Changes in the anisotropy have little affect upon

the accuracy of the calculated optical properties. Increasing optical thickness

tends to decrease percent error. The method should not be used with thin

samples (τ <1) because of the large errors in the calculated values. However

for any albedo, any anisotropy, and optical thicknesses larger than one, the

inverse method has intrinsic errors less than ten percent when the collimated

transmission is known (Table 6.2).

6.1.2 Experimental measurements

Two sets of experiments are presented in this section: measurements on bloodless

human dermis as a function of wavelength and measurements on bloodless human

aorta during moderate power laser irradiation.

Bloodless human dermis as a function of wavelength

A sample of human dermis was obtained from the abdomen at autopsy. The

epidermis was manually separated following mild thermal treatment (two minute

exposure in a 55◦C water bath). The dermal sample was soaked in saline prior

to measurement to remove residual blood. One 2× 2 centimeter sample was cut

with a dermatome. The sample was sandwiched between glass microscope slides

and the tissue thickness (360µm) was determined with micrometer.

A spectrophotometer (Beckman UV 5270) was used for measurements

of reflection and transmission. The sample was placed at the entry port of

the integrating sphere for measurements of total transmission. Collimated light

directly struck the sample, and all light passing through the sample was collected

by the integrating sphere. Diffuse reflection was measured by placing the sample
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in the exit port of the sphere. Specularly reflected light from the sample travelled

back along the incident beam path and was not collected by the integrating

sphere. For calibration purposes, zero and 98% reflection were obtained by

measuring the reflectance with the sample removed and with a BaSO4 plate

repectively. Collimated transmission measurements were made by removing the

integrating sphere assembly and placing the sample in the path of the beam.

Collimated light struck the sample, but only light propagating co-linear with the

incident beam was detected. The measurements of reflection and transmission

as a function of wavelength are presented in Figure 6.6.

The iteration algorithm was used to convert these measurements to opti-

cal properties. These properties are shown in Figures 6.7. Both absorption and

scattering coefficients decrease with increasing wavelength. This indicates that

longer wavelengths of light penetrate deeper into a tissue. The anisotropy in-

creases with wavelength indicating that light scattering increases in the forward

direction.

Aorta during moderate power argon irradiation

The thermal response of tissue during laser irradiation is highly dependent upon

the optical properties of the tissue. Many laser treatments produce tempera-

tures substantially above normal tissue temperatures (50◦–300◦C). At such tem-

peratures, dehydration, protein denaturation, coagulation, charring, pyrolysis or

ablation may occur. Any of these processes changes the appearance of the tissue

and hence the optical properties of the tissue. Heretofore, there has been no

attempt to measure the optical properties of tissue during irradiation.

The experimental apparatus in Figure 6.8 was used to measure the scat-
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tered transmission, the scattered reflectance, and the collimated transmission

during irradiation of human aorta by an argon laser. Reflectance and transmis-

sion were measured during irradiation, digitized and saved on a computer for

later analysis. The laser used was a 20 W argon laser (Coherent CR-18) oper-

ating in the multi-line mode. Two integrating spheres (Labsphere) were used

to measure scattered light. The larger sphere (24 cm in diameter) was used to

measure scattered transmission and the smaller (12 cm) was used to measure

scattered reflectance. Collimated transmission was measured with a 4 mm di-

ameter photodiode located 170 cm from the exit port of the larger integrating

sphere. The detectors used to measure light in the integrating sphere were also

photodiodes (RCA SK2031). To ensure uniform heating of the sample, the cen-

tral flat portion of the beam was used. This was obtained by expanding the

laser beam with a 5× microscope objective (f26.4 mm) and collimating it with

an f126 mm convex lens, resulting in a net magnification of 4.8. The edges of the

beam were blocked with a circular aperture 8 mm in diameter, thereby allowing

only the central ‘flat’ portion of the Gaussian beam profile to reach the sample.

The spot size was 8 mm in diameter.

Aorta was obtained from the morgue the morning the experiments were

done. The aorta was kept in chilled saline until used. The adventitia was re-

moved leaving samples with full thickness media and the intima intact. Typical

sample thicknesses were about 1.5 mm. The aorta was not sandwiched between

glass slides which allowed the tissue to change shape during irradiation. Typi-

cally the samples became thinner during irradiation due to dehydration. Both

experiments described here use aorta samples from the same subject.

During irradiation the tissue passed through a series of phases. The first
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Figure 6.8: Experimental apparatus to measure optical properties of tissue dur-
ing heating with an argon laser. The laser beam was expanded and passed
through a diaphragm to obtain a flat beam profile. The sample was located be-
tween two integrating spheres to detect diffuse reflection and transmission. The
photodiode was located about one meter from the sample to ensure that most
of the light collected was collimated transmitted light.
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phase, coagulation, was marked by whitening of the tissue. This was followed

by dehydration, by boiling, and finally by charring. Before each experiment,

measurements of 0% and 100% scattered transmission, primary transmission and

scattered reflectance were made to allow scaling of detector voltages into fractions

of the total possible reflectance or transmission. These values are plotted in

Figure 6.9 for two experiments with differing irradiances: 130 and 90 W/mm2.

As expected, reflectance and transmission change more quickly for the higher

irradiance. The tissue response for irradiances between 130 and 90 mW/mm2

was similar and, for clarity, is not shown.

The difference in magnitude illustrated by the scattered and primary

transmission plots at the right is caused by differing sample thicknesses. (1.65 mm

for the higher irradiance and 1.70 mm for the other.) Since one mean free path

(mfp) is about 0.1 mm, this is a significant thickness change. This difference is

not as evident in the reflectance graph because the samples are so thick (∼15

mfp) that thickness variations do not substantially affect the net reflectance.

Both the primary and the scattered transmission drop significantly in the

first 50–75 seconds. Presumably this is due to surface coagulation and dehydra-

tion. The initial drop in transmission is followed by an increase in transmission

caused by subsurface vapor production. Once the vapor pressure exceeds the

yielding point of the tissue the bubble of vapor explodes, announced by an au-

dible “pop.” This time is indicated by the dashed lines in Figures 6.9 and 6.10.

In Figure 6.10 the lower irradiance also has an anomalous early “pop” indicated.

This may have been due to a small plaque deposit. The onset of charring is

marked by a sudden decrease in the reflectance. This is also indicated by a la-

belled dashed line. Not surprisingly, as the tissue blackens during charring, the
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Figure 6.9: Reflection and transmission during argon laser irradiation of normal
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transmission also drops.

Halldórsson et al. have made similar types of measurements using a Nd-

YAG laser on canine stomach wall [23]. They used much higher power densities,

smaller spot sizes and shorter irradiation times. They found that the reflectance

initially increased and the transmission decreased, followed by a rapid increase

in reflectance and continued decrease in transmission during the evaporation or

dehydration phase. Finally, during the carbonization phase they reported that

the reflectance decreased and the transmission increased. Clearly, these results

differ from those reported here. This discrepancy is most likely caused by the

greater penetration depth of Nd-YAG (1060 nm) light in tissue. This difference

causes changes in the light distribution, and consequently, in the thermal profile

and the damage pattern for the tissue.

Dimensionless optical properties were calculated for the measured reflec-

tions and transmissions. The use of dimensionless optical properties allowed

optical properties to be obtained without knowing the thickness of the sample

during irradiation. The thickness was not monitored during the experiment and

so it was not possible to extract values for the absorption and scattering coeffi-

cients from the dimensionless optical parameters. The dimensionless parameters

shown in Figure 6.10 are the transport albedo (a′), the optical depth (τ ′), and

the delta-Eddington anisotropy (g′). The index of refraction was assumed to be

constant, despite some evidence that the index of refraction of tissue varies with

water content [2]. This assumption was not too extreme since the estimated

variation in the index of refraction (1.38 to 1.45) only changed the measured

optical properties by 10%.

The most surprising finding is that there is very little change in the trans-
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port albedo until after the tissue explodes. At this time there is a slight decrease

in the albedo corresponding to the onset of tissue boiling. After the onset of car-

bonization, the transport albedo drops sharply, indicating an increase in tissue

absorption.

