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1. Where tissue affect photons...

diagnostic sensing, imaging, and spectroscopy,
2. Where photons affect tissues....

surgical and therapeutic cutting, dissecting,
machining, coagulating, welding and oxidizing

Micromachining
with lasers

Photodynamic therapy of cancer

R =,

Computer
simulations of
laser effects in

tissues




Monte Carlo simulation
of photon migration

tissue

S5mmx5mm

esophagus @ 630 nm wavelength



A photon’s path is tortuous due to
multiple scattering, like a ball of string.

Nevertheless, there is a total pathlength
L, like the length of the string.

T — e_MaL

Mean free path = 1/,




photon diffusion
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Photochemical
Photothermal

Photomechanical



Concentration

Fluence rate [W/cm?]

Speed of light [cm/s]



Concentration

Fluence rate [W/cm?]

Speed of light [cm/s]



Number density
of photons [ph/J]

l Wavelen
gth [m]
/

C= _F*
! c hc
[#photons/ cm?] [ Speed of light,[cm/s]

Planck’s constant [J m]

1 wem® = 1.1x10" photons/cm’



Concentration
of photons

# [cm?/liter]

/
C = [F A1000

| ¢ he N,

[moles/liter] X
# [1/mole]
1 wem® = 1.1x10" photons/cm’

1.8 x10 " moles/ liter



Energy deposition

Fluence rate [W/cm?]

/ time [s]

Q =MaFt/

[J/cm?]

Absorption coefficient [1/cm]



Temperature rise

AT = . r't pép

[°C]

Fluence rate [W/cm?]

/ specific heat [J/(g K)
density [g/cm?]

Absorption coefficient [1/cm]



(moles/liter)/(J/cm? absorbed)

J/cm? absorbed by
photochemical reagent X

A 1000
N = .kt N oD

/

# of photons
participating in
photochemistry  Absorption coefficient [1/cm]

photochemistry

Quantum efficiency

of photochemical reagent X



Griineisen coefficient

Stress, or pressure

[dimensionless]

|
P=MaFtr

1 [J/ecm?] = 10 bar

G =0.12 at 25°C

--> (0.5 at higher temperatures



photochemical

A 1000
N = Math hc N ®




Photochemical effects ...
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celulares de cancer con
fluorescent photosensitizer

PhotoDynamic Therapy (PDT)
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PDT

human treatment center

PhotoPypanuec Therapy (FDT)

oxygen Reactive
_ oxidizing oxidative
activated species —p injury to
drug (singlet cells
oxygen) l
photon drug cell

death



PDT

horse sarcoids
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ROS production [M]

Nnecrosis

threshold

no effect
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Production of oxidizing

r species
/0

—_— —Znecrosis
P,=E teCDf, e
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Irradiance J Light penetration

Exposure time

Fraction of oxidizing
species that attacks
lethal sites

Extinction coefficient .|
of photosensitizer

Concentration _
of photosensitizer

Quantum yield of
photosensitizer
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photothermal

AT = u, 't plcp









Exposure time [s] = 1/k
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photomechanical

P=MaFl‘r
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Blow-off model
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photochemical

A 1000
N = MaFt hc N ®




# photons fraction absorbed

l l
)\' —-eCL
hc

0
) = fluence rate [W/cm?]
t = time of exposure [s]
Co = speed of light in vacuum 2.98x10"°lcm/s]
h = Planck’s constant 6.626x10-34 [Js]
A = wavelength [cm]
A = area illuminated by light [cm?]

= extinction coefficient [cm-1/M], M = molesl/liter
= concentration [M]
= photon pathlength through medium [cm]

o

- O



# photons fraction absorbed

[W/cm?2] [s] [#/T] [cm?] l l
)L [cm1/M] [M] [cm]
N, =lot———A (1-10%<H)
he,

) = fluence rate [W/cm?]

t = time of exposure [s]

Co = speed of light in vacuum 2.98x10"°lcm/s]

h = Planck’s constant 6.626x10-34 [Js]

A = wavelength [cm]

A = area illuminated by light [cm?]

= extinction coefficient [cm-1/M], M = molesl/liter

o

o

= concentration [M]
= photon pathlength through medium [cm]

—



C, =C,(0)e™

ﬁ [Wicm?]

