Catalog Description

Spherical and planar waves; scalar diffraction theory; Fresnel and Fraunhofer diffraction and application to measurement; interference and interferometers; optical transfer functions; coherent optical systems and holography. Prerequisite: Physics with calculus (PHY 223)

Course Objectives

At the end of this course, students should be able to

  1. Use superposition to create arbitrary waveforms
  2. Analyze systems of polarizers and arbitrary birefringent elements
  3. Calculate the optimal blaze angle for a diffraction grating
  4. Calculate Fresnel and Fraunhofer diffraction from rectangular and circular apertures
  5. Use a lens to Fourier transform and then filter an image
  6. Use mutual coherence to calculate spatial and temporal coherence
  1. Introduction
    • Overview
    • Wave Motion
    • Superposition
    • Lab: Spherical Waves

  2. Electromagnetic Theory
    • Maxwell's Equations
    • Wave Equation
    • Dipoles
    • Lab: Fresnel Reflection

  3. Superposition
    • Monochromatic
    • Quasi-monochromatic
    • Fourier Transform
    • Lab: Fourier Optics

  4. Polarization
    • Linear polarizers
    • Birefringence
    • Retarders
    • Lab: Liquid Crystals

  5. Two Beam Interference
    • Wavefront Splitting
    • Amplitude Splitting
    • Stellar Interferometer
    • Lab: Young's Double Slit

  6. Multiple Beam Interference
    • Plane Parallel Plate
    • Interference filters
    • Thin Films
    • Lab: Fabry-Perot Interferometer

  7. Diffraction
    • Huygen's Principle
    • Kirchhoff Diffraction
    • Fresnel and Fraunhofer Diffraction
    • Lab: Diffraction of a Square

  8. Coherence
    • Spatial Coherence
    • Temporal Coherence
    • Partial Coherence
    • Lab: Double Slit with Laser Diode

  9. Partial Coherence
    • Correlation Functions
    • Mutual Coherence
    • van Cittert-Zernike
    • Lab: Michelson Interferometer

  10. Holography
    • Holograms of point objects
    • Bragg's law
    • Recording and Reconstruction
    • Lab: Holography