The initial drop in the anisotropy corresponds to tissue coagulation or

blanching. This decrease indicates that the tissue scatters light more isotropi-

cally. Subsequent to the initial fall, the anisotropy increases linearly, correspond-

ing to tissue dehydration and thinning. Thinning reduces the distance between

scattering centers thereby increasing the effective size of the scatterers and, as

in Mie scattering, the anisotropy as well.

The optical depth depends on the physical thickness of the sample. This

thickness changes during irradiation due to tissue dehydration: if the absorption

and scattering were constant, the optical depth would still change. The optical

depth is quite sensitive to tissue coagulation and substantial changes occur in

the first 50–75 seconds.

As expected the most drastic changes in optical properties are associated

with charring: the albedo decreased and the delta-Eddington anisotropy g′ in-

creased. Unexpectedly, the effective albedo a′ was relatively constant during co-

agulation and dehydration. These preliminary experiments illustrate a combined

experimental and theoretical technique for measuring the optical properties of

tissue during laser irradiation. Although the parameters presented are indepen-

dent of tissue thickness, evaluation of absorption and scattering coefficients will

require measurement of tissue thickness during irradiation.
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6.1.3 Conclusions

This chapter presented a method for measuring the optical properties of a tis-

sue using an iteration technique. This technique is shown to calculate optical

properties within ten percent of the “true” optical properties for all sample thick-

nesses greater than one optical depth. Measurements of the optical properties

of human dermis as a function of wavelength and human aorta during moderate

power argon irradiation have also been presented.



Chapter 7

Conclusions

Review

A variable-stepsize, weighted Monte Carlo model was implemented in Chapter

2. This method was validated by comparison with published tables. This model

may be used to calculate fluence rates for finite beams by convolving the im-

pulse response with either flat or Gaussian beam irradiation profiles. Analytic

expressions that facilitate these calculations have been presented.

An adding-doubling model was implemented with mismatched boundary

conditions and anisotropic scattering functions. The adding-doubling method is

one-dimensional and a modest number of quadrature angles (N = 16) will yield

very accurate results (0.01%). The adding-doubling method is not as flexible as

the Monte Carlo method, but provides a standard against which other models

may be compared. Reflection and transmission Tables 3.1 through 3.6 serve as

references for testing and evaluating other models.

A delta-Eddington model was implemented with mismatched boundary

conditions and anisotropic scattering in Chapter 4. Comparison of the approxi-

mate delta-Eddington solutions with adding-doubling calculations indicates that

delta-Eddington approximation works well for calculation of reflection and trans-

mission for all possible optical properties. The delta-Eddington approximation

157
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works moderately well for many fluence rate calculations, but should not be used

to calculate fluence rates in tissues with high albedos and mismatched boundary

conditions.

A method for measuring the single-scattering phase function of a tissue

was presented in Chapter 5. Measurements of reflection and transmission are

directly proportional to the phase function for very thin samples. Correction

factors for reflection and refraction at boundaries have been presented. The

method for measuring the phase function was evaluated using reflection and

transmission values computed with the adding-doubling method. Calculation

of the anisotropy factor gHG was found insensitive to boundary conditions and

values of the isotropy factor β. In contradistinction, the values for the isotropy

factor β were very sensitive to thickness and boundary conditions—leading to a

systematic overestimation of the isotropy factor which could be corrected using

Figure 5.9. Experimental measurements on human dermis indicate that the

Henyey-Greenstein phase function accurately modeled the phase function with

anisotropy coefficient gHG = 0.92, β = 0.05 and an average cosine of the phase

function g = gHG(1− β) = 0.87.

A method for measuring the optical properties of a tissue using an it-

eration technique was presented in Chapter 6. This technique was shown to

calculate optical properties within ten percent of the “true” optical properties

for all sample thicknesses greater than one optical depth. Measurements of the

optical properties of human dermis as a function of wavelength and human aorta

during moderate power argon irradiation were also presented.
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7.1 Discussion

The novel aspect of this dissertation is that both anisotropic scattering and

mismatched boundary conditions are included in light transport models. These

phenomena significantly affect light transport and have not been included in tis-

sue models previously. Three different light transport models (the Monte Carlo,

the adding-doubling, and the delta-Eddington) have been presented. A method

for measuring the phase function of a tissue has been introduced, as well as an

indirect method for measuring the optical properties of tissue. The measure-

ment methods and the calculation models are complementary: light transport

cannot be modeled without knowing the optical properties of the tissue and the

optical properties cannot be determined without an optical model for converting

reflection and transmission measurements into optical properties.

Mismatched boundary conditions have a strong influence on fluence rates.

For example, in Figure 4.1 the fluence rate at a mismatched surface is twice that

for a matched surface. Careful implementation of the boundary conditions in

the delta-Eddington model, indicates that this approximation is not particularly

good for calculating fluences near mismatched boundaries. This results from

using only the first two moments of the radiance distribution to model internal

reflection. At the boundaries, highly anisotropic radiance distributions make

higher order radiance moments comparable to the lower order moments and the

accuracy of the delta-Eddington model suffers accordingly. Consequenly, fluences

rates for tissues with mismatched boundaries and high anisotropies should not

be estimated with the delta-Eddington approximation

Anisotropic scattering also affects the fluence rate in tissue (Figure 4.2).

Both the adding-doubling and the Monte Carlo methods are capable of accommo-
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dating an arbitrary scattering phase function. Unfortunately, the phase function

has not been measured at wavelengths besides 633 nm. The phase function needs

to be measured at other wavelengths before accurate light transport calculations

may be made.

The adding-doubling method should be used when one-dimensional calcu-

lations are needed. Approximate methods like the delta-Eddington approxima-

tion should be avoided whenever possible. In particular, it would be desirable to

replace the delta-Eddington method with the adding-doubling in the iteration

technique of Chapter 6. Preliminary work indicates that the adding-doubling

method yields accurate values for reflection and transmission with as few as four

quadrature points. Calculations with such a model are only 10–100 times slower

than delta-Eddington calculations, and do not suffer from the approximations of

the delta-Eddington model.

Finally, the Monte Carlo method cannot be recommended highly enough.

This method allows modelling of complex structures without approximation.

Perhaps most importantly, the Monte Carlo method is the only reliable method

for calculating fluence rates in tissue for finite beam irradiances. In particular,

the convolution formulas derived in Chapter 2 allow fluence rate calculation for

finite beams to be made quickly, once an impulse response has been calculated.

These fluence rates may then be used in a thermal model to calculate tissue

damage or ablation.
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Appendix A1

Random Variables with Non-Uniform Density

Functions

Introduction

Routines to generate pseudo-random numbers uniformly distributed between

zero and one are readily available [15, 49]. In the Monte Carlo method it is often

necessary to generate numbers ξ with specified probability density functions p(ξ).

This appendix describes three different methods for generating such ran-

dom numbers. The first method requires some mathematical analysis, which

may be difficult if the probability density function is complicated. The second

method is slightly slower than the first, but can be applied to any distribution.

The third method is a fast, discrete form of the first method.

A1.1 Analytic Method

One method of generating a random number ξ with a specified distribution p(ξ)

is to create a random event for the variable ξ such that the random event falls

with frequency p(x)dx in the interval (ξ, ξ + dξ). This method requires the

normalization of the probability density function over the interval (a, b)

∫ b

a
p(ξ) dξ = 1 (A1.1)
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This is done by choosing a random number R uniformly distributed in the in-

terval [0, 1] and requiring

R =
∫ ξ

a
p(ξ′) dξ′ (A1.2)

[6, 56]. Note that R(ξ) represents the cumulative probability distribution func-

tion for p(ξ′).