CA - ON . per s
Nmolecules
K [s7] CI)qﬁiA (1-107")
~ he,
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C, =C,(0)e™

= C,(0)e™"'

H,, = threshold dose [J/cm?] for 1/e effect
in the range of 10-100 J/cm? for many
photochemical reactions



MATLAB
example

photolabile reagent
in non-scattering gel

how will the fluence
rate ¢ change as
reagent photobleaches?



Photochemical

Comparison of PDT efficiencies
for photooxidation of substrate (NADPH)
using a photosensitizer (Photofrin IT).

PR Bar'go P Diagaradjane, SL Jacques
eedings of SPIE Vol. 3909 (2000)



photoactivation crossing to  transfer energy to  diffusion to interaction with
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Step 1: Irradiation Step 2: Spectrophotometric Assay

50 pl of irradiated

solution
quartz cuvette

1.95 ml of solvent

NADPH+Photofrin |
solution 0.5 m] ‘
detector 2 ml final

1 —" volume

beam
blocker I \\

Lspectrophotometer source

()

Argon laser: 488nm

optical fiber

Figure 1 — Set-up for the irradiation and absorbance measurements. Samples were irradiated

through the bottom of the cuvette with 488 nm light from an argon laser. Power delivered was

75 mW for exposure times ranging from O to 90 minutes. Aliquots of irradiated solution were
diluted 1:40 and absorbance spectra were.
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Figure 2: Absorbance spectra of NADPH (1 mM ) + P11 (50 ug/ml) solution after different exposure
times. Highlighted is the decay in the 340 nm peak after irradiation.
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Figure 3: Typical decay in absorbance at 340 nm due to oxidation of NADPH. Data is fitted with a

decayingexponential and the remaining offset is due to photofrin absorbance. AA and t are used in
equations 2 and 3.



Step 1: Irradiation

quartz cuvette

NADPH+Photofrin
solution 0.5 m]

beam
blocker

lens

()

STEP 1. Irradiation: A continuous argon ion laser
operating at 488nm was used for irradiation of the
samples.

Aliquots of 500 .il of NADPH+PII solutions were placed into quartz cuvettes
(1cm pathlength) for irradiation, forming an effective sample volume of IxIxO.5
cma3. Laser power was 100 mW guided through a 600 um core-diameter
optical fiber and the output was collimated with a bi-convex lens (f = 50 mm)
forming a 13 mm diameter uniform spot. The irradiation was done from the
bottom of the cuvette to avoid the influence of the meniscus. The effective
irradiation area was 1 cm2, leaving a final irradiation power of 75 mW. The
sample thickness along the vertical path of the beam was 5 mm. The
irradiation time ranged from 0 to 90 minutes. No temperature elevation was

observed.

lens

optical fiber

Argon laser: 488nm




Nabs=P T b(l_ESS)

P = Irradiated Power (0.075 Watts)
T = Time constant (seconds) N (Fig.3)
b = Conversion factor @488nm b=—= (2.5x10"° photons/J)

_ PF _
(1= T) = (1- 7"
PF
W, 488 = ln(lO)ea 433C
€45 | = PII extinction coefficient (5.9 cm™ (mg/ml)™)

C,; = PII concentration (50 pg/ml)
L., = Irradiated pathlength (0.5 cm)



Cm S50e-3; % mg/ml

epsilon = 5.9; % cmA-1 (mg/ml)A-1

L = 0.5; % cm

P = 0.075; % W

tau = 14*60; % S

b = 2.5e18; % ph/]

Apf = Cm*epsilon*L % [-]

Nabs = P*tau*b*(1-10A-Apf) % # photons abs’d
RUN:

Nabs = 4.54e+19 photons absorbed



Step 2: Spectrophotometric Assay
50 pl of irradiated
quartz cuvette Solution
after exposure, 1.95 ml of solvent
NADPH+Photofrin transfer to assay
solution 0.5 m] 5 ml il
detector mitina
<}— volume
. \\
spectrophotometer source

STEP 2. Spectrophotometric Assay: after exposure, transfer to assay

Absorbance measurements were taken in the 250-820 nm spectral range with a spectrophotometer
(Hewlett Packard). Solutions were diluted 1:40 (50 ul of solution into 1.95 ml of Trizma) and placed
into quartz cuvettes (1 cm pathlength). Spectra were recorded and absorbance at 340 nm was
measured to assay the kinetics of NADPH oxidation. Measurements of the extinction coefficients of
PIT at 488 nm (455" = 5.9 [cm-(mg/ml)'] and NADPH at 340 nm (g5,,"" = 5.1x103 [cm-'M-]) were

also measured.
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Figure 3: Typical decay in absorbance at 340 nm due to oxidation of NADPH. Data is fitted with a

decayingexponential and the remaining offset is due to photofrin absorbance. AA and t are used in
equations 2 and 3.



Sp

AN,V

- gé\;-%DPHLSp f
AA = Decay in Absorbance @ 340nm (F1g.3)
N., = Avogrado’s Number (6.02x10* molec/mol)
V,, = Diluted Sample Volume in step 2 (2 ml)
€340 " O'M = NADPH extinction coefficient @340nm (5.1cm’ mM™)
L, = Cuvette Path length for spectrophotometer (1 cm)

f = _Sample Volume =50ul =0.1 instep 1
Irradiated Volume 500ul



dA = 0.25-0.13; % dOD after one time constant tau

Vsp = 2e-3; % liters sample volume of assay, in step 2
epsilonNADPH = 5.1e3; % cmA-1 MA-1

L2 = 1; % cm cuvette in step 2

f = 50/500; % uL/uL, fraction of sample from step 1 assayed in step 2

Nav = 6.023e23; % Avagadro's number, #/mole
(dA/epsilonNADPH*L2)/f *Nav*Vsp

Nox =
% [-1/C[cmr-1 MA-1][cm])/[-] * [#/mole]*[2e-3 liter]
% [M] *  [#/M] = # photons oxidized

Run:
Nox = 2.83e+17 photons oxidized



q)ox - N 0X / Nabs

phiox = Nox/Nabs

Run:

Nabs = 4.54e+19
Nox = 2.83e+17
phiox = 0.0062

Example calculation using
figure.

All the experiments
actually yielded saturated
hox & 0.0048.



0.005 © +
-+
.0048 :
0.004 £
¢ 0.003
oX : 0,0 =.0048 - (1 - exp(-C/C #)
0.002 -
0.001 !
0 NRPI I SR S S PN SOt RSN URPUS N S SR ST ST W e
2 4 6 8 10 12
C*= (0.6 mM NADPH Concentration (mM)



Triplet-crossing of activated sensitizer
Activation of oxygen to singlet oxygen

Oxidation of NADPH by singlet oxygen

vl
¢0x=¢T ¢A ¢R

=¢T ¢A ?D ¢I

Diffusion of singlet oxygen to NADPH

Interaction of singlet oxygen with NADPH



efficiency of singlet oxygen interaction
with NADPH vyielding oxidation

4,
b by b

P,

experiment

_ 0.00438 _0.004

0.63 0.32 1
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! *x
literature Cnaopn > €
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Temperature rise

AT = . r't pép

[°C]

Fluence rate [W/cm?]

/ specific heat [J/(g K)
density [g/cm?]

Absorption coefficient [1/cm]



Temperature source Monte Carlo ianIT file

10 # file version

1 # number of runs
layersA.mco A # output filename, ASCII/Binary
100000 # No. of photons

0.0010 0.0010 # dz, dr for OUTPUT

150 150 1 # No. of bins, Nz, Nr, Na for OUTPUT
3 # No. of layers

#n mua mus g d # One line for each layer
1.00 # n for medium above.
1.33 0.1 100 0.90 0.0500 # conjunctiva

1.33 0.5 100 0.90 0.0500 # conjunctiva

1.33 0.1 100 0.90 10.000 # conjunctiva

1.33 # n for medium below.



fluence rate, F [J/cm3] = A/,

absorption rate, A [J/cm3] = uF
Temperature source
log.,(F) log,o(A)
2 2 u, =1 cmt
3 3 u, = 5 cm!
2 2 .
1 1 u, = 1cm-
forall 3
layers:
us = 100
1-D 1-D cm!

e 3“’*\\. m.g 10 24°CA9T =050
LE’ 2 S~ O \ = A/(4.18 (T/cm?)/°C)
- —— 2, 5 for water
S S -
w0 < 0 :

O 0.05 01 O 0.05 0.1

z [cm] z [cm]



impulse response

Thermal diffusion

15F '
Os
UuT
AT = —ote G(x,t) — 10} 10s
pC i
—x% l(4at) G 5 2Q s
G(x,t) =
(4at)” 3
?1 -0.5 0 0.5

r[cm]