In the variable stepsize Monte Carlo method, the stepsize is randomly

generated based on the probability that the photon will interact in a given dis-

tance. If the unnormalized probability density function for the distance ∆s is

p(∆s) = exp(−∆s) (A1.3)

then the normalized probability density function over the interval (0, τ)

p(∆s) =
exp(−∆s)

1− exp(−τ)
(A1.4)

When the probability density function p(∆s) is substituted into (A1.2), a gen-

erating function for ∆s in obtained

∆s = − ln [1−R(1− exp(−τ))] (A1.5)

If the random variable ξ is distributed over the interval (0,∞) then the appro-

priate generating function is

∆s = − ln(1−R) (A1.6)

Since R is a random number uniformly distributed between zero and one, so

is (1 − R). If R′ is a random number uniformly distributed between zero and

one, then it may be substituted for (1 − R) and and Equation (A1.6) may be

simplified to

∆s = − lnR′ (A1.7)
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A normalized phase function describes the probability density function

for the azimuthal and longitudinal angles for a photon when it is scattered. If

the phase function has no azimuthal dependence, then the azimuthal angle φ is

uniformly distributed between 0 and 2π, and may be generated by multiplying

a pseudo-random number R uniformly distributed over the interval [0,1] by 2π

φ = 2πR (A1.8)

The probability density function for the longitudinal angle θ between the current

photon direction and the scattered photon direction is found by integrating the

phase function over all azimuthal angles p(cos θ). For example, the probability

density function for an isotropic distribution is

p(cos θ) =
1

2
(A1.9)

Substituting Equation (A1.9) into Equation (A1.2) yields the following generat-

ing function for cosine of the longitudinal angle θ

cos θ = 2R− 1 (A1.10)

The probability density function corresponding to the Henyey-Greenstein

phase function is

p(cos θ) =
1

2

1− g2
HG

(1 + g2
HG − 2gHG cos θ)3/2

(A1.11)

The generating function for this distribution obtained using Equation (A1.2) [68]

is

cos θ =
1

2gHG

{
1 + g2

HG −
[

1− g2
HG

1− gHG + 2gHGR

]}
(A1.12)
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This equation should not be used for isotropic scattering—Equation (A1.10)

should be used in that case. The probability density function for the modified

Henyey-Greenstein phase function is

cos θ =
1

2

{
β +

(1− β)(1− g2
HG)

(1 + g2
HG − 2gHG cos θ)3/2

}
(A1.13)

To generate a longitudinal angle with this distribution, two random numbers (R0

and R) uniformly distributed between zero and one are needed. In this distribu-

tion, light is either scattered isotropically or anisotropically. The first random

number is used to determine which type of scattering occurs. The fraction of light

scattered isotropically (β) is compared with the first random number, if β < R0

then the photon is scattered isotropically according to Equation (A1.10), oth-

erwise the photon is scattered using the generating function given by Equation

(A1.12).

A1.2 Monte Carlo Method

The drawback to using Equation (A1.2) to determine generating function for a

particular distribution is that solving for the random variable x in terms of R is

difficult. A second method, similar to the way integration is done stochastically,

is to generate pairs of random numbers. A point R1 is generated such that R1

is uniformly distributed over the interval (a, b) and R2 over the interval from 0

to the maximum value that the function p takes on in (a, b). If

p(R1) > R2 (A1.14)

then then R1 is the new random variable. Otherwise new points R1 and R2 are

generated until the condition (A1.14) is satisfied. The speed of this technique
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depends on how many unsatisfactory points R1 and R2 must be discarded until

a good pair is obtained [6].

A1.3 Discrete form of the Analytic Method

A third technique is to divide the interval (a, b) into a number of pieces Next

create an array such that the number of entries with a particular value ξ1 is

proportional to the value p(ξ1). A random integer uniformly distributed between

one and the last entry in this array will serve as the index which selects the new

scattering angle.



Appendix A2

Internal Reflection

Introduction

When light strikes a boundary, the fraction of light reflected depends on the

polarization and angle of incidence of the light as well as the ratio of refraction

indices between the two media. The first section of this appendix reviews the

basic reflection formulas needed for later calculations in this appendix. The

second section discusses multiple internal reflection of radiance in a glass slide.

The third section calculates the first three moments of Fresnel reflection. The

next few sections give details and tables for various approximations for these

moments made by other authors. Finally, the last sections calculate a boundary

condition parameter used in the boundary conditions of the diffusion (delta-

Eddington) approximation.

A2.1 Basic Reflection Formulas

The relationship between the angle of incidence and angle of transmission is

given by Snell’s law

ni sin θi = nt sin θt (A2.1)
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The angle at which total internal reflection occurs is called the critical angle is

obtained by setting θt = π/2

θc = sin−1 nt
ni

= sin−1 1

n
where n =

ni
nt

(A2.2)

The cosine of the critical angle µc is then

µc = cos(sin−1 1

n
) =

√
1− 1

n2
(A2.3)

Reflection of light at the boundary separating two media of different indices of

refraction is dependent on the angle of incidence (Figure A2.3). The reflection

is given by the Fresnel equations which depend on the incidence angle (θi), the

transmission angle (θt) and the electric field polarization [30]

R‖ =
tan(θi − θt)
tan(θi + θt)

R⊥ = −sin(θi − θt)
sin(θi + θt)

(A2.4)

T‖ =
2 sin θt cos θi)

sin(θi + θt) cos(θi − θt)
T⊥ =

2 sin θt cos θi)

sin(θi + θt)
(A2.5)

where ‖ indicates that the electric field is parallel to the plane of incidence and

⊥ indicates that the electric field is perpendicular. The reflected radiance is

Lreflected = |R∗|2Lincident (A2.6)

where R∗ equals either R‖ or R⊥ depending on the polarization. For unpolarized

light the net reflection is

R(θ) =
1

2
(R2
⊥ +R2

‖) (A2.7)

R(θi) =
1

2

[
sin2(θi − θt)
sin2(θi + θt)

+
tan(θi − θt)
tan(θi + θt)

]
(A2.8)

This formula is not useful for two cases. First, for normal incidence θi = θt = 0

and evaluation of Equation (A2.8) results in division by zero. For normally

incident light the correct expression (the limit of Equation (A2.8) as θ → 0) is

R(θ = 0) =
(ni − nt)2

(ni + nt)2
(A2.9)
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When the incidence angle is larger than the critical angle (θi > θc), no trans-

mitted angle exists. This is the case for total internal reflection of light and

R(θ) = 1 when θ > θc.

To implement Fresnel reflection at the boundaries in the diffusion approx-

imation, the first few moments of the Fresnel reflection over a hemisphere are

required. Defining the zeroth moment R0 as the integral of the Fresnel reflection

over a hemisphere without weighting leads to

R0 =

∫
2π R(θ) dω∫

2π dω
=
∫ π/2

0
R(θ) sin θ dθ (A2.10)

The first moment of the Fresnel reflection is obtained by including a cos θ factor

R1 =

∫
2π R(θ) cos θ dω∫

2π cos θ dω
= 2

∫ π/2

0
R(θ) cos θ sin θ dθ (A2.11)

The second moment is found by including a factor of cos2 θ

R2 =

∫
2π R(θ) cos2 θ dω∫

2π cos2 θ dω
= 3

∫ π/2

0
R(θ) cos2 θ sin θ dθ (A2.12)

The reflection moments are normalized such that each is unity when R(θ) ≡ 1.

A useful property governing radiance as it travels through media with

differing indices of refraction is the n2-law of radiance. This law states that the

ratio of the radiance over the square of the index of refraction is invariant along

a light path

L1

n2
1

=
L2

n2
2

. (A2.13)

Figure A2.1 shows the physical basis for this law. As a cone of light passes

from ni into nt the angle of the cone changes due to refraction of light at the

interface. Since the same total amount of light passes across the boundary

(ignoring reflection) the energy per steradian must change [48].
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Finally, a result which relates R1 for light passing from one medium to

another to that for light travelling in the reverse direction is [11]

1−R1(ni/nt)

n2
t

=
1−R2(nt/ni)

n2
i

(A2.14)

A2.2 Fresnel Reflection in a Glass Slide

Consider a radiance (Li/n
2
i ) incident from a medium with an index of refraction

ni on a glass slide (ng) atop a medium into which light is transmitted (nt). The

n2-law states that, ignoring reflection at boundaries, the ratio of the radiance

over the square of the index of refraction is invariant from medium to medium.