Developing an optical nerve stimuator for
vestibular system (chicken)

optical fiber delivers 1850 nm
laser pulse to stimulate nerve

2 4 6 8 10 12
X [mm]



at 1850 nm wavlength

absorption :

P scattering
10" 10°
10°}
10°} B 10}

1(0

10'}
1 0 a 1 1 1 1 1 100 1 1 1
Q000 1500 2000 2500 3000 3500 4000 0 1000 2000 3000 4000

#[nm] Wavelength » [nm]



response to 1-J pulse

0.2




response to 0.00500-J pulse

AT [°C]
0 I I
max AT=4.1°C optical fiber
0.05F -
0.1 — SOO'IJ.J &T=1 C ]
200- m-dia
0151 laser pulse |
AT=01°C
0.2 ' :
-0.2 -0.1 0 0.1

r [em] AT=0.01°C

0.2



impulse
response

O I A I I

0

1
time [s]

2

time [s]

D

f=50.0 Hz




Temp [°C]

impulse
response

Average power is the key

0

1M~W
0

1
time [s]

2

-
()
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0

0

parameter when considering |
C heating by repetitive pulses otz

.

1
time [s]

2



Thermal damage | X(t) describes some tissue state  .qte of denaturation

that changes with denaturation /

X(£) = X(0) + (X () - X(O))(l - e-k*)

10 s 1 min 10min 1 hr 10 hr

denatured

End point  —— X(0) | / ////
X 025‘00“/00055‘ 3.2x10°

' 1.6x10° 6,4%107
Values

Start point —— X(0) of k [s7]

native

1 lllllul L llllllll JJIIIII'] 1 lllllld L L LI

10°

10"

time [s]



Thermal damage




Thermal damage

k _ kBT e—AG/RT

where

h
AG = AH - TAS




Thermal damage

6.2x1012 -1

at room temperature

f =

\

where

€

AG =AH -TAS

AS /R —AH /RT
€

Enthalpy [J/
mole]




Thermal damage

6.2x1012 -1

at room temperature

\
k = e
1

AS /R

—AH /| RT
€

1

where AS = —AH — —AG

T

T

Enthalpy [J/
mole]




Thermal damage

6.2x1012 g-1

at room temperature

\
AS/R

—AH/RT

nThalpy [T/
where AS AH mole]

slope

y-int




Thermal damage

Literature review

SL Jacques, J. Biomed. Optics 11(4):041108, 2006

6000 . : : -
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. 2000F P
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Thermal damage

Literature review
SL Jacques, J. Biomed. Optics 11(4):041108, 2006
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Thermal damage

Literature review

SL Jacques, J. Biomed. Optics 11(4):041108, 2006

6000

5000¢

AS

1000

Entropy, AS [J/mole/K]

-1 OOOO

4000t

3000¢

. 2000}

AS = a + bAH P
a = -327.5 J/(mole K)
b=31.47 x10" 1K
§‘ 1
" slope = .
Whitening & 44 .6°C
of pig liver P

l ‘."

O’ equa/em‘ H bonds

10 20 30 40 50 60 70 80 90
#obepnds

Ot5 1 1.8
Enthalpy, AH [J/mole]
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Thermal damage

Literature review

SL Jacques, J. Biomed. Optics 11(4):041108, 2006
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Thermal damage

Literature review
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Thermal damage

Literature review
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Thermal damage

Literature review

SL Jacques, J. Biomed. Optics 11(4):041108, 2006
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Thermal damage
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Thermal damage

N(t) = N(0)e™®

Q= jk(T(t))dt



Solar heating # 100 mW/cm?
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fraction denatured

0.8

0.6

0.4

0.2

T

10

# Hbonds = 90

# Hbonds =40

# Hbonds = 20

# Hbonds

=10
# Hbonds = 5

20 30
time [min]

40 50

60
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..50 how does this understanding of
thermal injury impact the design of
therapeutic protocols?

Time vs Temperature
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Exposure time [s]
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Exposure time [s]

10

-
<

o

Temperature [° C]

= 1s o e
=—N0 damage
LIS, oo poeren pusvmen posrec (I possen puses pose
#H=20
40 60 80 100

120

d = 100 um

trelax - 4a
where

d=100 um
_ -3 cm?
a=13x10 /S

fre/ax =1 9 ms




Exposure time [s]

10

N
<

o

I Illlll‘ TTIT

!_1_5 __________

=-No damage

EAMS. i e e e
~—o 60 B0 100

Temperature [° C]

120

Oral melanoma in
vetérinary care

Oral melanoma in dog

Use diode laser at low power
over several minutes fo slowly
heat,

allowing thermal diffusion to
bring heat to deeper layers,

avoid overheating and vaporizing
surface
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1. Introduction

2. Photochemical
3. Photothermal

4. Photomechanical




The physics of laser-
iInduced concussive insult
to peripheral nerves




Consider a 100 mph baseball thrown by a pitcher...