Li
n2
i

=
Lg
n2
g

=
Lt
n2
t

. (A2.15)

The problem of multiple internal reflection of radiances in the glass slide is equiv-

alent to the usual multiple internal reflection of light rays (Figure A2.2). The

first reflection coefficient (r1) is equal to the Fresnel reflection for light passing

from an index of refraction ni into ng at an angle θi. The second coefficient

(r2) is that for light passing from an index of refraction ng into nt at an angle

θg. Summing all the transmitted radiances The infinite series can be summed to

yield or

Ltransmitted = Lt(1− r1)(1− r2) + Lt(1− r1)(1− r2)r1r2 +

+ Lt(1− r1)(1− r2)(r1r2)2 + · · · (A2.16)

The infinite series can be summed to yield

Ltransmitted = Lt

[
1− r1 + r2 − 2r1r2

1− r1r2

]
(A2.17)
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or

Ltransmitted = Lt
n2
t

n2
i

[
1− r1 + r2 − 2r1r2

1− r1r2

]
(A2.18)

The reflected radiance is

Lreflected = Lir1 + Li(1− r1)2r2 + Li(1− r1)2r2(r1r2) + · · ·

= Li

[
r1 + r2 − 2r1r2

1− r1r2

]
(A2.19)

When ni exceeds the critical angle at the ni/nt interface, light is totally internally

reflected and

Lreflected = Li (A2.20)

This suggests that the reflection coefficient at a glass slide boundary may

be defined as

r′(ŝ · ẑ) =
r1 + r2 − 2r1r2

1− r1r2

if θi < θc (A2.21)

r′(ŝ · ẑ) = 1 if θi > θc (A2.22)

where it is understood that r1 = r(θi) is the Fresnel reflection coefficient for light

passing from tissue to glass and r2 = r(θg) is that for light passing from glass to

air. The angle of light passing through the glass θg is determined using Snell’s

Law

nglass sin θg = ntissue sin θi (A2.23)

A2.3 Reflection Moments R0, R1, and R2

For light incident on a medium with a greater index of refraction, no critical

angle exists. Consequently, the Equations (A2.10)–(A2.12) are straightforward

numerical integrals in which theta varies from 0 to π/2. When light travels into
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a less dense medium, a critical angle exists and the equation for calculating R0,

R1, and R2 must be modified. Since R(θ) = 1 when θ > θc, R0 becomes

R0 =
∫ θc

0
R(θ) sin θ dθ +

∫ π/2

θc
sin θ dθ (A2.24)

so

R0 = µc +
∫ 1

µc
R(µ) dµ (A2.25)

where µ = cos θ and µc = cos θc. Similarly, the other two moments become

R1 = µ2
c + 2

∫ 1

µc
R(µ)µ dµ (A2.26)

and

R2 = µ3
c + 3

∫ 1

µc
R(µ)µ2 dµ (A2.27)

Depending on the index of refraction ratio, either Equations (A2.10)–

(A2.12) or (A2.25)–(A2.27) were used to numerically evaluate the reflection mo-

ments. An adaptive eighth-order quadrature algorithm which yields numerical

results accurate to any specified tolerance [15] was implemented. In the table

below the accuracy is ±0.001. Values for R0 and R2 do not exist in the literature,

however R1 values were identical to those of Orchard [46] and Ryde [53, 54].

A2.4 Star’s Approximation

Star [58] has suggested that the Fresnel reflection R(θ) be replaced by

R(θ)
{

0, if θ < θc;
1, otherwise.

(A2.28)

This is suggested by the step-function behavior of the Fresnel reflection about

θ = θc as shown in Figure A2.3. This approximation leads the to following
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ni
nt

R0 R1 R2

0.50 0.260 0.161 0.134
0.55 0.241 0.137 0.108
0.60 0.224 0.116 0.087
0.65 0.207 0.097 0.068
0.70 0.190 0.081 0.053
0.75 0.173 0.066 0.040
0.80 0.156 0.053 0.029
0.85 0.136 0.040 0.019
0.90 0.113 0.027 0.011
0.95 0.081 0.015 0.004
1.00 0.001 0.000 0.000
1.05 0.324 0.107 0.036
1.10 0.440 0.195 0.089
1.15 0.518 0.271 0.144
1.20 0.578 0.337 0.199
1.25 0.626 0.395 0.252
1.30 0.665 0.445 0.301
1.35 0.698 0.490 0.347
1.40 0.726 0.530 0.390
1.45 0.750 0.565 0.429
1.50 0.771 0.597 0.465
1.55 0.789 0.626 0.499
1.60 0.805 0.651 0.529
1.65 0.820 0.675 0.558
1.70 0.833 0.696 0.584
1.75 0.845 0.716 0.608
1.80 0.855 0.733 0.631
1.85 0.864 0.749 0.652
1.90 0.873 0.764 0.671
1.95 0.881 0.778 0.689
2.00 0.888 0.791 0.705

Table A2.1: The Fresnel reflection moments R0, R1, and R2. Light is incident
from a medium with an index of refraction of ni and transmitted into a medium
with index nt. The moments in this table are accurate to 0.001.
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closed-form equations for calculating R0, R1, and R2,

RStar
0 =

[
1−

(
nt
ni

)2
]1/2

(A2.29)

RStar
1 =

[
1−

(
nt
ni

)2
]

(A2.30)

RStar
2 =

[
1−

(
nt
ni

)2
]3/2

(A2.31)

These equations are evaluated in Table A2.2 and compared with the exact

values calculated in Section (A2.3) for various ratios of indices of refraction. The

differences are nearly constant for all ratios tabulated.

A2.5 Keijzer’s Approximation

Keijzer [39] makes a simple modification of Star’s approximation . When ni > nt,

Keijzer recommends

R(θ)
{
R(0), if θ < θc;
1, otherwise.

(A2.32)

Here Keijzer assumed that the reflection coefficient for all angles less than the

critical angle equals that for light incident normal to the boundary. The Keijzer

approximation results in the following equations for the reflection moments

RKeijzer
0 = µc + (1− µc)R(0) (A2.33)

RKeijzer
1 = µ2

c + (1− µ2
c)R(0) (A2.34)

RKeijzer
2 = µ3

c + (1− µ3
c)R(0) (A2.35)

Keijzer has suggested the following approximation when ni < nt (Figure

A2.4)

RKeijzer(θ) = exp(b cos θ) (A2.36)
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b = 2 lnR(π/3) (A2.37)

where R(π/3) is the Fresnel reflection for an incident angle of 60◦. This approx-

imation leads to the following expressions for R0, R1, and R2

RKeijzer
0 =

R2(π/3)− 1

b
(A2.38)

RKeijzer
1 = 2

[
R2(π/3)(b− 1)

b2
+

1

b2

]
(A2.39)

RKeijzer
2 = 3

[
R2(π/3)(b2 − 2b+ 2)

b3
− 2

b3

]
(A2.40)

The Keijzer approximations for R0, R1, and R2 are shown in Table A2.3. The

Keijzer approximation is better than the Star approximation for all cases.

A2.6 Walsh’s Analytic Solution for R1

The integral of the first moment of the Fresnel reflection R1 has been found

analytically by Walsh, (see [53, 54])

RWalsh
1 =

1

2
+

(m− 1)(3m+ 1)

6(m+ 1)2
+

[
m2(m2 − 1)2

(m2 + 1)3

]
ln
m− 1

m+ 1

− 2m3(m2 + 2m− 1)

(m2 + 1)(m4 − 1)
+

[
8m4(m4 + 1)

(m2 + 1)(m4 − 1)2

]
lnm (A2.41)

where Walsh’s parameter m is the reciprocal of the index of refraction ratio in

Equation (A2.2) that is, m = 1/n = nt/ni. Equation (A2.41) was used as a

check on the numerical integration of R1. Equation (A2.41) is only valid when

ni < nt then Equation (A2.14) should be used.