N
N \
> 3
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100 mph

" 4

(Note: typical fastballs are 50 mph,
but the fastest balls clocked are about

100 mph.)

Consider the recoil momentum due to pulse laser ablation of tissue...
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femoral and deep femoral vessels




Consider the recoil
momentum due to pulse laser
ablation of tissue.

A small scale example:

ErYAG laser ablation of
water:

2.94 um wavelength
25 mJ pulse energy
170 ns pulse duration

3.1 mm 1/e? diameter for
Gaussian beam
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£ = 100 mph
: {\\ \\\_;
R 3

Consider a 100 mph baseball thrown by a pitcher:

The velocity is (100 mph)(1720 m/mile)/(3600 s/hr) = 48 m/s.
The mass of a baseball is 142.5 g (a standard Wilson™ baseball)

The momentum is (0.1425 kg)(48 m/s) = 6.8 [kg m/s].

A baseball has a 9 inch (7.29 cm) diameter.



Consider the laser experiment:
The velocity of the ejected water ~ 1187 m/s, or Mach 3.5.
If the mass removal is 5.73 g,

(0.00573 kg)(1187 m/s) = 6.8 [kg m/s]

5.73 g of mass corresponds to 729 um over a 10-cm-dia. circular area.



Scale the problem

Momentum per unit area
Momentum of 100-mph baseball

\

6.8 [kg m/s]

= 0.087 [(kg m/s)/cm?]
78.5 cm?

/

Area of 10-cm-dia. laser spot



Steady-state
model

VS

Blow-off model



Steady-state model Water explosively vaporizes away from

surface during /ong pulse from laser

UP
T =P
o

where
m = mass of tissue removed [g]
U, = energy of laser pulse [J], U,=E t,
E = irradiance [W/cm?]
T = time of exposure [s]
0 = density of tissue [g/cm?3]

Qin = threshold energy density for ablation [J/cm3]



Steady-state model Water explosively vaporizes away from

8 surface during /ong pulse from laser

U
m= p—-

ch

where
m = mass of tissue removed [g]
U, = energy of laser pulse [J], U,=E t,
E = irradiance [W/cm?]
T = time of exposure [s]
0 = density of tissue [g/cm?3]

Qin = threshold energy density for ablation [J/cm3]



Steady-state model

100 us laser
pulse

Four samples were tested:
1. 30% gelatin (70% water content)
2. 10% gelatin (90% water content)
3. water
4. skin

Nahen and Vogel (2002)

| Er:YAG laser 1| \

photodiode 1 o

photodiode 2
diffuser

|Er:YAG laser 2

beam splitter sample diffuser




Steady-state model Nahen and Vogel (2002)

120 ps




Steady-state model

{(a} Gelatin with 70 % water content
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(b}  Gelatin with 90 % water content
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Steady-state model based on data of Nahen and Vogel (2002)

Initial velocities during long-pulse laser ablation (200-us Er:YAG laser),
determined as the slope of the blue and red lines in previous figure.

sample vapor particle
30% gelatin 62 m/s 135 m/s
10% gelatin 71 m/s 16 m/s
water 58 m/s 143 m/s
skin 55 m/s 42 m/s

These velocities are roughly 10- to 100-fold lower than needed to
achieve the density of momentum required for a Concussive
Insulft.



Steady-state
model

VS

Blow-off model



Blow-off model Ue = U, = Uy = Upear
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Blow-off model

—_ —UaZabi
ch — luaHoe

Energy Deposition

Q = pH

Radiant Exposure




Thermal confinement:
Laser deposits faster than heat can diffuse away
> 1

[ = = 2
4a  4dou,

Stress confinement:

Laser deposits faster than pressure can progate away

d 1
f=— =
CS

CS‘LLCI



The mechanism of ablation underlying Qy:

1. Exglosrve vaporization:
enthalpy of vaporization

spinodal decomposition

superheated fluid ~ 3OOOC

explosive ejection

o=

2. Thermoelastic expansion:

thermoelastic expansion

inertia of the outward expansion o
Overcome breaking strength of the tissue ~ 70 C
ejection

Hown =

This mechanism was discussed by Dingus and AT - 4°C. - .AP = +10 bar --
Scammon (1991) as “spallation” and later > cavitation of water
discussed by Albagli et al. (1994) as "inertial _ Q0 .
confinement” in a review of ablation AT = 28°C --> AP = + ~35 bar

literature. --> spallation of tissue



Reported threshold of ablation (Qy, [J/cm3]) and equivalent temperature (T, [°C]).