A2.7 Egan Polynomial Approximation for R1

Another approximation for R1 is Egan and Hilgeman’s [11] polynomial fit of

the data of Orchard [46]. Orchard’s data was generated using Walsh’s formula
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Figure A2.1: The change in radiance passing through media of different indices
of refraction. As light passes into a medium with a smaller index of refraction
(n1 to n2) the angle of a cone will increase. The net change in radiance is equal
to the square of the indices of refraction.

ni
nt

RStar
0 RStar

1 RStar
2 ∆R0 ∆R1 ∆R2

1.00 0.000 0.000 0.000 0.000 0.000 0.000
1.10 0.417 0.174 0.072 0.023 0.022 0.016
1.20 0.553 0.306 0.169 0.025 0.032 0.030
1.30 0.639 0.408 0.261 0.026 0.037 0.040
1.40 0.700 0.490 0.343 0.026 0.040 0.047
1.50 0.745 0.556 0.414 0.025 0.041 0.051
1.60 0.781 0.609 0.476 0.025 0.042 0.054
1.70 0.809 0.654 0.529 0.024 0.042 0.055
1.80 0.831 0.691 0.575 0.024 0.042 0.056
1.90 0.850 0.723 0.615 0.023 0.041 0.056

Table A2.2: Comparison of Star’s approximation for R0, R1, and R2 with the
exact values. The ∆’s indicate the difference between the Star approximation
and the exact values.



177

 
ni

2

Li   
ni

2

Li   r1

 

ng
2

L g   (1 - r1)

 
ni

2

Li  (1-r1)
2
r2

 
ni

2

Li  (1-r1)
2
r1r2

2

 
nt

2

Lt (1-r1)(1-r2)  
nt

2

Lt (1-r1)(1-r2)r1r2
 
nt

2

Lt (1-r1)(1-r2)r1
2r2

2

  
ng

2

Lg
(1-r1)r1r2

 
ng

2

Lg
(1-r1)r1r2

2  
ng

2

Lg
(1-r1)r2

 
ng

2

Lg
(1-r1)r1

2r2
2

Figure A2.2: Multiple reflections in a glass slide. Light is incident from a medium
with an index of refraction ni, on a glass slide with index of refraction ng and
transmitted into a medium with index of refraction nt.
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Figure A2.3: The Fresnel Reflection is the solid line. The Star approximation is
the dashed line. The Keijzer approximation assumes that when θ ≤ θc, that the
reflection is constant at the normal incidence value R(0).
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Figure A2.4: Keijzer’s approximation (dashed line) compared with the exact
value (solid line) of the Fresnel reflection. Notice that the approximation is poor
when the angle of incidence is less than sixty degrees.
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ni/nt RKeijzer
0 RKeijzer

1 RKeijzer
2 ∆R0 ∆R1 ∆R2

0.50 0.267 0.132 0.087 -0.007 0.029 0.047
0.60 0.228 0.100 0.060 -0.005 0.016 0.027
0.70 0.194 0.073 0.039 -0.004 0.008 0.014
0.80 0.159 0.050 0.023 -0.004 0.003 0.006
0.90 0.119 0.029 0.010 -0.007 -0.001 0.001
1.00 0.000 0.000 0.000 0.000 0.000 0.000
1.10 0.418 0.175 0.074 0.022 0.020 0.014
1.20 0.556 0.311 0.176 0.022 0.026 0.024
1.30 0.645 0.418 0.273 0.020 0.027 0.028
1.40 0.708 0.504 0.361 0.017 0.026 0.029
1.50 0.756 0.573 0.438 0.015 0.024 0.028
1.60 0.792 0.630 0.504 0.013 0.021 0.026
1.70 0.822 0.677 0.561 0.011 0.019 0.024
1.80 0.845 0.717 0.610 0.010 0.017 0.021
1.90 0.865 0.750 0.652 0.008 0.015 0.019

Table A2.3: Comparison of Keijzer approximated Fresnel reflection moments
with the exact values. The ∆’s indicate the difference between the Keijzer values
and the exact values. When the index of refraction ratio is larger than one, then
the Keijzer approximation is an improvement on the Star approximation. The
exponential approximation (A2.36) is not particularly good because it minimizes
contributions from angles less than 60◦ from the normal (Figure A2.4).
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(A2.41). The polynomial is

REgan
1 = −0.4399 + 0.7099n−1 − 0.3319n−2 + 0.0636n−3. (A2.42)

where n = ni/nt < 1. If n > 1 then Equation (A2.14) should be used.

In Table A2.4 values for R1 calculated using the various approximations

are presented. Walsh’s or Egan’s method are superior to the approximations of

Star and Keizer. Since the approximate methods are not sufficiently faster, their

loss in accuracy dictates that they should not be used.

A2.8 Polynomial Approximations to R0, R1, and R2

The excellent agreement between the Egan approximation for R1 and the ex-

act values (Table A2.4) suggested making polynomial fits for R0 and R2. For

completeness an expression for R1 is presented also

R0(n) = 2.20714n3 − 11.0303n2 + 18.44687n− 9.50765 (A2.43)

R1(n) = 0.7857n3 − 4.3259n2 + 8.26405n− 4.71306 (A2.44)

R2(n) = −0.02043n3 − 0.38418n2 + 2.01132n− 1.62198 (A2.45)

The accuracy of these expressions is presented in Table A2.5, where it is apparent

that the cubic polynomials generate values of R1 and R2 accurate to better than

0.005.

A2.9 Approximations for the Boundary Coefficient A

In Section 4.3 a constant A characterizing the boundary conditions for the dif-

fusion approximation was defined. It depends on the Fresnel moments R1 and
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ni/nt Rexact
1 RWalsh

1 REgan
1 RKeijzer

1 RStar
1

0.50 0.161 0.161 0.161 0.132 0.000
0.60 0.116 0.116 0.116 0.100 0.000
0.70 0.081 0.081 0.083 0.073 0.000
0.80 0.053 0.053 0.053 0.050 0.000
0.90 0.027 0.027 0.026 0.029 0.000
1.00 0.000 0.000 0.002 0.000 0.000
1.10 0.195 0.194 0.193 0.175 0.174
1.20 0.337 0.336 0.336 0.311 0.306
1.30 0.445 0.444 0.445 0.418 0.408
1.40 0.530 0.529 0.530 0.504 0.490
1.50 0.597 0.596 0.597 0.573 0.556
1.60 0.651 0.651 0.651 0.630 0.609
1.70 0.696 0.696 0.696 0.677 0.654
1.80 0.733 0.733 0.732 0.717 0.691
1.90 0.764 0.764 0.764 0.750 0.723

Table A2.4: The first moment of the Fresnel reflection calculated using various
approximations. The values for R1 when ni/nt < 1 are obtained using Equa-
tion (A2.14), except for the Keizer approximation which uses Equation (A2.39).
The analytic Walsh values are identical to the numerical (exact) values. The
Egan polynomial approximation is much better than either the Keijzer or Star
approximations.
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R2,

A =
1 +R2

1−R1

(A2.46)

Values for A may be calculated three different ways:

1. numerical integration of Equations (A2.10)-(A2.12),

2. Keijzer’s approximation, or

3. Star’s approximation.

Substituting Equations (A2.34) and (A2.35) into Equation (A2.46) gives,

AKeijzer =
1 +RKeijzer

2

1−RKeijzer
1

=
1 + µ3

c + (1− µ3
c)RF (0)

1− µ2
c − (1− µ2

c)RF (0)
(A2.47)

which reduces to

AKeijzer =
n(n2 + 1)

2
+
(
n− 1

n

)√
n2 − 1 (A2.48)

Similarly using Equations (A2.30) and (A2.31) yields

AStar =
1 +RStar

2

1−RStar
1

=
1 + µ3

c

1− µ2
c

=
1− µc + µ2

c

1− µc
(A2.49)

AStar = n2 +
(n2 − 1)3/2

n
(A2.50)

Exact values for A obtained by calculating R1 and R2 numerically are

presented in Table A2.6. These values were fitted to a cubic polynomial to find

Acubic(n) = −0.13755n3 + 4.3390n2 − 4.90466n+ 1.68960 (A2.51)

Table A2.6 shows a comparison of the various approximations for A. The errors

resulting from the cubic approximation are an order of magnitude smaller than

those from the Star and Keijzer approximations.
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ni/nt ∆R0 ∆R1 ∆R2

1.000 -0.115 -0.011 0.015
1.100 0.065 0.006 -0.009
1.200 0.019 0.005 -0.004
1.300 -0.016 -0.001 0.002
1.400 -0.029 -0.004 0.005
1.500 -0.023 -0.005 0.003
1.600 -0.005 -0.002 0.000
1.700 0.015 0.002 -0.003
1.800 0.024 0.004 -0.004
1.900 0.012 0.003 -0.002

Table A2.5: Difference between polynomial approximations (A2.43) to (A2.45) of
the moments of the Fresnel reflection and the exact values. The approximations
for R1 and R2 are much better than the approximation for R0.

ni/nt Aexact ∆Acubic ∆AKeijzer ∆AStar

1.00 1.000 0.010 0.000 0.000
1.10 1.353 0.015 -0.050 -0.056
1.20 1.810 0.011 -0.103 -0.683
1.30 2.346 0.004 -0.157 -0.131
1.40 2.955 0.000 -0.211 -0.632
1.50 3.636 -0.001 -0.237 -0.454
1.60 4.388 0.003 -0.322 -0.778
1.70 5.213 0.008 -0.378 -0.610
1.80 6.113 0.016 -0.434 -1.010
1.90 7.089 0.023 -0.490 -1.260

Table A2.6: The boundary condition A and errors in the cubic polynomial, the
Keijzer and the Star approximations. The cubic approximation is much better
for nearly all cases.
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A2.10 The Boundary Condition Parameter in the Pres-
ence of a Glass Slide

When a glass slide is present at the boundary then the reflection moments R1 and

R2 must be calculated using the method outlined in Section A2.3. This means

that the parameter A is a function of two variables—the ratio of the index of

refraction of the medium to that of the environment and the ratio of the index

of refraction of the glass slide to the environment. Since the index of refraction

of glass and quartz varies between 1.40 and 1.60, values in this limited range are

presented in Table A2.7.

Polynomial approximations for the tabulated values of A in Table A2.7

are

A1.00(n) = −0.13755n3 + 4.33904n2 − 4.90466n+ 1.68960 (A2.52)

A1.40(n) = −0.40853n3 + 5.17127n2 − 6.33960n+ 2.80840 (A2.53)

A1.45(n) = −0.41535n3 + 5.16138n2 − 6.27852n+ 2.79732 (A2.54)

A1.50(n) = −0.42592n3 + 5.17218n2 − 6.24603n+ 2.79862 (A2.55)

A1.55(n) = −0.43239n3 + 5.16867n2 − 6.19220n+ 2.78879 (A2.56)

A1.60(n) = −0.44400n3 + 5.19174n2 − 6.17761n+ 2.79812 (A2.57)

These values are compared with the exact values in Table A2.8. If indices of

refraction of glass are required then it is necessary to interpolate between values

given by Equations (A2.53)-(A2.57).



186

ni/nt A1.00 A1.40 A1.45 A1.50 A1.55 A1.60

1.00 1.000 1.253 1.286 1.320 1.354 1.389
1.10 1.353 1.535 1.570 1.606 1.643 1.681
1.20 1.810 1.935 1.971 2.009 2.047 2.087
1.30 2.346 2.411 2.448 2.486 2.526 2.568
1.40 2.955 2.955 2.991 3.030 3.071 3.114
1.50 3.636 3.562 3.597 3.636 3.677 3.721
1.60 4.388 4.232 4.266 4.303 4.344 4.388
1.70 5.213 4.966 4.996 5.032 5.072 5.116
1.80 6.113 5.763 5.790 5.823 5.861 5.904
1.90 7.089 6.626 6.648 6.678 6.713 6.754

Table A2.7: Values of A for various indicies of refraction. Light is incident from
a medium (ni), passes through glass (ng), and transmitted into another medium
(nt). The superscripts indicate ng/nt.

ni/nt ∆A1.00 ∆A1.40 ∆A1.45 ∆A1.50 ∆A1.55 ∆A1.60

1.00 0.014 0.021 0.021 0.021 0.021 0.021
1.10 -0.009 -0.013 -0.013 -0.013 -0.013 -0.013
1.20 -0.005 -0.007 -0.007 -0.006 -0.007 -0.007
1.30 0.002 0.002 0.003 0.002 0.002 0.002
1.40 0.005 0.007 0.007 0.007 0.007 0.007
1.50 0.005 0.006 0.006 0.007 0.006 0.006
1.60 0.001 0.002 0.002 0.002 0.002 0.002
1.70 -0.003 -0.003 -0.004 -0.003 -0.003 -0.003
1.80 -0.005 -0.007 -0.007 -0.007 -0.007 -0.006
1.90 -0.002 -0.003 -0.004 -0.003 -0.004 -0.003

Table A2.8: Differences between of polynomial approximations for A and the
exact values. See caption for Table A2.7 for details.



Appendix A3

Solid Angle Integrals and Dirac-Delta Functions

Introduction

This appendix explicitly evaluates a number of solid angle vector integrals over

entire spheres and hemispheres. It also includes a discussion of the properties of

the three-dimensional delta function and various differences in notation between

authors.

A3.1 Integrals over entire spheres

There are several common integrals over solid angles. The simplest is the integral

of a constant over all 4π steradians∫
4π
dω =

∫ π

−π
dφ
∫ π

0
sin θ dθ = 2π

∫ 1

−1
d(cos θ) = 2π

∫ 1

−1
dµ = 4π (A3.1)

Here the 4π beneath the integral is used to indicate that the integral is done

over all 4π steradians. The angles φ and θ refer to the usual azimuthal and

longitudinal angles in a spherical geometry. The differential dω = sin θ dθ is a

differential solid angle with ŝ as an outward normal unit vector. The substitution

µ = cos θ has been made.

The integral of ŝ over all angles is zero, by symmetry∫
4π

ŝ dω = 0 (A3.2)
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The integral is zero because for each ŝ in the upper hemisphere there is a unit vec-

tor ŝ′ in the lower hemisphere pointed in the opposite direction (Figure A3.1a).

When ŝ is integrated over all angles then the contribution from the upper hemi-

sphere is exactly cancelled by that from the lower hemisphere.

The next integral is slightly more complicated

∫
4π

ŝ(ŝ ·A) dω =
4π

3
A (A3.3)

The vertical axis is chosen parallel to the arbitrary vector A (Figure A3.1b).

The vector ŝ(ŝ ·A) has a magnitude of |A| cos θ. Now choose a vector ŝ′, such

that ŝ′ ·A = ŝ ·A and such that ŝ′, ŝ and A are co-planar. From Figure A3.1b it

is evident that adding ŝ′(ŝ′ ·A) to ŝ(ŝ ·A) results in a vector in the A direction.

The magnitude of the vector sum is the projection of each of these vectors onto

A. Since the magnitude of ŝ′(ŝ′ ·A) is equal to that of ŝ(ŝ ·A), we have

ŝ(ŝ ·A) + ŝ′(ŝ′ ·A) = 2(|A| cos θ) cos θ
A

|A| = 2 cos2 θA (A3.4)

The integral (A3.3) is then

∫
4π

ŝ(ŝ ·A) dω =
∫ π

0
dφ
∫ π

0
2A cos2 θ sin θ dθ = 2πA

∫ 1

−1
µ2 dµ =

4π

3
A (A3.5)

The azimuthal integral in φ is done only from 0 to π to account for adding ŝ′

and ŝ in Equation (A3.4).