Laser 1, Q‘r_h Tﬂm
ArF excimer ablation of skin 14 ns 397 J/cm3  120°C
Pulsed dye laser explosion of red blood cells 1ms 392 J/cm3  125°C
Albagli's review (various tissues and lasers) short pulses 285 J/cm3 62 °C

T

.. hot 300°cC |l

..supports the “spallation”
or “inertial confinement"
mechanism underlying Q;;,
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etch depth 1 ( MaHO)
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mass P Zapi

1000 g/kg

m [kg] per em?

Radiant
exposure

H,
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Kinetic Energy

U, = laser pulse
Uke = Up = Uabs = Upear

Uab/ = thz abl

UKE [J] per cm? surface
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Momentum

Radiant
exposure

H,
J/cm?

M = mv

momentum, M [kg mis] per em? surface

50 100 150 200
p, fcm ']

u, [em]
Absorption coefficient




Momentum

M = mv

momentum, M [kg mis] per em? surface

Radiant
exposure
H,
2
T/em 0.087 [(kg m/
s)/cm?]
& 100-mph
Optimum laser baseball
- -1
u, = 24.2 cm 50 ua}gg_1] 150 200
H, = 82 J/cm?
ug [em™]

Absorption coefficient



... based on

0.2

experiment
0.2 . l
Initial estimate:
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DIAGNOSTICS:

Photoacoustic Imaging



Griineisen coefficient

Stress, or pressure

[dimensionless]

|
P=MaFtr

1 [J/ecm?] = 10 bar

G =0.12 at 25°C

--> (0.5 at higher temperatures



P

Photoacoustic imaging:

Initial thermoelastic expansion

Energy deposition in
volume, W [J/m3]

M
= —— WH = T W
C |"'a,

P&
energy deposition = (u)(H) = W [J/m3].
temperature rise = (energy deposition)/(pC,) [degree C].
strain = (B)(temperature rise) [dimensionless].
pressure P = (M)(strain) [J/m3] = [Pa].

1J/m3=1Pa=10" bar.




Photoacoustic imaging:

Velocity Potential related to energy deposition

distributed energy
deposition W(r')

observation point r
O

= ﬁ H’(?’) |F’ — a 3
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Photoacoustic imaging:

Velocity Potential related to energy deposition

distributed energy
deposition W(r')

observation point r
O

~ ﬁ W(?’) |F’ — a 3
= — 6 —_— d !
(ﬁ(f}, t) 4 ] m ‘F’ ~ ;'; ! r

C




Photoacoustic imaging:

Forward calculation

distributed energy
deposition W(r')

observation point r
O

_ B 1 N Wl
=~ 4o, AtJE ffj] "o
where k = round(r[j]/c,/dt) is time index

and j is volume voxel index

Forward calculation called A:

¢ = A(W)



Photoacoustic imaging:

Pressure related to Velocity Potential

op(r,t)
ot

Pressure P [J/m3] or [Pa]

is related to

P(r,t)=-p

velocity potential ¢ [m?/s]



Energy deposition =1 J/cm3 = 106 J/m3
...a 0.24°C temperature jump
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Energy deposition =1 J/cm3 = 106 J/m3
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Energy deposition =1 J/cm3 = 106 J/m3
...a 0.24°C temperature jump

x 107 x 10°

° o

110

16 J/m3
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Photoacoustic imaging:

Inverse Problem

measure ¢ by integrating pressure detector
backproject W = source of energy deposition

for one detector:

47pC N
W[j]:(— " p) dt2¢[k]r(r—cskdt<dr)

/‘ B k=1 Vshell

for all j voxels where r[j] - c,kdt < dr
where V= X VIl (ilj] - ekdt < dn
J

Inverse calculation called B:

W = B(¢)
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energy deposition in object back project mVP
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