The next integral is

∫
4π

ŝ(ŝ ·A)(ŝ ·B) dω = 0 (A3.6)

This integral is evaluated by decomposing B into components parallel and per-

pendicular to A

B = B⊥ + B‖ (A3.7)
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s'

A

s'(s' A)

s'(s' A)

s(s  A)
s

s

s'

a

b

Figure A3.1: Geometry used to evaluate integrals (A3.2) and (A3.3).
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The integral in Equation (A3.6) becomes

∫
4π

ŝ(ŝ ·A)(ŝ ·B‖) dω +
∫

4π
ŝ(ŝ ·A)(ŝ ·B⊥) dω = 0 (A3.8)

The first integral is very similar to Equation (A3.3). The difference is an addi-

tional factor of B cos θ, i.e.,

∫
4π

ŝ(ŝ ·A)(ŝ ·B‖) dω =
∫ π

0
dφ
∫ π

0
2A cos2 θ(|B‖| cos θ) sin θ dθ

= 2πA|B‖|
∫ 1

−1
µ3 dµ = 0 (A3.9)

The second integral is evaluated by referring to Figure A3.2a. If ŝ′ is chosen as

in Figure A3.2a, then

ŝ ·A = |A| cos θ ŝ ·B⊥ = |B⊥| sin θ

ŝ′ ·A = −|A| cos θ ŝ′ ·B⊥ = −|B⊥| sin θ

It is clear that ŝ(ŝ ·A)(ŝ ·B⊥) + ŝ′(ŝ′ ·A)(ŝ′ ·B⊥) = 0 since both vectors have

the same magnitude and are pointed in opposite directions.

Using the previously computed vector integrals two common scalar inte-

grals may be found. For example, using Equation (A3.2)

∫
4π

(ŝ ·A) dω = A ·
∫

4π
ŝ dω (A3.10)

and using Equation (A3.3)

∫
4π

(ŝ ·A)(ŝ ·B) dω = B ·
∫

4π
ŝ(ŝ ·A) dω =

4π

3
(A ·B) (A3.11)

A3.2 Integrals over hemispheres

The integral of a unit vector ŝ over a hemisphere with the z-axis as its pole is

obtained by summing vectors as in Figure A3.2, but omitting the extra factor
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a

b

s

s'

A

B⊥

z

s' s

s'
 2[s ⋅ (-z)]  (-z)

Figure A3.2: Figures for integrals (A3.6) and (A3.12).
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of cos θ

∫
2π µ≥0

ŝ dω = ẑ
∫ π

0
dφ
∫ π/2

0
2 cos θ sin θ dθ = 2πẑ

∫ 1

0
µ dµ = πẑ (A3.12)

Because the integral over the µ ≤ 0 hemisphere is oriented in the opposite

direction from the above integral, care must be taken to ensure that signs remain

consistent. In Figure A3.3 the vectors in the µ ≤ 0 hemisphere add to a vector

in the −z direction.

∫
2π µ≤0

ŝ dω = −ẑ
∫ π

0
dφ
∫ π

π/2
(−2 cos θ) sin θ dθ = 2π(−ẑ)

∫ 0

−1
(−µ) dµ = −πẑ

(A3.13)

Clearly, the sum of the integrals over each hemisphere equals zero—the result

for the integral over the whole sphere (Equation A3.2). The following integrals

follow immediately from (A3.12) and (A3.13)

1

4π

∫
2π µ≥0

(ẑ · ŝ) dω =
1

4
(A3.14)

and

1

4π

∫
2π µ≤0

(−ẑ · ŝ) dω =
1

4
(A3.15)

Figure A3.3 shows how the vectors may be combined in a similar fashion

to evaluate the following integral

∫
2π µ≥0

ŝ(ẑ · ŝ) dω = ẑ
∫ π

0
dφ
∫ π/2

0
2 cos2 θ sin θ dθ = 2πẑ

∫ 1

0
µ2 dµ =

2π

3
ẑ

(A3.16)

The integral over the other hemisphere is

∫
2π µ≤0

ŝ(−ẑ · ŝ) dω = −ẑ
∫ π

0
dφ
∫ π

π/2
2 cos2 θ sin θ dθ

= −2πẑ
∫ 0

−1
µ2 dµ = −2π

3
ẑ (A3.17)
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z

s'

s'(s' z)

s'(s' z) s(s  z)
s

 2(s ⋅ z)[s ⋅ (-z)]  (-z)

Figure A3.3: Geometry for integral (A3.16).
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A3.3 Delta functions

The delta function used in radiative transport calculations differs slightly from

the usual form of a delta function. It has the usual properties: it is zero if ŝ 6= ŝ′

δ(ŝ− ŝ′) = 0, if ŝ 6= ŝ′ (A3.18)

and the integral of the delta function with another function equals that function

evaluated at ŝ′ = ŝ ∫
4π
f(ŝ′)δ(ŝ− ŝ′)dω′ = f(ŝ) (A3.19)

The delta function δ(ŝ− ŝ′) is two-dimensional and is written as the product of

two ordinary Dirac delta functions [7]

δ(ŝ− ŝ′) = δ(µ− µ′)δ(φ− φ′) (A3.20)

where ŝ and ŝ′ are described by the angle pairs (θ, φ) and (θ′, φ′) on the unit

circle and µ = cos θ and µ′ = cos θ′. To write Equation (A3.20) in terms of θ

instead of µ then using the property [51] of delta functions that

δ(f(x)) =
δ(x− x0)

|f ′(x0)| (A3.21)

where f(x) is a function which vanishes only at x0. This property may be used

because the integrals are done over the sphere and consequently, (cos θ′ − cos θ)

will vanish at one point. The following relation may be obtained

δ(ŝ− ŝ′) =
δ(θ − θ′)δ(φ− φ′)

| sin θ| (A3.22)

Equation (A3.20) is valid as long as neither ŝ nor ŝ′ coincide with the

z-axis. In this case, the azimuthal coordinate is an ignorable coordinate [51] and

the expression for the delta function becomes

δ(ŝ− ẑ) =
1

2π
δ(1− µ) (A3.23)
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This ensures that the integral over all angles remains unity. Equations (A3.23)

and (A3.21) relate a solid angle delta function depending only on one parameter

with the usual two parameter definition [34]

δ(1− cos θ) = 2πδ(µ− µ′)δ(φ− φ′) (A3.24)

where cos θ is the angle between the direction specified by (µ, φ) and (µ′, φ′)

cos θ = µµ′ +
√

1− µ2
√

1− µ′2 cos(φ− φ′) (A3.25)

A3.4 Examples of Delta Functions

Collimated light is often modelled with a Dirac delta function, In particular, if

light is incident from the direction ŝ′ then the radiant intensity is written

I(r, ŝ) = E0(r)δ(1− ŝ · ŝ′) (A3.26)

where I is the radiant intensity [W/cm2/sr], E0 is the irradiance [W/cm2], and

the Dirac delta function has units of 1/sr. The integral of the radiance over all

angles is the irradiance E0 since∫
4π
δ(1− ŝ · ẑ) dω =

∫ π

−π
dφ
∫ 1

−1

1

2π
δ(µ− 1) dµ = 1 (A3.27)

The integral of the delta-Eddington phase function

Pdelta−E(cos θ) =
1

4π
{2fδ(1− cos θ) + (1− f)(1 + 3g′ cos θ)} (A3.28)

over all angles is unity since∫
4π

2fδ(1− cos θ) dω = 2f
∫ π

−π
δ(φ− φ′) dφ

∫ 1

−1
2πδ(µ− µ′) dµ = 4πf (A3.29)

and ∫
4π

= (1− f)(1 + 3g′ cos θ) dω = 4π(1− f) (A3.30)



Appendix A4

Numerical Details of the 3D Diffusion Solution

Introduction

This appendix bounds the knth eigenvalue of the diffusion equation. Formulas for

evaluating the infinite sums necessary to find the diffuse radiance are discussed.

A4.1 Eigenvalues

The eigenvalues kn of the diffusion Equation (4.109) are solutions to the following

transcendental equation.

tan knτ
′ =

(Atop + Abottom)h′kn
AtopAbottom(h′kn)2 − 1

(A4.1)

This equation must be solved numerically. A number of numerical methods (e.g.,

Newton’s method, interval bisection) exist that will solve

tan knτ
′ − (Atop + Abottom)h′kn

AtopAbottom(h′kn)2 − 1
= 0 (A4.2)

but all require that local root kn be bounded above and below. This section gives

bounds for each eigenvalues. The function tan(knτ
′) has singularities whenever

kn =
(2n+ 1)π

2τ ′
(A4.3)

and the R.H.S. of Equation (A4.10) has a double pole when

kpole =
1

h′
√
AtopAbottom

(A4.4)
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The two cases which arise are discussed in the next two sections.

A4.1.1 One eigenvalue less than π/2τ ′

If

1

h′
√
AtopAbottom

<
π

2τ ′
(A4.5)

then there is exactly one eigenvalue between zero and π/2τ ′. This case is shown

in Figure A4.1. The ordinates of the intersections of the two curves are the

eigenvalues kn. There are an infinite number of eigenvalues. The first eigenvalue

is bounded by

1

h′
√
AtopAbottom

< k1 <
π

2τ ′
(A4.6)

Furthermore, due to the periodicity of the tangent there is always one eigenvalue

in the interval

(n− 1)
π

τ ′
< kn <

(
n− 1

2

)
π

τ ′
if n > 1 (A4.7)

Moreover, since the R.H.S. of Equation (A4.1) monotonically decreases for kn >

kpole, each successive eigenvalue is closer to a zero value of the tangent nπ/τ ′

than the preceeding one,

kn − (n− 1)
π

τ ′
> kn+1 −

nπ

τ ′
if n > 1 (A4.8)

The nth eigenvalue is therefore bounded by

(n− 1)
π

τ ′
< kn < kn−1 +

π

τ ′
if n > 1 (A4.9)

Finally, as n increases the eigenvalues approach the zeros of tan(nπ/τ ′)

kn →
(n− 1)π

τ ′
as n→∞ (A4.10)
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Figure A4.1: Eigenvalues of the diffusion equation. The dotted line represents
the RHS of Equation (A4.1) and the solid lines correspond to the LHS. The
functions are plotted as a function of kn. The ordinate of an intersection of
the dashed line with a solid line represents an eigenvalue kn. Notice that the
intersections approach (n− 1)π/τ ′ for large n.
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A4.1.2 More than one eigenvalue less than π/2τ ′

If

1

h′
√
AtopAbottom

>
π

2τ ′
(A4.11)

at least two eigenvalues less than π/2τ ′ exist (Figure A4.2). For all eigenvalues

less than kpole (Equation (A4.4), the following criteria holds

(2n− 1)
π

2τ ′
< kn < kn−1 +

π

τ ′
if n > 1 and kn < kpole (A4.12)

with the first eigenvalue bounded by

π

2τ ′
< k1 <

π

τ ′
(A4.13)

For eigenvalues kn larger than kpole the first such eigenvalue is bounded

by

kpole < kn <
nπ

n
(A4.14)

and subsequent eigenvalues are bounded by

(n− 1)
π

τ ′
< kn < kn−1 +

π

τ ′
(A4.15)

Finally, the asymptotic behavior of the eigenvalues is the same as shown in the

previous section

kn →
(n− 1)π

τ ′
as n→∞ (A4.16)

A4.2 Summation of series

In the previous section it was shown that for large N , that is, when kN À kpole

the eigenvalue approaches

kN →
(N − 1)π

τ ′
as N →∞ (A4.17)
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Figure A4.2: Eigenvalues of the diffusion equation. The dashed line represents
the function on the R.H.S. of Equation (A4.10) and the solid lines correspond
to the L.H.S. The functions are plotted as a function of kn. This graph shows
that if the singularity of the R.H.S. of Equation (A4.10) is greater than the
first singularity of the L.H.S., then a number of eigenvalues exist less than the
singularity given in Equation (A4.3).
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in both cases. The total diffuse radiance in the three-dimensional solution to the

delta-Eddington approximation is expressed as an infinite sum, Equation (4.141)

ϕd(r) =
∞∑
n=1

sin(knζ + γn)Bn(ρ)

N2
nλ

2
n

[
− S0zn
k2
n + 1

− Q0 sin γn
h′

+
Q0 sin(knτ

′ + γn) exp(−τ ′)
h′

]

As kN → (N − 1)π/τ ′ the following limits are valid

λ2
N → k2

N N2
N →

τ ′

2

sin kNτ
′ → 0 cos kNτ

′ → (−1)N−1 (A4.18)

sin γN → 1 cos γN → 0

Furthermore, as (N − 1)π/τ ′ →∞, then the limit of zN may also be found

λ2
N → k2

N zN → 1 (A4.19)

Substituting the limiting forms of Equations (A4.18) and (A4.19) into

Equation (4.141), yields the following expression for the total diffuse radiance in

three dimensions.

φd(r) =
N∑
n=1

φnd(r)− S0τ
′3BN(ρ)

45h′
90

π4

∞∑
n=N−1

cos(nπζ/τ ′)

n4
(A4.20)

− Q0τ
′BN(ρ)

h′

[
1 + (−1)N exp(−τ ′)

] 6

π2

∞∑
n=N−1

cos(nπζ/τ ′)

n2

The lower index is correct because kN → (N − 1)π/τ ′.

The anisotropic surface term in the equation above converges as 1/n2.

This is very slow. A better method for evaluating these sums numerically is to

use
∞∑

n=N−1

cos(nπζ/τ ′)

n2
=
∞∑
n=1

cos(nπζ/τ ′)

n2
−

N=2∑
n=1

cos(nπζ/τ ′)

n2
(A4.21)

∞∑
n=N−1

cos(nπζ/τ ′)

n4
=
∞∑
n=1

cos(nπζ/τ ′)

n4
−

N=2∑
n=1

cos(nπζ/τ ′)

n4
(A4.22)
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The infinite sums are [17, Equation 1.443]

∞∑
n=1

cos(nπζ/τ ′)

n2
=
π2

6

[
1− 3

ζ

τ ′
+

3

2

ζ2

τ ′2

]
if 0 ≤ ζ

τ ′
≤ 2 (A4.23)

∞∑
n=1

cos(nπζ/τ ′)

n4
=
π4

90

[
1− 15

2

ζ2

τ ′2
+

15

2

ζ3

τ ′3
− 15

8

ζ4

τ ′4

]
if 0 ≤ ζ

τ ′
≤ 2

(A4.24)

A similar correction exists for the derivative of the diffuse radiance with

respect to z. This derivative is needed to calculate flux densities and may be used

to calculate fluence rates. In the expression below, the isotropic term converges

as 1/n3 and the anisotropic term coverges as 1/n. Consequently, the numerical

finesse used above is even more useful for calculating the derivative

∂ϕd(r)

∂ζ
=

N∑
n=1

φnd(r)− S0τ
′2BN(ρ)

3h′
6

π3

∞∑
n=N−1

sin(nπζ/τ ′)

n3
(A4.25)

+
Q0BN(ρ)

h′

[
1 + (−1)N exp(−τ ′)

] 2

π

∞∑
n=N−1

sin(nπζ/τ ′)

n

The correction terms may be evaluated using the following infinite sum formulas

∞∑
n=1

sin(nπζ/τ ′)

n3
=
π3

6

[
ζ

τ ′
− 3

2

ζ2

τ ′2
+

1

2

ζ3

τ ′3

]
if 0 ≤ ζ

τ ′
≤ 2 (A4.26)

∞∑
n=1

sin(nπζ/τ ′)

n4
=
π

2

[
1− ζ

τ ′

]
if 0 ≤ ζ

τ ′
≤ 2 (A4.27)

Equation (A4.28) cannot be used when ζ = 0. Physically, this corresponds to

the top boundary. The easiest method for finding the derivative at this point is

to use the boundary condition (4.79). In this case, the derivative of the diffuse

radiance is given by

∂ϕd(r)

∂ζ
=
AtopQ0πF0(ρ) + ϕd(r)

Atoph′
(A4.28)
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